
T H I S A I N ’ T Y O U R
D A D D Y ’ S W U M P U S

In the previous chapter, we worked with mathematical
graphs in a simple game. However, as an old-school
geek, the first thing I think of when I see these graphs
is the old game Hunt the Wumpus. When I was nine, I
could think of nothing more fun than sitting in front
of my TI-99/4A and playing this excellent game.

graphics anymore. And the story line, well, let’s just say it sounds a bit corny
by modern standards. I think we can all agree that Hunt the Wumpus is in
serious need of a makeover. That’s quite a challenge, but one I think we can
handle.

Therefore, I present to you . . .

Here is the original title screen:
In Hunt the Wumpus, you are a hunter

searching through a network of caves to
find a mysterious monster—the fabled
Wumpus. Along the way, you also deal with
bats and tar pits. Ah, those were the days!

But, unfortunately, those days are long
gone. We’re in a new millennium now, and
no one would be impressed by these crude

Lisp_02.book Page 129 Thursday, September 9, 2010 5:02 PM

130 Chapter 8

Lisp_02.book Page 130 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 131

The Grand Theft Wumpus Game

In this new version of Hunt the Wumpus, you are the Lisp alien. You and the
Wumpus have just robbed a liquor store and made off with the loot. However,
during the escape, the Wumpus decides to double-cross you and run off with
the money and your car. But before he drives off, you manage to cap him a
couple of times in the kidney.

Now you’re in a pretty tough situation. You don’t have a car or any money,
and no way to track down your former partner in crime. But you also have no
choice. You have your principles, so you’re going to hunt the Wumpus. You
know he won’t be able to get very far with his injuries. He will most likely
need to lie low for a few days to recover, which means he will still be some-
where in Congestion City. The problem is that the roads in this town are
impossibly convoluted, and no one can find their way around, especially an
out-of-towner like yourself. How are you ever going to find the Wumpus in
this impossible maze?

Lisp_02.book Page 131 Thursday, September 9, 2010 5:02 PM

132 Chapter 8

Luckily, being the Lisp alien, you always carry your trusty pocket com-
puter. Using Lisp and your graph utilities, you’re fully equipped to analyze
complicated data such as the Congestion City roadways and intersections.
Surely, you have the tools to conquer this impenetrable road system.

Lisp_02.book Page 132 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 133

The Wumpus has been your partner in crime for a while now, so you know
his MO quite well. He will always carefully scout out any new hiding place
before he uses it. And since he is injured, any location one or two blocks away
(that is, one or two graph edges away) from his hiding place should be marked
with some telltale signs: his blood stains.

A problem is that he still has his trusty AK-47, while you have only a hand-
gun with a single bullet. If you’re going to take him out, you’ll need to be
absolutely sure you’ve tracked him down. You’ll need to charge into his hide-
out and shoot him down immediately, and you’ll have only one chance to pull
this off.

Unfortunately, you and the Wumpus aren’t the only criminals in this town.
The most feared outlaw group in Congestion City is the Gruesome Glowworm
Gang. These guys are a band of ruthless kidnappers. If you run into them,
they will kidnap you, beat you up, rob you, blindfold you, and then kick you
out of their car and leave you in some random part of town.

Luckily, they can be avoided if you know to keep an eye out for their glow-
ing thoraxes (hence their name). If you see some blinking lights, you know
that these guys are one street away from your current location. Also, you know
the gang has exactly three separate teams that work the city from three sepa-
rate locations.

Lisp_02.book Page 133 Thursday, September 9, 2010 5:02 PM

134 Chapter 8

Finally, you still need to contend with the cops. You know they’ve proba-
bly set up some roadblocks in town to try to catch you and the Wumpus. You
should still be able to visit any location in Congestion City, but you need to
be careful which streets you travel. (In other words, the cops will catch you if
you travel along the wrong edge.) Unfortunately, you don’t know how many
of these roadblocks there may be.

Lisp_02.book Page 134 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 135

As you can see, finding the Wumpus and getting back your money and car
will be tough. If you think you’re Lisp alien enough to take on the Wumpus,
then let’s write this game and hunt him down!

Defining the Edges of Congestion City

The map of Congestion City will be an undirected graph with data associated
with each node stored in the variable *congestion-city-nodes*. The possible data
at each node will include the presence of the Wumpus, a Glowworm team,
and various danger signs.

A set of edges stored in *congestion-city-edges* will connect the nodes, and
data linked to these edges will alert us to the presence of any police road-
blocks. We declare these and other global variables at the top of our pro-
gram using defparameter:

X (load "graph-util")

(defparameter *congestion-city-nodes* nil)
(defparameter *congestion-city-edges* nil)
(defparameter *visited-nodes* nil)

Y (defparameter *node-num* 30)
Z (defparameter *edge-num* 45)
[(defparameter *worm-num* 3)
\ (defparameter *cop-odds* 15)

We first load our graph utilities with the load command X, which evaluates
all the code in graph-util.lisp (which we created in the previous chapter) so
the graph utility functions will be available. Notice that Congestion City will
have 30 locations Y (nodes, defined with *node-num*), 45 edges Z (roads,
defined with *edge-num*), and 3 worm teams [(defined with *worm-num*). Each
street will have a 1-in-15 chance \ of containing a roadblock (defined with
cop-odds).

Generating Random Edges
Next, we create a random list of edges to connect all the nodes:

X (defun random-node ()
 (1+ (random *node-num*)))

Y (defun edge-pair (a b)
 (unless (eql a b)
 (list (cons a b) (cons b a))))

Z (defun make-edge-list ()
[(apply #'append (loop repeat *edge-num*
\ collect (edge-pair (random-node) (random-node)))))

Lisp_02.book Page 135 Thursday, September 9, 2010 5:02 PM

136 Chapter 8

First, we declare the random-node function X, which returns a random
node identifier. It uses the random function, which returns a random natural
number less than the integer you pass to it. Since we’re going to be showing
the node identifiers in our user interface, we use the 1+ function to number
our nodes 1 through 30 (the upper limit because the *node-num* variable is set
to 30), instead of 0 through 29.

The make-edge-list function Z generates the actual list of random edges.
It uses the loop command to loop *edge-num* times [, and then collects the
requisite number of edges \. We’ll take a closer look at the loop command in
the next section. The graph of the city is undirected, so this function uses a
helper function, edge-pair Y, to create two directed edges between the randomly
selected nodes. This extra step makes sense once you remember that an
undirected graph is the same as a directed graph, with two opposing directed
edges mirroring each undirected edge. (When we build our edges into an
alist later in this chapter, this step will ensure that the list is properly formed.)

Let’s try the make-edge-list function in the CLISP REPL:

> (make-edge-list)
((16 . 20) (20 . 16) (9 . 3) (3 . 9) (25 . 18) (18 . 25) (30 . 29) (29 . 30)
(26 . 13) (13 . 26) (12 . 25) (25 . 12) (26 . 22) (22 . 26) (30 . 29) (29 .
30) (3 . 14) (14 . 3) (28 . 6) (6 . 28) (4 . 8) (8 . 4) (27 . 8) (8 . 27) (3 .
30) (30 . 3) (25 . 16) (16 . 25) (5 . 21) (21 . 5) (11 . 24) (24 . 11) (14 .
1) (1 . 14) (25 . 11) (11 . 25) (21 . 9) (9 . 21) (12 . 22) (22 . 12) (21 .
11) (11 . 21) (11 . 17) (17 . 11) (30 . 21) (21 . 30) (3 . 11) (11 . 3) (24 .
23) (23 . 24) (1 . 24) (24 . 1) (21 . 19) (19 . 21) (25 . 29) (29 . 25) (1 .
26) (26 . 1) (28 . 24) (24 . 28) (20 . 15) (15 . 20) (28 . 25) (25 . 28) (2 .
11) (11 . 2) (11 . 24) (24 . 11) (29 . 24) (24 . 29) (18 . 28) (28 . 18) (14 .
15) (15 . 14) (16 . 10) (10 . 16) (3 . 26) (26 . 3) (18 . 9) (9 . 18) (5 . 12)
(12 . 5) (11 . 18) (18 . 11) (20 . 17) (17 . 20) (25 . 3) (3 . 25))

You see the pairs of node numbers that make up the edges. This list of
edge pairs will form the skeleton of the Congestion City road system.

Looping with the loop Command
Our make-edge-list function employs the powerful loop command, which can
be used to loop over various types of data. We’ll be looking at loop in detail in
Chapter 10. However, our game uses loop a few times, so let’s consider some
simple examples to clarify how it works.

is
equivalent

to

Lisp_02.book Page 136 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 137

One handy thing you can do with loop is create a list of numbers. For
instance, the following command will create a list of 10 ones:

> (loop repeat 10
 collect 1)
(1 1 1 1 1 1 1 1 1 1)

Within the loop command, we specify how many times to repeat, and then
specify an object to collect with every loop (in this case, the number 1).

Sometimes, we want to keep a running count as we’re looping. We can
do this with the following syntax:

> (loop for n from 1 to 10
 collect n)
(1 2 3 4 5 6 7 8 9 10)

In this example, we are saying that n should loop from 1 to 10. Then we
collect each n and return it as a list.

Actually, we can put any Lisp code in the collect part of the loop. In the
following example, we add 100 as we do our collecting:

> (loop for n from 1 to 10
 collect (+ 100 n))
(101 102 103 104 105 106 107 108 109 110)

Preventing Islands
We now can generate random edges. Of course, if we just connect random
nodes with random edges, there’s no guarantee that all of Congestion City
will be connected because of all that randomness. For example, some parts
of the city might form an island, with no connections to the main road system.

Lisp_02.book Page 137 Thursday, September 9, 2010 5:02 PM

138 Chapter 8

To prevent this, we’ll take our list of edges, find unconnected nodes, and
connect these islands to the rest of the city network using this code:

X (defun direct-edges (node edge-list)
Y (remove-if-not (lambda (x)

 (eql (car x) node))
 edge-list))

Z (defun get-connected (node edge-list)
[(let ((visited nil))

 (labels ((traverse (node)
 (unless (member node visited)

\ (push node visited)
] (mapc (lambda (edge)

 (traverse (cdr edge)))
 (direct-edges node edge-list)))))
 (traverse node))
 visited))

(defun find-islands (nodes edge-list)
 (let ((islands nil))

^ (labels ((find-island (nodes)
 (let* ((connected (get-connected (car nodes) edge-list))
 (unconnected (set-difference nodes connected)))
 (push connected islands)

_ (when unconnected
 (find-island unconnected)))))
 (find-island nodes))
 islands))

(defun connect-with-bridges (islands)
` (when (cdr islands)

 (append (edge-pair (caar islands) (caadr islands))
 (connect-with-bridges (cdr islands)))))

a (defun connect-all-islands (nodes edge-list)
 (append (connect-with-bridges (find-islands nodes edge-list)) edge-list))

First, we declare a utility function called direct-edges X, which finds all
the edges in an edge list that start from a given node. It does this by creating
a new list with all edges removed (using remove-if-not Y) that don’t have the
current node in the car position.

To find islands, we write the get-connected function Z. This function takes
an edge list and a source node and builds a list of all nodes connected to that
node, even if it requires walking across multiple edges.

The usual way to find connected nodes is to start a visited list [, and
then perform a search along connected nodes, starting with the source node.
Newly found nodes are added to the visited list with the push command \.
We also traverse all the children of this found node, using mapc].

If, on the other hand, we encounter a node that has already been visited,
we know we can ignore it. Once the search is complete, the visited list will
consist of all connected nodes.

Lisp_02.book Page 138 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 139

Now that we have a function for finding nodes that are connected, we
can use it to create a function that will find all the islands in our graph. The
find-islands function first defines a local function, called find-island ^. This
function checks which nodes are connected to the first node in our list of
nodes using the connected function. It then subtracts these nodes from the full
list of nodes using the set-difference function. (set-difference takes two lists,
and returns all items that are in the first list but not the second.)

Any remaining nodes are deemed unconnected. If any unconnected
node exists _, we call the find-islands function again recursively to find addi-
tional islands.

Once we’ve found all the islands, we need a way of bridging them
together. This is the job of the connect-with-bridges function. It returns a list of
additional edges that join all the islands together. To do this, it takes the list
of islands and checks if there is a cdr in this list `. If there is, it means there
are at least two land masses, which can be connected with a bridge. It uses the
edge-pair function to create this bridge, and then calls itself recursively on the
tail of the island list, in case additional bridges are needed.

Finally, we tie all of our island prevention functions together using the
function connect-all-islands a. It uses find-islands to find all the land masses,
and then calls connect-with-bridges to build appropriate bridges. It then appends
these bridges to the initial list of edges to produce a final, fully connected
land mass.

Building the Final Edges for Congestion City
To complete our edges for Congestion City, we need to convert the edges
from an edge list into an alist. We also will add the police roadblocks, which
will appear randomly on some of the edges. For these tasks, we will create the
make-city-edges, edges-to-alist, and add-cops functions:

(defun make-city-edges ()
X (let* ((nodes (loop for i from 1 to *node-num*

collect i))
Y (edge-list (connect-all-islands nodes (make-edge-list)))
Z (cops (remove-if-not (lambda (x)

 (zerop (random *cop-odds*)))
 edge-list)))

[(add-cops (edges-to-alist edge-list) cops)))

(defun edges-to-alist (edge-list)
\ (mapcar (lambda (node1)

 (cons node1
] (mapcar (lambda (edge)

 (list (cdr edge)))
 (remove-duplicates (direct-edges node1 edge-list)

^ :test #'equal))))
 (remove-duplicates (mapcar #'car edge-list))))

Lisp_02.book Page 139 Thursday, September 9, 2010 5:02 PM

140 Chapter 8

(defun add-cops (edge-alist edges-with-cops)
_ (mapcar (lambda (x)

 (let ((node1 (car x))
 (node1-edges (cdr x)))
 (cons node1

` (mapcar (lambda (edge)
 (let ((node2 (car edge)))

a (if (intersection (edge-pair node1 node2)
 edges-with-cops
 :test #'equal)
 (list node2 'cops)
 edge)))
 node1-edges))))
 edge-alist))

These are the most cumbersome functions in Grand Theft Wumpus. Let’s
take a closer look at them.

The make-city-edges Function

First, the make-city-edges function creates a list of nodes, using a loop X. (This
is simply a list of numbers from 1 to *node-num*.) Next, it creates a random
(but fully connected) edge list by calling the make-edge-list and connect-edge-
list functions Y. This result is stored in the edge-list variable. It then creates
a random list of edges that contains cops Z. We define these variables with
the let* command, which allows us to reference previously defined variables.

The following example shows the difference between defining variables
with let and let*:

> (let ((a 5)
 (b (+ a 2)))
 b)
*** - EVAL: variable A has no value
> (let* ((a 5)
 (b (+ a 2)))
 b)
7

As you can see, let won’t allow you to refer to other defined variables
(the variable b can’t reference the value of a). When defining variables with
let*, on the other hand, this kind of reference is allowed. For our purposes,
using let* allows our definition of cops Z to contain a reference to edge-list.

Once we’ve created the edge list and determined where the cops are, we
need to convert our edge list into an alist and add the cops to it [. The edges
are converted to an alist with the edges-to-alist function, and the cops are
added with the add-cops function.

Lisp_02.book Page 140 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 141

The edges-to-alist Function

The edges-to-alist function converts a list of edges into an alist of edges. For
example, assume we have the following city, with only three locations and
two edges connecting those locations:

We would describe this using an edge list as '((1 . 2) (2 . 1) (2 . 3) (3 .
2)). Remember that each of the edges is repeated, since the edges are undi-
rected and can be used in both directions. If we described this same city as an
alist, what would that look like?

Remember that an alist is a list that lets us look up a key (in this example,
one of the three nodes in our city) and find the information associated with
that key (in this case, a list of the roads connected to it). For this small city,
the alist would be '((1 (2)) (2 (1) (3)) (3 (2))).

To build this alist, the edges-to-list function first mapcars \ over the
nodes found in the edge list. To build the list of nodes, we use the remove-
duplicates function, which removes duplicate items from a list. By default,
remove-duplicates uses the eql function to check for equality, though it also
allows you to choose a different test function using the :test keyword
parameter. Since we’re checking for equality of cons pairs in our make-city-
edges function, we set :test to #'equal ^.

Within this outer mapcar \, we use another mapcar] to map across all the
direct-edges to this node. Together, these nested mapcar functions allow edges-
to-alist to convert the edges of a city into an alist.

The add-cops Function

When we wrote the make-city-edges function, we randomly marked some of
the edges to show that they have cops on them [. We are now going to use
this list of cop edges to mark the edges in our alist that contain cops. This is
the job of the add-cops function.

To do this, we use nested mapcar commands to map across the edges within
each node _`. We then check whether there are any cops on a given edge,
using the intersection function a. (The intersection function tells us which
items are shared between two lists.)

Lisp_02.book Page 141 Thursday, September 9, 2010 5:02 PM

142 Chapter 8

To understand exactly what the add-cops function is doing, it will help to
once again imagine our city with only three locations and two streets. In this
example, one of the streets has cops on it:

The generated alist for this city, created by add-cops, would look like this:

((1 (2)) (2 (1) (3 COPS)) (3 (2 COPS)))

This is actually a nested alist. The outer alist is organized based on the first
node, and the inner alists are organized based on the second node.

With the edges in this format, we can easily find all edges connected to a
given node by calling (cdr (assoc node1 edges)). To see if a given edge contains
cops, we can call (cdr (assoc node2 (cdr (assoc node1 edges)))), which goes down
two levels to grab the actual data linked to a specific edge between two nodes.
(One additional benefit of using this nested alist format is that it is fully com-
patible with our graph libraries—a feature that we’ll take advantage of shortly.)

Building the Nodes for Congestion City

Now we’ll build an alist for the nodes in our city. These nodes may contain
the Wumpus or the Glowworms, or they might contain various clues, such as
blood, lights, or sirens.

Most of the clues in our game are based on proximity to another node,
so we need to write some functions that tell us if two nodes are one node apart
in the city graph. The neighbors function looks up the node’s neighbors using
the alist of edges. If the second node is in that list, we know we’re one away.

(defun neighbors (node edge-alist)
 (mapcar #'car (cdr (assoc node edge-alist))))

(defun within-one (a b edge-alist)
 (member b (neighbors a edge-alist)))

First, this function looks up the first node (a) in the alist of edges with
neighbors. Then it uses member to see if the other node (b) is among these
nodes.

Lisp_02.book Page 142 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 143

The blood stain clues for the Wumpus can also be seen from two nodes
away. We can write a second function for checking two nodes like this:

(defun within-two (a b edge-alist)
X (or (within-one a b edge-alist)

 (some (lambda (x)
Y (within-one x b edge-alist))
Z (neighbors a edge-alist))))

First, we check if we are within one node of our goal X, since if we’re
within one, we’re also within two. Next, we extract all the nodes that are one
away Z (similar to what we did in the within-one function). Finally, we check if
any of these new nodes are within one Y, which would make them within two
of the original node.

Now that we have those utility functions, let’s write the function that builds
the final node alist (basically, the final map of our city.) Here’s the listing:

(defun make-city-nodes (edge-alist)
X (let ((wumpus (random-node))
Y (glow-worms (loop for i below *worm-num*

 collect (random-node))))
Z (loop for n from 1 to *node-num*
[collect (append (list n)
\ (cond ((eql n wumpus) '(wumpus))
] ((within-two n wumpus edge-alist) '(blood!)))
^ (cond ((member n glow-worms)

 '(glow-worm))
_ ((some (lambda (worm)

 (within-one n worm edge-alist))
 glow-worms)
 '(lights!)))

` (when (some #'cdr (cdr (assoc n edge-alist)))
 '(sirens!))))))

The make-city-nodes function first picks random nodes for the Wumpus X
and the Glowworms Y, and then it uses loop Z to run through the node
numbers. As it runs through the nodes, it builds a list describing each node
in the city, appended together from various sources [. By using append, each
part of the code that describes these nodes (and is within the body of the
append) can choose to add zero, one, or multiple items to the description,
creating its own child lists with zero, one, or multiple items.

At the front of the list, we put the node name, n [. If the Wumpus is at
the current node, we add the word Wumpus \ (but wrapped in a list, as we
just described). If we’re within two nodes of the Wumpus, we show its blood].
If the node has a Glowworm gang, we show it next ^, and if the Glowworm
gang is one node away, we show its lights _. Finally, if an edge from the node
contains cops, we indicate that sirens can be heard `.

To check for the sirens clue, we simply grab the edges with (cdr (assoc n
edges)) and see if some of these nodes have a value in the cdr. The 'cops symbol

Lisp_02.book Page 143 Thursday, September 9, 2010 5:02 PM

144 Chapter 8

would be attached to the edges at the cdr. Since we have only one data point
for edges in this game, looking for the presence of a cdr is an adequate
check for the presence of cops. For example, if we use our earlier example
of an alist with cops on it:

((1 (2)) (2 (1)X (3 COPS)Y) (3 (2 COPS)))

You can see that if an edge in the list has cops, such as here Y, the cdr
will lead to a non-nil value. An edge without cops X will have a cdr that is nil.

Initializing a New Game of Grand Theft Wumpus

With our graph construction stuff out of the way, we can write a simple func-
tion that initializes a brand-new game of Grand Theft Wumpus:

(defun new-game ()
 (setf *congestion-city-edges* (make-city-edges))
 (setf *congestion-city-nodes* (make-city-nodes *congestion-city-edges*))

X (setf *player-pos* (find-empty-node))
 (setf *visited-nodes* (list *player-pos*))
 (draw-city))

There are two new functions here. One, the find-empty-node function X,
ensures that the player doesn’t end up on top of a bad guy right at the begin-
ning of the game. Here’s the code for that function:

(defun find-empty-node ()
X (let ((x (random-node)))
Y (if (cdr (assoc x *congestion-city-nodes*))
Z (find-empty-node)

 x)))

Lisp_02.book Page 144 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 145

The find-empty-node function is pretty simple. First, it picks a random
node X to consider as the player’s starting position. Then it checks whether
it is a completely empty node Y. If there’s stuff in that node, it simply calls
itself again, trying another random spot Z.

WARNING If you ever decide to modify the game and make it more crowded with bad guys, you
could end up in a situation where no empty nodes exist. In that case, this function will
search forever and lock up your Lisp REPL, since we didn’t put in any checks to detect
this situation.

The other new function in our new-game command is draw-city, which we’ll
write next.

Drawing a Map of Our City

We’re finally ready to draw a map of our new city. We’re using a standard
format for our graph data, so writing this function is a breeze:

(defun draw-city ()
 (ugraph->png "city" *congestion-city-nodes* *congestion-city-edges*))

We created the ugraph->png function in the previous chapter, as part of
our graph library.

Now call (new-game) from the REPL, and open the city.dot.png picture in
your web browser:

NOTE Since every city map created by our code is unique, your map will look completely different
from the one in this picture.

Finally, we can marvel at the results of our urban planning!

Lisp_02.book Page 145 Thursday, September 9, 2010 5:02 PM

146 Chapter 8

Drawing a City from Partial Knowledge
Of course, it’s awfully boring to hunt something if you already know where
it is before the hunt starts. To solve this problem, we want a map of the city
that shows only the nodes that we’ve visited so far. To that end, we use a global
list called *visited-nodes* that is initially set to the player’s position only, but
which we’ll update as we walk around the city visiting other nodes. Using this
visited-nodes variable, we can calculate a smaller graph that includes only
those parts of the city that are known to us.

Known Nodes

First, we can build an alist of just the known nodes:

(defun known-city-nodes ()
X (mapcar (lambda (node)
Y (if (member node *visited-nodes*)

 (let ((n (assoc node *congestion-city-nodes*)))
Z (if (eql node *player-pos*)

 (append n '(*))
 n))

[(list node '?)))
 (remove-duplicates

\ (append *visited-nodes*
] (mapcan (lambda (node)

 (mapcar #'car
 (cdr (assoc node
 congestion-city-edges))))
 visited-nodes)))))

At the bottom of known-city-nodes, we need to figure out which nodes we
can “see” based on where we’ve been. We’ll be able to see all visited nodes \,
but we also want to track all nodes within one node of a visited node]. (We
will discuss the mapcan function shortly.) We calculate who is “within one” using
code similar to the previously discussed within-one function.

Next, we mapcar over this list of relevant nodes, processing each X. If the
current node is occupied by the player, we mark it with an asterisk Z. If the
node hasn’t been visited yet Y, we mark it with a question mark [.

Known Edges

Now, we need to create an alist stripped of any cop sirens that we haven’t
reached yet:

(defun known-city-edges ()
 (mapcar (lambda (node)
 (cons node (mapcar (lambda (x)
 (if (member (car x) *visited-nodes*)
 x

X (list (car x))))
 (cdr (assoc node *congestion-city-edges*)))))
 visited-nodes))

Lisp_02.book Page 146 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 147

This function is similar to the known-city-nodes function. The noteworthy
line of code is here X where we strip the cdr from the edge list for edges so
that cops are indicated on the map only if we’ve visited the nodes on both
ends of an edge containing cops.

The mapcan Function

The mapcan function we used in known-city-nodes is a variant of mapcar. However,
unlike mapcar, mapcan assumes that the values generated by the mapping func-
tion are all lists that should be appended together. This is useful when there
isn’t a one-to-one relationship between the items in a list and the result you
want to generate.

For example, suppose we run a burger shop and sell three types of burgers:
the single, the double, and the double cheese. To convert a list of burgers
into a list of patties and cheese slices, we could write the following function:

> (defun ingredients (order)
 (mapcan (lambda (burger)
 (case burger
 (single '(patty))
 (double '(patty patty))
 (double-cheese '(patty patty cheese))))
 order))
INGREDIENTS
> (ingredients '(single double-cheese double))
'(PATTY PATTY PATTY CHEESE PATTY PATTY)

Drawing Only the Known Parts of the City

Because we now have functions that can generate the known information
about nodes and edges, we can write a function that turns this information
into a picture, as follows:

(defun draw-known-city ()
 (ugraph->png "known-city" (known-city-nodes) (known-city-edges)))

Now let’s redefine our new-game function to draw the known city when the
game starts:

(defun new-game ()
 (setf *congestion-city-edges* (make-city-edges))
 (setf *congestion-city-nodes* (make-city-nodes *congestion-city-edges*))
 (setf *player-pos* (find-empty-node))
 (setf *visited-nodes* (list *player-pos*))
 (draw-city)

X (draw-known-city))

This function is almost exactly the same as the previous version of new-game,
except that we also create a drawing composed only of the known parts of the
city X.

Lisp_02.book Page 147 Thursday, September 9, 2010 5:02 PM

148 Chapter 8

Now, if we call the new-game function from the REPL, we’ll get a new pic-
ture named known-city.dot.png that we can view in our browser. It will look
something like this:

Now we’re ready to walk around our map of Congestion City!

Walking Around Town
We’ll need two functions for traveling between the nodes in our city: a regular
walk function and one for when we think we’ve found the Wumpus, and we
want to charge that location with our final bullet. Since these two functions
are very similar, we’ll have both of them delegate the bulk of the work to a
common handle-direction function:

(defun walk (pos)
 (handle-direction pos nil))

(defun charge (pos)
 (handle-direction pos t))

The only difference between these two functions is the flag they pass to
handle-direction, which is set to either nil or t, depending on the kind of
traveling.

The handle-direction function’s main job is to make sure that a move is
legal, which it does by checking the edges of the city:

(defun handle-direction (pos charging)
 (let ((edge (assoc pos

X (cdr (assoc *player-pos* *congestion-city-edges*)))))
 (if edge

Y (handle-new-place edge pos charging)
Z (princ "That location does not exist!"))))

First, this function looks up the legal directions players can move to from
their current location X. It then uses the pos the player wants to move to and
looks it up in that list of possible directions. Once we’ve determined that a
direction is legal (that is, a node with that number shares an edge with the
player’s current position), we need to find out what surprises are waiting as

Lisp_02.book Page 148 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 149

the player travels to this new place, using the handle-new-place function, which
we’ll create next Y. Otherwise, we display a helpful error message Z.

Now let’s create the handle-new-place function, which gets called when the
player has traveled to a new place:

(defun handle-new-place (edge pos charging)
X (let* ((node (assoc pos *congestion-city-nodes*))
Y (has-worm (and (member 'glow-worm node)

 (not (member pos *visited-nodes*)))))
Z (pushnew pos *visited-nodes*)
[(setf *player-pos* pos)
\ (draw-known-city)
] (cond ((member 'cops edge) (princ "You ran into the cops. Game Over."))
^ ((member 'wumpus node) (if charging

 (princ "You found the Wumpus!")
 (princ "You ran into the Wumpus")))

_ (charging (princ "You wasted your last bullet. Game Over."))
` (has-worm (let ((new-pos (random-node)))

 (princ "You ran into a Glow Worm Gang! You're now at ")
 (princ new-pos)
 (handle-new-place nil new-pos nil))))))

First, we retrieve the node the player is traveling to from the alist of nodes X.
Next, we figure out if the node contains a Glowworm gang Y. We ignore the
gang if they’re in a node already visited, because they’ll only attack once.

Next, the handle-new-place function updates *visited-nodes* Z(adding the
new position to the list) and *player-pos* [. Then it calls draw-known-city \
again, since we now have a new place we know about.

Next, it checks to see if there are any cops on the edge], and then whether
the Wumpus is at that location ^. If the player encounters the Wumpus, our
handle-new-place function needs to know whether we were charging the loca-
tion. If we are charging at the Wumpus, we win the game. Otherwise, the
Wumpus kills us and the game is over.

If, on the other hand, we charge at a location that does not contain the
Wumpus, we waste our single bullet and we lose the game as well _. Finally,
if the location has a previously unencountered Glowworm gang, jump to a
random new location, calling handle-new-place recursively `.

Our game is now complete!

Let’s Hunt Some Wumpus!

To play our game, simply enter the traveling commands we created (walk and
charge) at the REPL, then switch to your browser and refresh known-city.dot.png
to plan your next move.

Lisp_02.book Page 149 Thursday, September 9, 2010 5:02 PM

150 Chapter 8

For example, here’s where we left off in our sample game:

Since we have no clues, we know that any of these nodes will be safe to
visit. Let’s try (walk 20):

Uh oh! There’s blood here. That means the Wumpus must be two nodes
away! It should still be safe to (walk 11) though, because that’s only one
node away:

Lisp_02.book Page 150 Thursday, September 9, 2010 5:02 PM

This A in’ t Your Daddy’s Wumpus 151

Oh no! One of these streets has a police roadblock. Let’s backtrack with
(walk 20) (walk 19), and then we can try (walk 7):

Darn! Now we have the Wumpus and some Glowworms nearby. Let’s
take a shot in the dark and try (walk 10):

Well, that didn’t help, since there are cops down this path. However,
because node 10 has only one other unexplored street, we can say with cer-
tainty that the street between 1 and 10 has cops on it.

You can see that it takes some serious thinking to become a master in
Grand Theft Wumpus! Remember, you can always start a new game, with a
new map, by using the new-game function. Once you’ve tracked down the
Wumpus, use the charge function to attack him.

If you master the basic version of this game, try increasing the number of
nodes, edges, cops, and Glowworms for an even greater challenge!

Lisp_02.book Page 151 Thursday, September 9, 2010 5:02 PM

152 Chapter 8

What You’ve Learned

In this chapter, we’ve used graph utilities with Lisp to make a more sophisti-
cated game. Along the way, you learned the following:

The loop function allows us to loop across various types of data. It will be
discussed in more detail in Chapter 10.

The set-difference function tells you which items are in one list but not in
another list.

The intersection function tells you which items are shared by lists.

The remove-duplicates function removes duplicate items from a list.

Lisp_02.book Page 152 Thursday, September 9, 2010 5:02 PM

