
Note: Page numbers referring to figures
and tables are followed by an italicized f
or t respectively.

A
activation functions

common, 178t–180t
defined, 178

add_edge function, 41
add_node function, 49–50
add_question function, 112
add arithmetic instruction, 15
ADS (Alternate Data Streams), 29
Advanced Persistent Threat 1 attacker

group. See APT1 attacker
group

advanced persistent threats (APTs), 60
Allaple.A malware family, 157, 157f
Alternate Data Streams (ADS), 29
anti-disassembly techniques, 22
API calls, 32–33, 33f
apply_hashing_trick function, 138
APT1 (Advanced Persistent Threat 1)

attacker group, 37–39, 38f,
45–47, 45f–47f, 61, 61f, 76,
76f, 86, 222–223

APTs (advanced persistent threats), 60
ArchSMS family of Trojans, 55
area under the curve (AUC), 209–210,

210f, 213
arithmetic instructions, 15, 15t
.asarray method, 142
assembly language, defined, 12. See also

x86 assembly language
AT&T, 43
AT&T syntax, 13
attributes, 37

adding to nodes and edges, 42
and edges, 48–51

AUC (area under the curve), 209–210,
210f, 213

autoencoder neural networks,
194–195, 195f

automatic feature generation, 188

B
backpropagation, 190–192, 190f–191f
bag of features model, 62–64, 63f

features, defined, 62
Jaccard index and, 65
N-grams, 63–64, 64f
order information and, 63–64
overview, 62–63

bar charts (histograms), 168–170,
168f–169f

base virtual memory address, 6
basic blocks, 19–20
bias parameter, 104
bias term, 178, 181
bipartite networks, 37–39, 38f
bitcoin mining, 158, 160–161, 168f,

172f–173f, 173

C
callbacks

built-in (Keras package), 212
creating shared callback

relationship network, 51–54
custom, 213–214, 214f

call instruction, 17–18
capstone module, 20
Carerra, Ero, 5
chain rule, 191–192
cmp instruction, 18
CNNs (convolutional neural networks),

193–194, 194f
coarsenings, 46
color attribute, 49
comment_sample function, 82–84
COMMENT mode, 229
compile method, 202

I n d e x

234 Index

compressed_data_weight parameter, 103
compressed_data parameter, 103–104
conditional branches, defined, 15
control flow, 17

graphs, 19–20, 19f
instructions, 17–18
registers, 14–15

convolutional neural networks (CNNs),
193–194, 194f

CPU registers, 13–15, 14f
general-purpose registers, 13–14
stack and control flow registers,

14–15
cross_validation module, 151
cross-validation, 150–153, 151f, 153f
CuckooBox software platform, 27,

33–34, 59
“curse of dimensionality,” 92
cv_evaluate function, 151

D
dapato malware family, 62, 67f–68f,

70f–72f
DataFrame objects, 158–161
data movement instructions, 15–20, 16t

basic blocks, 19–20, 19f
control flow graphs, 19–20, 19f
control flow instructions, 17–18
stack instructions, 16–17

data science, iii, iv
applying to malware, v
importance of, iv–v

.data section (in PE file format), 4
dateutil package, 164
dec arithmetic instruction, 15
decision boundaries, 93–98, 95f–98f

identifying with k-nearest
neighbors, 97–98, 97f–98f

identifying with logistic regression,
96–97, 96f–97f

overfit machine-learning model,
100, 101f

underfit machine-learning model,
99, 99f

well-fit machine-learning model,
100, 100f

decision thresholds, 149
DecisionTreeClassifier class, 130

decision trees, 109–115, 109f–110f,
113f–114f

decision tree–based detectors, 129
importing modules, 129
initializing sample training

data, 130
instantiating classes, 130
sample code, 133–134
training, 130–131
visualizing, 131–133, 132f

follow-up questions, 111
limiting depth or number of

questions, 111–112
pseudocode for, 112–113
root node, 110–111
when to use, 114–115

deep learning, 175–197, 216. See also
neural networks

automatic feature generation, 188
building neural networks, 182–188
neurons, 176

anatomy of, 177–180
networks of, 180–181

overview, 176–177
training neural networks, 189–193
types of neural networks, 193–197
universal approximation theorem,

181–182
deep neural networks. See neural

networks
Dense function, 200–201
describe method, 159
detection accuracy evaluation, 119–126,

146–153
base rates and precision, 124–126

effect of base rate on precision,
124–125

estimating precision in
deployment environment,
125–126

with cross-validation, 150–153,
151f, 153f

neural networks, 209–211, 210f–211f
possible detection outcomes,

120, 120f
with ROC curves, 123–124, 123f,

147–150, 150f
true and false positive rates,

120–124
relationship between, 121–122,

121f–122f
ROC curves, 123–124, 123f

Index 235

DictVectorizer class, 128–130
directed graphs, 180
distance functions, 107
DLLs (dynamic-link libraries), 13
DOS header (in PE file format), 3
.dot format, 42
dynamically downloaded data, 22–23
dynamic analysis, 25–34

bag of features model, 63
dataset for, 222
for disassembly, 26
limitations of, 33–34
for malware data science, 26
typical malware behaviors, 27
using malwr.com, 26–33

analyzing results, 28–33
limitations, 33
loading files, 27–28

dynamic API call–based similarity,
72, 72f

dynamic-link libraries (DLLs), 13

E
EAX register, 14
EBP register, 14
EBX register, 14
ECX register, 14
edges, 37

adding attributes, 42
adding to shared relationship

networks, 41
adding visual attributes to, 48–51

color, 49, 49f
text labels, 50–51
width, 48–49, 48f

EDX register, 14
EFLAGS register, 15
EIP register, 14–15
ELU activation function, 179t
entry point, 3, 19
epochs parameter, 206
ESP register, 14
euclidean_distance function, 107
Euclidean distance, 107
evaluate function, 148
evaluate mode, 231–232
evaluating malware detection systems.

See detection accuracy
evaluation

export_graphviz function, 132
extract_features function, 204–205
ExtractImages helper class, 56–57

F
fakepdfmalware.exe, 7
false negatives, defined, 120, 120f
false positives, 120, 120f

base rates and precision, 124–126
false positive rate, 121
relationship between true and false

positive rates, 121–122,
121f–122f

ROC curves, 123–124, 123f
fdp tool, 43–45, 45f, 76
feature_extraction module, 129
feature extraction, 134–138

Import Address Table features, 136
machine learning–based malware

detectors, 90–92, 141–142
N-grams, 136–137
Portable Executable header

features, 135–136
shared code analysis, 73, 75
string features, 135
training neural networks with Keras

package, 203–204
why all possible features can’t be

used at once, 137–138
FeatureHasher class, 140–141
feature hashing. See hashing trick
feature spaces, 93–98, 94f–98f
feed-forward neural networks, 181,

181f, 193
fit_generator function, 204–206, 208,

212, 214
fit method, 130–131, 142
flags, defined, 15
format strings, 70
forward propagation, 189–190

G
Gaussian activation function, 179t
generative adversarial networks

(GANs), 195–196
generator parameter, 206
get_database function, 80–82
get_string_features function,

141–142, 144
get_strings function, 82
get_training_data function, 143
get_training_paths function, 143
GETMAIL utility, 223
getstrings function, 73–74
–G flag, 44

236 Index

gini index, 132, 132f
gradient descent, 105, 190
Graph constructor, 41, 52–53
graphical image analysis, 7–8

converting extracted .ico files to
.png graphics, 8

creating directory to hold extracted
images, 7–8

extracting image resources using
wrestool, 8

GraphViz, 76
decision tree–based detectors,

131–133, 132f
malware network analysis, 43–51

adding visual attributes to
nodes and edges, 48–51

fdp tool, 44–45, 45f
neato tool, 47–48, 47f
parameters, 44
sfdp tool, 46–47, 46f

similarity graphs, 76
ground_truth variable, 130

H
hashing trick (feature hashing),

138–141
complete code for, 139–140
FeatureHasher class, 140–141
implementing, 138–139

hidden layer, 181
histograms (bar charts), 168–170,

168f–169f
hostname_projection argument, 225
hyperplanes, 96, 97f

I
IAT. See Import Address Table
icoutils toolkit, 5
IDA Pro, 12
.idata section (imports) (in PE file

format), 4
Identity activation function, 178t
Import Address Table (IAT), 4

dumping using pefile, 6–7
extracting features, 136
similarity analysis based on, 71, 71f

imports analysis, 6–7
inc arithmetic instruction, 15
information gain, 113
Input function, 200–201

instruction sequence–based
similarity, 68f

limitations of, 68–70
overview, 67–68

Intel syntax, 13
Internet Relay Chat (IRC), 2
int function, 148
inverted indexing, 82
ircbot.exe bot, 2

disassembling, 20–21
dissecting, 5–7
dumping IAT, 6–7
strings analysis, 9–10

J
jaccard_index_threshold argument,

227–228
jaccard function, 73
Jaccard index, 61, 65, 65f

building similarity graphs, 73–75
dynamic API call–based

similarity, 72
instruction sequence–based

similarity, 68
minhash method, 77–79
scaling similarity comparisons, 77
strings-based similarity, 70

jge instruction, 18
jmp instructions, 18
jointplot function, 171–172

K
Kaspersky, 62
Keras package, building neural

networks with, 199–214
compiling model, 202–203, 202f
defining architecture of model,

200–202
evaluating model, 209–211,

210f–211f
layers, 200
saving and loading model, 209
syntaxes, 200
training model, 203–209, 211–214

built-in callbacks, 212
custom callbacks, 213–214, 214f
data generators, 204–207, 207f
feature extraction, 203–204
validation data, 207–209, 208f

keyloggers, 158, 168f, 172f–173f, 173

Index 237

KFold class, 151–152
K-fold cross-validation, 151
k-nearest neighbors, 105–109, 106f, 108f

identifying decision boundaries
with, 97–98, 97f–98f

logistic regression vs., 108–109
math behind, 107
pseudocode for, 107
when to use, 109

L
label attribute, 50–51
layers submodule, 200–201
lea instruction, 16
Leaky ReLU activation function, 179t
learned_parameters parameter, 103
linear disassembly, 12

limitation of, 12
shared code analysis, 67–68

LOAD mode, 229
logistic_function function,

103–104, 104f
logistic_regression function, 103
logistic regression, 102–105,

103f–104f, 154
gradient descent, 105
identifying decision boundaries

with, 96–97, 96f–97f
k-nearest neighbors vs., 108–109
limitation of, 102
math behind, 103–104
plot of logistic function, 104f
pseudocode for, 103
when to use, 105

long short-term memory (LSTM)
networks, 196

Los Alamos National Laboratory, 41
loss parameter, 201–202

M
machine learning–based malware

detectors, 89–117, 127–154
building basic detectors, 129

sample code, 133–134
training, 130–131
visualizing, 131–133, 132f

building overview, 90–93
collecting training examples,

90–91
designing good features, 92

extracting features, 90–92
reasons for, 89–90
testing system, 90, 93
training system, 90, 92–93

building real-world detectors,
141–146

complete code for, 144–146
feature extraction, 141–142
running detector on new

binaries, 144
training, 142–143

dataset for, 224
decision boundaries, 93–98,

95f–98f
evaluating detector

performance, 146
cross-validation, 150–153,

151f, 153f
ROC curves, 147–150, 150f
splitting data into training and

test sets, 148–149
feature extraction, 134–138

Import Address Table
features, 136

N-grams, 136–137
Portable Executable header

features, 135–136
string features, 135
why all possible features can’t

be used at once, 137–138
feature spaces, 93–98, 94f–98f
hashing trick, 138–141

complete code for, 139–140
FeatureHasher class, 140–141
implementing, 138–139

overfitting and underfitting, 98–99,
99f–101f

supervised vs. unsupervised
algorithms, 93

terminology and concepts, 128–129
tool for, 230–232, 231f
traditional algorithms vs., 90
types of algorithms, 101, 102f

decision trees, 109–115,
109f–110f, 113f–114f

k-nearest neighbors, 97–98,
97f–98f, 105–109, 106f, 108f

logistic regression, 96–97, 96f–
97f, 102–105, 103f–104f

random forest, 115–116, 116f
malware_projection argument, 52,

225–227

238 Index

malware detection evaluation.
See detection accuracy
evaluation

malware network analysis, 35–58, 36f
attributes, defined, 37
bipartite networks, 37–39, 38f
creating shared callback

relationship network, 51–54,
225–226, 226f

code for, 52–54
importing modules, 51–52
parsing command line

arguments, 52
saving networks to disk, 54

creating shared image relationship
networks, 54–58, 55f,
226–227

extracting graphical assets, 57
parsing initial argument and

file-loading code, 55–57
saving networks to disk, 58

dataset for, 222–223
edges, defined, 37
GraphViz, creating visualizations

with, 43–51
fdp tool, 44–45, 45f
neato tool, 47–48, 47f
parameters, 44
sfdp tool, 46–47, 46f
visual attributes, 48–51

NetworkX library, creating
networks with, 40–43

adding attributes, 42
adding nodes and edges, 41
saving networks to disk, 42–43

nodes, defined, 37
projections, 38
shared code analysis and, 60–61
visualization challenges, 39–40

distortion problem, 39–40, 40f
force-directed algorithms, 40
network layout, 39–40

malware samples, 61–62, 222–224
malwr.com, 26–33, 28f

analyzing results on, 28–33
API calls, 32–33, 33f
modified system objects, 30–32
Screenshots panel, 30, 30f
Signatures panel, 29–30, 29f
Summary panel, 30–32, 31f–32f

limitations of, 33
loading files on, 27–28

Mandiant, 61, 76, 223
MAPIGET utility, 223
Mastercard, iii
matplotlib library, 148–150,

162–167, 162f
plotting ransomware and

worm detection rates,
165–167, 166f

plotting ransomware detection
rates, 164–165, 165f

plotting relationship between
malware size and detection,
162–163

max function, 160
mean function, 160–161
memory cells, 196
metrics module, 147–148
metrics parameter, 201–202
min function, 81, 160
minhash approach

combined with sketching, 79
math behind, 78–79, 78f
overview, 77–78

minhash function, 82
ModelCheckpoint callback, 212
Model class, 201
models submodule, 201–202
mov instruction, 15–16
murmur module, 80, 82
mutexes, defined, 32
my_generator function, 205, 207–208
MyCallback class, 213–214

N
neato tool, 47–48, 47f
Nemucod.FG malware family, 157, 157f
NetworkX library, 40–43

creating shared relationship
networks, 41–42

overview, 41
saving networks to disk, 42–43

neural networks, 176, 177–188
automatic feature generation, 188
building

with four neurons, 186–188,
186f–187f, 187t

with three neurons, 184–186,
185f–186f, 185t

with two neurons, 182–184,
182f–184f, 183t–184t

Index 239

building with Keras package,
199–214

compiling model, 202–203, 202f
defining architecture of model,

200–202
evaluating model, 209–211,

210f–211f
saving and loading model, 209
training model, 203–209,

211–214
dataset for, 224
neurons, 176

anatomy of, 177–180, 177f,
178t–180t

networks of, 180–181, 181f
training, 189–193

using backpropagation,
190–192, 190f–191f

using forward propagation,
189–190

vanishing gradient problem,
192–193

types of, 193–197
autoencoder, 194–195, 195f
convolutional, 193–194, 194f
feed-forward, 193
generative adversarial, 195–196
recurrent, 196
ResNet, 196–197

universal approximation theorem,
181–182, 182f

neurons, 176
anatomy of, 177–180, 177f, 178t–180t
networks of, 180–181, 181f

next method, 205, 208
N-grams, 63–64, 64f

dynamic API call–based
similarity, 72

extracting features, 136–137
instruction sequence–based

similarity, 67–68
nodes, 37

adding attributes, 42
adding to shared relationship

networks, 41
adding visual attributes to, 48–51

color, 49, 49f
shape, 49–50, 50f
text labels, 50–51
width, 48–49

in decision trees, 110–111
NUM_MINHASHES constant, 80–81

O
objective function, 189
optimizer parameter, 201–202
optional header (in PE file format), 3–4
output_dot_file argument, 227–228
output_file argument, 52, 225, 227
overfit machine-learning models,

98–99, 101f
overlap parameter, 44

P
packing, 21

difficulty of disassembling packed
malware, 26

legitimate uses of, 22
pandas package, 158–161

filtering data using conditions, 161
loading data, 158–159
manipulating DataFrame, 159–161

Parkour, Mila, 61
pasta malware family, 62, 67f–68f,

70f–72f
PE. See Portable Executable file format
PE (Portable Executable) header, 3,

135–136
pecheck function, 73–74
pefile module, 5–7

disassembly using, 20
dumping IAT, 6–7
installing, 5, 20
opening and parsing files, 5–6
pulling information from PE

fields, 6
pefile PE parsing module, 51–52
penwidth attribute, 48–49
persistent malware similarity search

systems, 79–87
building

allowing users to search for and
comment on samples, 82–84

implementing database
functionality, 80–81

importing packages, 80
indexing samples into system’s

database, 82
loading samples, 85
obtaining minhashes and

sketches, 81–82
parsing user command line

arguments, 84–85

240 Index

persistent malware similarity search
systems, continued

commenting on samples, 86
sample output, 86–87
searching for similar samples, 86
wiping database, 86

pick_best_question function, 112–113
pickle module, 143–144
plot function, 162–163, 167
.png format, 43
pooling layer, 194
pop instruction, 16–17
Portable Executable (PE) file

format, 2–5
dissecting files using pefile, 5–7
entry point, 3

file structure, 2–5, 3f
DOS header, 3
optional header, 3–4
PE header, 3
section headers, 4–5

sections, defined, 4
Portable Executable (PE) header, 3,

135–136
position independence, 5
precision, 124–126

effect of base rate on, 124–125
estimating in deployment

environment, 125–126
predict_proba method, 144, 149
PReLU activation function, 179t
program stack, defined, 14
projected_graph function, 54
projections, 38
push instruction, 16–17
pyplot module, 148–149, 163

R
random forest

overview, 115–116, 116f
random forest–based detectors,

141–146
complete code for, 144–146
running detector on new

binaries, 144
training, 142–143

RandomForestClassifier class, 143, 152
ransomware, 30–31, 31f, 155–158, 156f,

158, 164–168, 165f–166f,
168f, 172–173, 172f–173f

.rdata section (in PE file format), 4

Receiver Operating Characteristic
curves. See ROC curves

rectified linear unit (ReLU) activation
function, 177f, 178t, 180,
182f, 183–185, 201

recurrent neural networks (RNNs), 196
registry keys, 32
.reloc section (in PE file format), 5
ReLU (rectified linear unit) activation

function, 177f, 178t, 180,
182f, 183–185, 201

ResNets (residual networks), 196–197
resource_projection argument, 52, 227
resource obfuscation, 22
ret instruction, 17–18
reverse engineering, 12

anti-disassembly techniques, 22
dynamic analysis for, 26
methods for, 12
shared code analysis, 60
using pefile and capstone, 20–21

RNNs (recurrent neural networks), 196
ROC (Receiver Operating

Characteristic) curves,
123–124, 123f, 126, 147–150,
230–231, 231f

computing, 147–150
cross-validation, 151–152, 153f
neural networks, 209–210,

210f–211f
visualizing, 149, 150f

roc_curve function, 149, 210
.rsrc section (resources) (in PE file

format), 4–5

S
sandbox, 26
Sanders, Hillary, 216
savefig function, 165
scan_file function, 144
scan mode, 230–231
scikit-learn (sklearn) machine learning

package, 127–128
building basic decision tree–based

detectors, 129–134
building random forest–based

detectors, 141–146
evaluating detector performance,

146–153
feature extraction, 134–135
hashing trick, 140–141

Index 241

terminology and concepts, 128–129
classifiers, 129
fit, 129
label vectors, 128–129
prediction, 129
vectors, 128

seaborn package, 168–174, 168f
creating violin plots, 172–174,

172f–173f
plotting distribution of antivirus

detections, 169–172,
169f, 171f

search_sample function, 82–84
SEARCH mode, 229
section headers (in PE file format), 4–5

.data section, 4

.idata section (imports), 4

.rdata section, 4

.reloc section, 5

.rsrc section (resources), 4–5

.text section, 4
security data scientists, 215–220

expanding knowledge of methods,
219–220

paths to becoming, 216
traits of effective, 218–219

curiosity, 218–219
obsession with results, 219
open-mindedness, 218
skepticism of results, 219
willingness to learn, 216

workflow of, 216–218, 217f
data feed identification, 218
dealing with stakeholders, 217
deployment, 218
problem identification, 217–218
solution building and

evaluation, 218
self-modifying code, 12
set_axis_labels function, 172
sfdp tool, 46–47, 46f
shape attribute, 49–50
shared attribute analysis. See malware

network analysis
shared code analysis (similarity

analysis), 59–87, 60, 61f
bag of features model, 62–64, 63f

features, defined, 62
N-grams, 63–64, 64f
order information and, 63–64
overview, 62–63

dataset for, 223

Jaccard index, 64–65, 65f
persistent malware similarity search

systems, 79–87
allowing users to search for and

comment on samples, 82–84
commenting on samples, 86
implementing database

functionality, 80–81
importing packages, 80
indexing samples into system

database, 82
loading samples, 85
obtaining minhashes and

sketches, 81–82
parsing user command line

arguments, 84–85
sample output, 86–87
searching for similar samples, 86
wiping database, 86

scaling similarity comparisons,
77–79

difficulties with, 77
minhash method, 77–79, 78f

similarity graphs, 73–76, 76f
declaring utility functions,

73–74
extracting features, 73, 75
importing libraries, 73
iterating through pairs, 75
Jaccard index threshold, 73
parsing user’s command line

arguments, 74
visualizing graphs, 76

similarity matrices, 66–72, 66f–67f
concept of, 66
dynamic API call–based

similarity, 72, 72f
Import Address Table–based

similarity, 71, 71f
instruction sequence–based

similarity, 67–70, 68f
strings-based similarity,

70–71, 70f
tools for, 227–230, 228f

shared image relationship networks,
54–58, 55f, 226–227

extracting graphical assets, 57
parsing initial argument and file-

loading code, 55–57
saving networks to disk, 58

shelve module, 80
show function, 152, 163, 165, 168

242 Index

Sigmoid activation function, 180t, 201
sim_graph module, 80, 82
similarity analysis. See shared code

analysis
similarity functions, 64–65
similarity graphs, 73–76, 76f

declaring utility functions, 73–74
extracting features, 73, 75
importing libraries, 73
iterating through pairs, 75
Jaccard index threshold, 73
parsing user’s command line

arguments, 74
visualizing graphs, 76

similarity matrices, 66–72, 66f–67f
dynamic API call–based similarity,

72, 72f
Import Address Table–based

similarity, 71, 71f
instruction sequence–based

similarity, 67–70, 68f
strings-based similarity, 70–71, 70f

SKETCH_RATIO constant, 80, 82
sklearn. See scikit-learn machine

learning package
skor malware family, 62, 67f–68f,

70f–72f
Softmax activation function, 180t
Sophos, 216
splines parameter, 44
split_regex expression, 203–204
stack, defined, 16
stack instructions, 16–17
stack management registers, 14–15
static malware analysis, 1–23

dataset for, 222
disassembly and reverse

engineering, 12
methods for, 12
using pefile and capstone,

20–21
graphical image analysis, 7–8
imports analysis, 6–7
limitations of, 21–23

anti-disassembly techniques, 22
dynamically downloaded data,

22–23
packing, 21–22
resource obfuscation, 22

pefile module, 5–7
Portable Executable file format, 2–5
strings analysis, 8–10

std function, 160
Step activation function, 179t
steps_per_epoch parameter, 206
string_hash function, 81–82
strings

defined, 8
feature extraction, 135, 141–142

strings analysis, 8–10
analyzing printable strings, 8–10
information revealed through, 8
printing all strings in a file to

terminal, 8–9
strings-based similarity, 70–71, 70f
strings tool, 8–10
sub arithmetic instruction, 15
summary function, 202–203, 202f
supernodes, 46
suspicious_calls parameter, 103–104
suspiciousness scores, 121–122,

121f–122f

T
Target, iii
target_directory argument, 227–228
target_path argument, 52, 225, 227
TensorFlow, 200, 207
.text section (in PE file format), 4
threat scores, 147
.todense method, 142
train_detector function, 143
training_examples variable, 130
transform method, 131, 140
tree module, 129
Trojans, 54–55, 55f, 158–161, 168f,

172f–173f, 173
true negatives, defined, 120, 120f
true positives, 120, 120f

base rates and precision, 124–126
relationship between true and false

positive rates, 121–122,
121f–122f

ROC curves, 123–124, 123f
true positive rate, 121

U
underfit machine-learning models,

98–99, 99f
universal approximation theorem,

181–182, 182f
UPX packer, 29

Index 243

V
validation_labels object, 210–211
validation_scores object, 210
vanishing gradient problem, 192–193
vbna malware family, 62, 67f–68f,

70f–72f
vectors, 128
violin plots, 172–174, 172f–173f
VirtualBox, vii–viii, 222
virtual size, 6
VirusTotal.com, 29, 59
visualization, 155–174

basic machine learning–based
malware detectors,
131–133, 132f

dataset for, 224
importance of, 156–158, 157f
malware network analysis

challenges to, 40f
creating with GraphViz, 45f–47f

network analysis
challenges to, 39–40
creating with GraphViz, 43–51

ROC curves, 149, 150f, 152–153, 153f
shared code analysis, 76
using matplotlib, 162–167, 162f

plotting ransomware and
worm detection rates,
165–167, 166f

plotting ransomware detection
rates, 164–165, 165f

plotting relationship between
malware size and detection,
162–163

using pandas, 158–161
filtering data using

conditions, 161
loading data, 158–159
manipulating DataFrame,

159–161
using seaborn, 168–174, 168f

creating violin plots, 172–174,
172f–173f

plotting distribution of
antivirus detections,
169–172, 169f, 171f

W
webprefix malware family, 62, 67f–68f,

70f–72f
weight attribute, 37
weight parameter, 178, 181
Wells Fargo, iii
Wikipedia, 220
wipe_database function, 80–81
wipe mode, 229
work method, 57
worms, 158–161, 165–167, 166f, 168f,

172, 172f–173f
wrestool tool, 55

downloading, 8
extracting image resources, 7–8

write_dot function, 42–43

X
x86 assembly language, 12–20

arithmetic instructions, 15, 15t
CPU registers, 13–15, 14f

general-purpose registers,
13–14

stack and control flow registers,
14–15

data movement instructions,
15–20, 16t

basic blocks and control flow
graphs, 19–20, 19f

control flow instructions, 17–18
stack instructions, 16–17

dialects of, 13
shared code analysis, 67

xtoober malware family, 62, 67f–68f,
70f–72f

Y
yield statement, 205

Z
zango malware family, 62, 67f–68f,

70f–72f

