
8
B a s h s c r i p t i n g

Any self-respecting hacker must be able
to write scripts. For that matter, any self-

respecting Linux administrator must be
able to script. Hackers often need to automate

commands, sometimes from multiple tools, and this
is most efficiently done through short programs they
write themselves.

In this chapter, we build a few simple bash shell scripts to start you off
with scripting. We’ll add capabilities and features as we progress, eventually
building a script capable of finding potential attack targets over a range of
IP addresses.

To become an elite hacker, you also need the ability to script in one of
the widely used scripting languages, such as Ruby (Metasploit exploits are
written in Ruby), Python (many hacking tools are Python scripts), or Perl
(Perl is the best text-manipulation scripting language). I give a brief intro-
duction to Python scripting in Chapter 17.

82 Chapter 8

A Crash Course in Bash
A shell is an interface between the user and the operating system that enables
you to manipulate files and run commands, utilities, programs, and much
more. The advantage of a shell is that you perform these tasks immediately
from the computer and not through an abstraction, like a GUI, which allows
you to customize your task to your needs. A number of different shells are
available for Linux, including the Korn shell, the Z shell, the C shell, and
the Bourne-again shell, more widely known as bash.

Because the bash shell is available on nearly all Linux and UNIX
distributions (including macOS and Kali), we’ll be using the bash shell,
exclusively.

The bash shell can run any system commands, utilities, or applications
your usual command line can run, but it also includes some of its own built-
in commands. Table 8-1 later in the chapter gives you a reference to some
useful commands that reside within the bash shell.

In earlier chapters, you used the cd, pwd, set, and umask commands. In
this section, you will be using two more commands: the echo command, first
used in Chapter 7, which displays messages to the screen, and the read com-
mand, which reads in data and stores it somewhere else. Just learning these
two commands alone will enable you to build a simple but powerful tool.

You’ll need a text editor to create shell scripts. You can use whichever
Linux text editor you like best, including vi, vim, emacs, gedit, kate, and so
on. I’ll be using Leafpad in these tutorials, as I have in previous chapters.
Using a different editor should not make any difference in your script or its
functionality.

Your First Script: “Hello, Hackers-Arise!”
For your first script, we will start with a simple program that returns a
message to the screen that says "Hello, Hackers-Arise!" Open your text
editor, and let’s go.

To start, you need to tell your operating system which interpreter you
want to use for the script. To do this, enter a shebang, which is a combina-
tion of a hash mark and an exclamation mark, like so:

#!

You then follow the shebang (#!) with /bin/bash to indicate that you want
the operating system to use the bash shell interpreter. As you’ll see in later
chapters, you could also use the shebang to use other interpreters, such
as Perl or Python. Here, you want to use the bash interpreter, so enter the
following:

#! /bin/bash

Bash Scripting 83

Next, enter the echo command, which tells the system to simply repeat
(or echo) back to your monitor whatever follows the command.

In this case, we want the system to echo back to us "Hello, Hackers-Arise!",
as done in Listing 8-1. Note that the text or message we want to echo back
must be in double quotation marks.

#! /bin/bash

This is my first bash script. Wish me luck.

echo "Hello, Hackers-Arise!"

Listing 8-1: Your “Hello, Hackers-Arise!” script

Here, you also see a line that’s preceded by a hash mark (#). This is a
comment, which is a note you leave to yourself or anyone else reading the
code to explain what you’re doing in the script. Programmers use com-
ments in every coding language. These comments are not read or executed
by the interpreter, so you don’t need to worry about messing up your code.
They are visible only to humans. The bash shell knows a line is a comment
if it starts with the # character.

Now, save this file as HelloHackersArise with no extension and exit your
text editor.

Setting Execute Permissions
By default, a newly created bash script is not executable even by you, the
owner. Let’s look at the permissions on our new file in the command line by
using cd to move into the directory and then entering ls -l. It should look
something like this:

kali >ls -l
--snip--
-rw-r--r-- 1 root root 42 Oct 22 14:32 HelloHackersArise
--snip--

As you can see, our new file has rw-r--r-- (644) permissions. As you
learned in Chapter 5, this means the owner of this file only has read (r)
and write (w) permissions, but no execute (x) permissions. The group and
all other users have only read permissions. We need to give ourselves exe-
cute permissions in order to run this script. We change the permissions
with the chmod command, as you saw in Chapter 5. To give the owner, the
group, and all others execute permissions, enter the following:

kali >chmod 755 HelloHackersArise

84 Chapter 8

Now when we do a long listing on the file, like so, we can see that we
have execute permissions:

kali >ls -l
--snip--
-rwx r-x r-x 1 root root 42 Oct 22 14:32 HelloHackersArise
--snip--

The script is now ready to execute!

Running HelloHackersArise
To run our simple script, enter the following:

kali >./HelloHackersArise

The ./ before the filename tells the system that we want to execute
this script in the file HelloHackersArise from the current directory. It also
tells the system that if there is another file in another directory named
HelloHackersArise, please ignore it and only run HelloHackersArise in the cur-
rent directory. It may seem unlikely that there’s another file with this name
on your system, but it’s good practice to use the ./ when executing files, as
this localizes the file execution to the current directory and many directo-
ries will have duplicate filenames, such as start and setup.

When we press enter, our very simple script returns our message to the
monitor:

Hello, Hackers-Arise!

Success! You just completed your first shell script!

Adding Functionality with Variables and User Input
So, now we have a simple script. All it does is echo back a message to stan-
dard output. If we want to create more advanced scripts, we will likely need
to add some variables.

A variable is an area of storage that can hold something in memory.
That “something” might be some letters or words (strings) or numbers. It’s
known as a variable because the values held within it are changeable; this is
an extremely useful feature for adding functionality to a script.

In our next script, we will add functionality to prompt the user for their
name, place whatever they input into a variable, then prompt the user for
the chapter they’re at in this book, and place that keyboard input into a
variable. After that, we’ll echo a welcome message that includes their name
and the chapter back to the user.

Open a new file in your text editor and enter the script shown in
Listing 8-2.

Bash Scripting 85

u #! /bin/bash

v # This is your second bash script. In this one, you prompt /
the user for input, place the input in a variable, and /
display the variable contents in a string.

w echo "What is your name?"

read name

x echo "What chapter are you on in Linux Basics for Hackers?"

read chapter

y echo "Welcome" $name "to Chapter" $chapter "of Linux Basics for Hackers!"

Listing 8-2: A simple script making use of variables

We open with #! /bin/bash to tell the system we want to use the bash inter-
preter for this script u. We then add a comment that describes the script and
its functionality v. After that, we prompt the user for their name and ask
the interpreter to read the input and place it into a variable we call name w.
Then we prompt the user to enter the chapter they are currently working
through in this book, and we again read the keyboard input into a variable,
this time called chapter x.

In the final line, we construct a line of output that welcomes the reader
by their name to the chapter they are on y. We use the echo command and
provide the text we want to display on the screen in double quotes. Then, to
fill in the name and chapter number the user entered, we add the variables
where they should appear in the message. As noted in Chapter 7, to use the
values contained in the variables, you must precede the variable name with
the $ symbol.

Save this file as WelcomeScript.sh. The .sh extension is the convention for
script files. You might have noticed we didn’t include the extension earlier;
it’s not strictly required, and if you leave the extension off, the file will save
as a shell script file by default.

Now, let’s run this script. Don’t forget to give yourself execute permis-
sion with chmod first; otherwise, the operating system will scold you with a
Permission denied message.

kali >./WelcomeScript.sh
What is your name?
OccupytheWeb
What chapter are you on in Linux Basics for Hackers?
8
Welcome OccupytheWeb to Chapter 8 of Linux Basics for Hackers!

As you can see, your script took input from the user, placed it into vari-
ables, and then used those inputs to make a greeting for the user.

86 Chapter 8

This is a simple script, but it taught you how to use variables and take
input from the keyboard. These are both crucial concepts in scripting that
you will need to use in more complex scripts in future.

Your Very First Hacker Script: Scan for Open Ports
Now that you have some basic scripting skills, let’s move to some slightly
more advanced scripting that has real-world application to hacking. We’ll
use an example from the world of black hat hacking. Black hat hackers are
those with malicious intentions, such as stealing credit card numbers or
defacing websites. White hat hackers are those with good intentions, such
as helping software developers or system administrators make their systems
more secure. Gray hat hackers are those who tend to move between these
two extremes.

Before you continue, you need to become familiar with a simple yet
essential tool named nmap that comes installed on Kali by default. You’ve
likely heard the name; nmap is used to probe a system to see whether it
is connected to the network and finds out what ports are open. From the
open ports discovered, you can surmise what services are running on the
target system. This is a crucial skill for any hacker or system administrator.

In its simplest form, the syntax for running an nmap scan looks like this:

nmap <type of scan><target IP><optionally, target port>

Not too difficult. The simplest and most reliable nmap scan is the TCP
connect scan, designated with the -sT switch in nmap. So, if you wanted to
scan IP address 192.168.181.1 with a TCP scan, you would enter the following:

nmap -sT 192.168.181.1

To take things a step further, if you wanted to perform a TCP scan of
address 192.168.181.1, looking to see whether port 3306 (the default port
for MySQL) was open, you could enter this:

nmap -sT 192.168.181.1 -p 3306

Here, -p designates the port you want to scan for. Go ahead and try it
out now on your Kali system.

Our Task
At the time of this writing, there is a hacker serving time in US federal prison
by the name of Max Butler, also known as Max Vision throughout the hacker
world. Max was a kind of gray hat hacker. By day, he was an IT security profes-
sional in Silicon Valley, and by night, he was stealing and selling credit card
numbers on the black market. At one time, he ran the world’s largest credit
card black market, CardersMarket. Now, Max is serving a 13-year prison term

Bash Scripting 87

while at the same time assisting the Computer Emergency Response Team
(CERT) in Pittsburgh with defending against hackers.

A few years before Max was caught, he realized that the Aloha Point of
Sale (POS) system used by many small restaurants had a technical support
backdoor built into it. In this case, the backdoor enabled tech support to
assist their clients. Aloha tech support could access the end user’s system
through port 5505 to provide assistance when the user called for help. Max
realized that if he found a system connected to the internet with the Aloha
POS system, he could access the system with sysadmin privileges through
port 5505. Max was able to enter many of these systems and steal tens of
thousands of credit card numbers.

Eventually, Max wanted to find every system that had port 5505 open so
that he could go from stealing thousands of credit card numbers to steal-
ing millions. Max decided to write a script that would scan millions of IP
addresses looking for systems with port 5505 open. Of course, most systems
do not have port 5505 open so, if they did, it was likely they were running the
doomed Aloha POS. He could run this script while at work during the day,
then by night hack into those systems identified as having port 5505 open.

Our task is to write a script that will be nearly identical to Max’s script,
but rather than scan for port 5505 as Max did, our script will scan for systems
connected to the ubiquitous online database MySQL. MySQL is an open
source database used behind millions of websites; we’ll be working with
MySQL in Chapter 12. By default, MySQL uses port 3306. Databases are the
“Golden Fleece” that nearly every black hat hacker is seeking, as they often
contain credit card numbers and personally identifiable information (PII)
that is very valuable on the black market.

A Simple Scanner
Before we write the script to scan public IPs across the internet, let’s take on
much a smaller task. Instead of scanning the globe, let’s first write a script to
scan for port 3306 on a local area network to see whether our script actually
works. If it does, we can easily edit it to do the much larger task.

In your text editor, enter the script shown in Listing 8-3.

u #! /bin/bash

v # This script is designed to find hosts with MySQL installed

nmap w-sT 192.168.181.0/24 x-p 3306 y>/dev/null z-oG MySQLscan

{ cat MySQLscan | grep open > MySQLscan2 |

cat MySQLscan2

Listing 8-3: The simplified scanner script

We start with the shebang and the interpreter to use u. Let’s follow this
with a comment to explain what the script does v.

88 Chapter 8

Now let’s use the nmap command to request a TCP scan w on our LAN,
looking for port 3306 x. (Note that your IP addresses may differ; in your
terminal, use the ifconfig command on Linux or the ipconfig command on
Windows to determine your IP address.) To stay stealthy, we also send the
standard nmap output that would usually appear on the screen to a special
place in Linux, where it disappears y. We’re doing this on a local machine,
so it doesn’t matter so much, but if you were to use the script remotely, you’d
want to hide the nmap output. We then send the output of the scan to a file
named MySQLscan in a grep-able format z, meaning a format that grep can
work on.

The next line displays the MySQLscan file we stored the output in and
then pipes that output to grep to filter for lines that include the keyword
open {. Then we put those lines into a file named MySQLscan2 |.

Finally, you display the contents of the file MySQLscan2. This final file
should only include lines of output from nmap with hosts that have port 3306
open. Save this file as MySQLscanner.sh and give yourself execute permissions
with chmod 755.

Execute the script, like so:

kali >./MySQLscanner.sh

host: 192.168.181.69 () Ports: 3306/open/tcp//mysql///

As we can see, this script was able to identify the only IP address on my
LAN with MySQL running. Your results may differ, depending on whether
any ports are running MySQL installations on your local network, of course.

Improving the MySQL Scanner
Now we want to adapt this script to make it applicable to more than just
your own local network. This script would be much easier to use if it could
prompt the user for the range of IP addresses they wanted to scan and the
port to look for, and then use that input. Remember, you learned how to
prompt the user and put their keyboard input into a variable in “Adding
Functionality with Variables and User Input” on page 84.

Let’s take a look at how you could use variables to make this script more
flexible and efficient.

Adding Prompts and Variables to Our Hacker Script

In your text editor, enter the script shown in Listing 8-4.

#! /bin/bash

u echo "Enter the starting IP address : "
v read FirstIP

w echo "Enter the last octet of the last IP address : "
read LastOctetIP

Bash Scripting 89

x echo "Enter the port number you want to scan for : "
read port

y nmap -sT $FirstIP-$LastOctetIP -p $port >/dev/null -oG MySQLscan

z cat MySQLscan | grep open > MySQLscan2

{ cat MySQLscan2

Listing 8-4: Your advanced MySQL port scanner

The first thing we need to do is replace the specified subnet with an IP
address range. We’ll create a variable called FirstIP and a second variable
named LastOctetIP to create the range as well as a variable named port for the
port number (the last octet is the last group of digits after the third period in
the IP address. In the IP address 192.168.1.101, the last octet is 101).

n O t E The name of the variable is irrelevant, but best practice is to use a variable name that
helps you remember what the variable holds.

We also need to prompt the user for these values. We can do this by
using the echo command that we used in Listing 8-1.

To get a value for the FirstIP variable, echo "Enter the starting IP
address : " to the screen, asking the user for the first IP address they want
to scan u. Upon seeing this prompt on the screen, the user will enter the
first IP address, so we need to capture that input from the user.

We can do this with the read command followed by the name of the
variable we want to store the input in v. This command will put the IP
address entered by the user into the variable FirstIP. Then we can use that
value in FirstIP throughout our script.

We’ll do the same for the LastOctetIP w and port x variables by prompt-
ing the user to enter the information and then using a read command to
capture it.

Next, we need to edit the nmap command in our script to use the vari-
ables we just created and filled. To use the value stored in the variable, we
simply preface the variable name with $, as in $port, for example. So at y,
we scan a range of IP addresses, starting with the first user-input IP through
the second user-input IP, and look for the particular port input by the user.
We’ve used the variables in place of the subnet to scan and the port to deter-
mine what to scan for. The redirect symbol > tells the standard nmap out-
put, which usually goes to the screen, to instead go to /dev/null (/dev/null
is simply a place to send output so that it disappears). Then, we send the
output in a grep-able format to a file we named MySQLscan.

The next line remains the same as in our simple scanner: it outputs the
contents of the MySQLscan file, pipes it to grep, where it is filtered for lines
that include the keyword open, and then sends that output to a new file named
MySQLscan2 z. Finally, we display the contents of the MySQLscan2 file {.

If everything works as expected, this script will scan IP addresses from
the first input address to the last input address, searching for the input port

90 Chapter 8

and then reporting back with just the IP addresses that have the designated
port open. Save your script file as MySQLscannerAdvanced, remembering to
give yourself execute permission.

A Sample Run

Now we can run our simple scanner script with the variables that determine
what IP address range and port to scan without having to edit the script
every time we want to run a scan:

kali >./MySQLscannerAdvanced.sh
Enter the starting IP address :
192.168.181.0
Enter the last IP address :
192.168.181.255
Enter the port number you want to scan for :
3306
Host: 192.168.181.254 ()Ports:3306/open/tcp//mysql//

The script prompts the user for the first IP address, the last IP address,
and then the port to scan for. After collecting this info, the script performs
the nmap scan and produces a report of all the IP addresses in the range
that have the specified port open. As you can see, even the simplest of
scripting can create a powerful tool. You’ll learn even more about script-
ing in Chapter 17.

Common Built-in Bash Commands
As promised, Table 8-1 gives you a list of some useful commands built
into bash.

Table 8-1: Built-in Bash Commands

Command Function

: Returns 0 or true
. Executes a shell script
bg Puts a job in the background
break Exits the current loop
cd Changes directory
continue Resumes the current loop
echo Displays the command arguments
eval Evaluates the following expression
exec Executes the following command without creating a new process
exit Quits the shell
export Makes a variable or function available to other programs
fg Brings a job to the foreground

Bash Scripting 91

Command Function

getopts Parses arguments to the shell script
jobs Lists background (bg) jobs
pwd Displays the current directory
read Reads a line from standard input
readonly Declares as variable as read-only
set Lists all variables
shift Moves the parameters to the left
test Evaluates arguments
[Performs a conditional test
times Prints the user and system times
trap Traps a signal
type Displays how each argument would be interpreted as a command
umask Changes the default permissions for a new file
unset Deletes values from a variable or function
wait Waits for a background process to complete

Summary
Scripting is an essential skill for any hacker or system administrator. It
enables you to automate tasks that would normally take hours of your time,
and once the script is saved, it can be used over and over again. Bash script-
ing is the most basic form of scripting, and you will advance to Python
scripting with even more capabilities in Chapter 17.

E x E rcisE s

Before you move on to Chapter 9, try out the skills you learned from this chapter
by completing the following exercises:

1. Create your own greeting script similar to our HelloHackersArise script.

2. Create a script similar to MySQLscanner.sh but design it to find systems with
Microsoft’s SQL Server database at port 1433. Call it MSSQLscanner.

3. Alter that MSSQLscanner script to prompt the user for a starting and end-
ing IP address and the port to search for. Then filter out all the IP addresses
where those ports are closed and display only those that are open.

