
2
B u i l d a

H i - l o G u e s s i n G G a m e a p p !

Let’s begin by coding a fun, playable
game in Java: the Hi-Lo guessing game.

We’ll program this game as a command line
application, which is just a fancy way of saying

it’s text based (see Figure 2-1). When the program
runs, the prompt will ask the user to guess a number
between 1 and 100. Each time they guess, the pro-
gram will tell them whether the guess is too high,
too low, or correct.

12 Chapter 2

Figure 2-1: A text-based Hi-Lo guessing game

Now that you know how the game works, all you have to do is code the
steps to play it. We’ll start by mapping out the app at a high level and then
code a very simple version of the game. By starting out with a goal in mind
and understanding how to play the game, you’ll be able to pick up coding
skills more easily, and you’ll learn them with a purpose. You can also enjoy
the game immediately after you finish coding it.

Planning the Game Step-by-Step
Let’s think about all the steps we’ll need to code in order to get the Hi-Lo
guessing game to work. A basic version of the game will need to do the
following:

1. Generate a random number between 1 and 100 for the user to guess.

2. Display a prompt, or a line of text, asking the user to guess a number in
that range.

3. Accept the user’s guess as input.

4. Compare the user’s guess to the computer’s number to see if the guess
is too high, too low, or correct.

5. Display the results on the screen.

6. Prompt the user to guess another number until they guess correctly.

7. Ask the user if they’d like to play again.

We’ll start with this basic structure. In Programming Challenge #2,
you’ll try adding an extra feature, to tell the user how many tries it took to
guess the number correctly.

Creating a New Java Project
The first step in coding a new Java app in Eclipse is creating a project.
On the menu bar in Eclipse, go to File4New4Java Project (or select
File4New4Project, then Java4Java Project in the New Project wizard).
The New Java Project dialog should pop up, as shown in Figure 2-2.

Build a Hi-Lo Guessing Game App! 13

Figure 2-2: The New Java Project dialog for the
Hi-Lo guessing game app

Type HiLo into the Project name field. Note that uppercase and lower-
case letters are important in Java, and we’ll get in the habit of using
uppercase letters to start all of our project, file, and class names, which is
a common Java practice. Leave all the other settings unchanged and click
Finish. Depending on your version of Eclipse, you may be asked if you want
to open the project using the Java Perspective. A perspective in Eclipse is a
workspace set up for coding in a specific language. Click Yes to tell Eclipse
you’d like the workspace set up for convenient coding in Java.

Creating the HiLo Class
Java is an object-oriented programming language. Object-oriented programming
languages use classes to design reusable pieces of programming code. Classes
are like templates that make it easier to create objects, or instances of that
class. If you think of a class as a cookie cutter, objects are the cookies. And,
just like a cookie cutter, classes are reusable, so once we’ve built a useful class,
we can reuse it over and over to create as many objects as we want.

The Hi-Lo guessing game will have a single class file that creates a guess-
ing game object with all the code needed to play the game. We’ll call our
new class HiLo. The capitalization matters, and naming the class HiLo follows
several Java naming conventions. It’s common practice to start all class names
with an uppercase letter, so we use a capital H in HiLo. Also, there should be no
spaces, hyphens, or special characters between words in a class name. Finally,
we use camel case for class names with multiple words, beginning each new
word with a capital letter, as in HiLo, GuessingGame, and BubbleDrawApp. The
words look like they have humps in the middle, just like a camel.

14 Chapter 2

To create the new HiLo class, first find your HiLo project folder under
the Package Explorer pane on the left side of the Eclipse workspace.
Expand the folder by clicking the small arrow to the left of it. You should
see a subfolder called src, short for source code. All the text files containing
your Java programs will go in this src folder.

Right-click the src folder and select New4Class, as shown in Figure 2-3.

Figure 2-3: Creating a new class file for the Hi-Lo guessing game app

The New Java Class dialog will appear, as shown in Figure 2-4. Type
HiLo into the Name field. Then, under Which method stubs would you like to
create?, check the box for public static void main(String[] args). This tells
Eclipse that we’re planning to write a main() program method, so Eclipse
will include a stub, or skeleton, for the main() method that we can fill in with
our own code. The main() method is required any time you want to run an
app as a stand-alone program.

Figure 2-4: Name the new Java class HiLo and
select the checkbox to create a main() method.

Build a Hi-Lo Guessing Game App! 15

Click Finish in the New Java Class dialog, and you should see a new file
named HiLo.java that contains the code shown in Listing 2-1. This Java file
will be the outline of the Hi-Lo guessing game. We’ll write the guessing
game program by editing this file and adding code inside it.

u public class HiLo {
 v public static void main(String[] args) {

 // TODO Auto-generated method stub

 }
}

Listing 2-1: The stub code for the HiLo guessing game class, generated by Eclipse

n o t e The numbered circles point out important lines, but they aren’t actually part of the code.

Eclipse creates this code all on its own. The class HiLo is public u, mean-
ing we can run it from the command line or terminal.

Java groups statements with braces, { and }. The opening brace, {,
begins a block of statements that will form the body of the HiLo class. The
closing brace, }, ends the block of statements. Inside the class is the main()
method v, which is the method that will run when the class is executed.

Inside the opening brace for the main() method is a comment line that
starts with //. Comments are for us (the humans) to read. They’re ignored
by the computer, so we can use them to help us remember what a section of
code does or to leave notes for future use. You can delete the TODO comment
in Listing 2-1.

Generating a Random Number
The first programming task for our game is to generate a random number.
We’ll use the Math class, which contains a method for generating a random
floating-point (decimal) number between 0.0 and 1.0. Then, we’ll convert
that decimal value to an integer (a whole number) between 1 and 100. The
Math class is a built-in class that contains many useful math functions like
the ones you might find on a nice scientific calculator.

Inside the main() method, add the comment and line of code shown in
Listing 2-2.

public class HiLo {
 public static void main(String[] args) {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 }
}

Listing 2-2: The code to create a random number between 1 and 100

First, we need to create a variable to hold the random number the user
will be trying to guess in the app. Since the app will ask the user to guess

16 Chapter 2

a whole number between 1 and 100, we’ll use the int type, short for integer.
We name our variable theNumber. The equal sign, =, assigns a value to our
new theNumber variable. We use the built-in Math.random() function to gener-
ate a random number between 0.0 and just under 1.0 (0.99999). Because
Math.random() generates numbers only in that specific range, we need to
multiply the random number we get by 100 to stretch the range from 0.0
to just under 100.0 (99.99999 or so). Then we add 1 to that value to ensure
the number runs from 1.0 (0.0 + 1) to 100.99999.

The (int) part is called a type cast, or just cast for short. Casting changes
the type of the number from a decimal number to an integer. In this case,
everything after the decimal point is removed, resulting in a whole number
between 1 and 100. Java then stores that number in the variable theNumber,
the number the user is trying to guess in the game. Finally, we add a semi-
colon (;) to indicate the end of the instruction.

Now, you can add a System.out.println() statement to print the number
you’ve generated:

 int theNumber = (int)(Math.random() * 100 + 1);
 System.out.println(theNumber);
 }
}

After we add this line of code, we can run the program to see it gener-
ate and print a random number. Click the green run button in the top
menu bar to compile and run the program, as shown in Figure 2-5. You
can also go to the Run menu and select Run.

Figure 2-5: Printing a random number to the screen

Your random number will appear in the small console window at the
bottom of the screen, as shown in Figure 2-5. If you run your program
again, you’ll see a different number between 1 and 100.

This would be a great time to play with the program a bit. Try generat-
ing a number between 1 and 10, or 1 and 1,000—even 1 to 1,000,000. Java
will accept numbers all the way to a billion or so. Just remember to write

Build a Hi-Lo Guessing Game App! 17

your numbers without commas: 1,000 becomes 1000 in Java, and 1,000,000
is written 1000000. You probably don’t want to guess a number between 1 and
1,000,000 the first time you play the game, though, so remember to change
this line back before you move ahead.

n o t e Remember to save your code often. Eclipse will save for you automatically every time
you run a program, but it’s a good idea to save after every few lines of code. In fact,
pressing ctrl-S to save after each line of code isn’t a bad habit to get into. I’ve never
heard a coder say they wish they hadn’t saved so often, but I’ve experienced losing
unsaved code a few times myself, and it’s not fun. Save often, and remember that you
can use Edit4Undo if you ever type something incorrectly or accidentally delete a
section of code.

Getting User Input from the Keyboard
Now let’s add the code that allows the user to guess a number. To do this,
we’ll need to import some additional Java capabilities. Java comes with many
libraries and packages that we can use in our own projects. Libraries and
packages are sets of code that someone else has created. When we import
them, we get new features that make creating our own programs even
easier. We can access packages and libraries whenever we need them using
the import statement.

For the guessing game program, we need to be able to accept keyboard
input from the user. The Scanner class, contained in the java.util utilities
package, provides several useful functions for working with keyboard input.
Let’s import the Scanner class into our program. Add the following state-
ment at the top of the HiLo.java file, before the line public class HiLo:

import java.util.Scanner;

public class HiLo {

This line imports the Scanner class and all its functionality from the main
Java utilities package. The Scanner class includes functions like nextLine() to
accept a line of input from the keyboard and nextInt() to turn text input
from the keyboard into an integer number that can be compared or used in
calculations. To use the Scanner class for keyboard input, we have to tell it to
use the keyboard as its source.

We want to do this before anything else in the program, so add this line
of code inside the top of the main() method:

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);

This line creates a Scanner object called scan that pulls input from the
computer’s keyboard, System.in.

18 Chapter 2

Although this new line of code sets up the scan object, it doesn’t actu-
ally ask for input yet. To get the user to type in a guess, we’ll need to prompt
them by asking them to enter a number. Then, we’ll take the number they
enter from the keyboard and store it in a variable that we can compare
against theNumber, the computer’s original random number. Let’s call the
variable that will store the user’s guess something easy to remember, like
guess. Add the following line next:

 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 System.out.println(theNumber);
 int guess = 0;

This statement both declares a variable called guess of type int (an inte-
ger in Java), and it initializes the guess variable to a starting value of 0. Some
programming languages require a variable to be declared and then initial-
ized in separate lines of code, but Java allows programmers to include both
the declaration and initialization of variables in a single line. Java requires
every variable to be declared with a specific type, or kind of information it
should store. The user’s guess will be a whole number, so we’ve declared
guess as an int.

Next, we need to prompt the user to enter a guess. We can let the user
know the program is ready for input by printing a line of text to the console
window (or command line). We access this text-based screen as a part of
our computer system through the System class, just like we did for keyboard
input. But this time, we want to output information for the user to read. The
object that lets us access the command line console for output is System.out.
Similar to the System.in object that allows us to receive text input from the
keyboard, System.out gives us the ability to output text to the screen. The
specific function to print a line of text is the println() command:

 int guess = 0;
 System.out.println("Guess a number between 1 and 100:");

Here we are using dot notation, which lists a class or object, followed by
a dot and then a method or an attribute of that class or object. Methods are
the functions in an object or class. Methods need to be called with dot nota-
tion to tell Java which object or class they belong to. Attributes are the values
stored in an object or class.

For example, System is a class representing your computer system.
System.out is the command line screen object contained in the System class,
because your computer monitor is part of your overall computer system.
System.out.println() is a method to print a line of text using the System.out
object. We’ll get more practice using dot notation as we continue.

Now that the user knows what kind of input the program is expecting
from them, it’s time to check the keyboard for their guess. We’ll use the
Scanner object called scan that we created earlier. Scanners have a method

Build a Hi-Lo Guessing Game App! 19

called nextInt() that looks for the next int value the user inputs from the
keyboard. We’ll store the user’s guess in the variable guess that we created
earlier:

 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();

This statement will wait for the user to type something into the console
window (hopefully a whole number between 1 and 100—we’ll see how to
make sure the user enters a valid number in the next chapter) and press
enter. The nextInt() method will take the string of text characters the user
typed ("50", for example), turn it into the correct numeric value (50), and
then store that number in the variable guess. Let’s take a moment to save
the changes we’ve made so far by going to File4Save or pressing ctrl-S.

Making the Program Print Output
We can also check to make sure our program is working so far by adding
another println() statement:

 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");

This line uses the System.out.println() method again, but now we’re
combining text and numeric output. If the user guesses 50, we want the
output to read, "You entered 50." To make this happen, we form a println()
statement that mixes text with the number stored in the variable guess.

Java allows us to concatenate strings of text using the plus-sign opera-
tor, +. We use double quotation marks to specify the text we want to output
first ("You entered "). Note the space before the closing quotation marks—
this tells the program that we want a space to appear in the printed output
after the last word. Java ignores most spacing, but when a space is included
inside the quotation marks of a string of text, it becomes part of that text.

We also want to print the number the user guessed. We’ve stored this
value in the variable called guess, so we just have to use the println() state-
ment to output that value. Fortunately, in Java, when you include a variable
in a println() statement, Java prints the value contained in that variable. So,
immediately after the text "You entered ", we add the concatenation opera-
tor + followed by the variable name guess. Finally, we want to end the sen-
tence with a period, so we use another concatenation operator + followed by
the text we want, contained in double quotation marks, so it looks like ".".

Listing 2-3 puts together all of our lines of code so far.

import java.util.Scanner;

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);

20 Chapter 2

 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);

 u // System.out.println(theNumber);
 int guess = 0;
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");
 }
}

Listing 2-3: The code to this point generates a random number and allows the user to
guess once.

At u, note that I turned System.out.println(theNumber); into a comment
by adding a pair of forward slashes to the start of that line. This is called
commenting out, and it’s a useful technique for debugging—finding and fix-
ing bugs or errors in programs. We used this println() statement earlier to
show the value of the variable theNumber while we were writing and testing
the program. Now, rather than deleting the line entirely, we can turn it into
a comment so it’s ignored by the computer. If we want to use that line again,
we can just remove the // to include it in the program.

Now let’s save our program and run it to see how it works so far. To run
it, press the green run button or go to Run4Run. Right now, the user can
guess only once and the program doesn’t check whether they guessed cor-
rectly. So next, we’ll add some code so that the user can guess more than
one time, and then we’ll learn how to test each guess against theNumber.

Loops: Ask, Check, Repeat
To give the user more than one chance to guess the number, we need to
learn how to build a loop! In the guessing game program, we need to ask
the user for a guess until they guess correctly. Loops give us the ability to
repeat a set of steps over and over. In this section, we’ll build a loop for the
steps that prompt the user for a guess and accept the keyboard input.

Loops are very powerful programming tools, and they’re one of the
reasons computers are so valuable in our daily lives and in the business
world—computers are really good at repeating the same task predictably.
And, if they’re programmed correctly, they can do this all day, every day,
without making mistakes. You or I might get tired of telling someone their
guess is too high or too low, but the computer never does. It will also never
forget the number or tell the player their guess is too low or too high when
it’s actually not.

Let’s tap into the power of loops with a while loop. A while loop repeats
a set of statements as long as some condition is true. A condition is just some-
thing we can test. For example, in this program, we want to know whether
the user correctly guessed the secret number. If they didn’t guess correctly,
we want to keep giving them a chance to guess again until they get it right.

To write a while loop, we need to know what condition we want to test
for before repeating the loop each time. In the guessing game, we want the

Build a Hi-Lo Guessing Game App! 21

user to guess again as long as their guess isn’t equal to the secret number
theNumber. When the user’s guess is equal to the secret number, the user wins
and the game is over, so the loop should stop.

To create a while loop, we need to insert a while statement before the
last three lines of code and then wrap the three lines for guessing inside a
new pair of braces, as follows:

 int guess = 0;
 while(guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");
 }
 }
}

We use the keyword while to let Java know we’re building a while loop,
and then we put the appropriate condition inside parentheses. The part
inside the parentheses, guess != theNumber, means that while the value
stored in guess is not equal to (!=) the value stored in theNumber, the loop
should repeat whatever statement or set of statements immediately follow
this line of code. The operator != is a comparison operator—in this case, it
compares guess and theNumber and evaluates whether they’re different, or
not equal. You’ll learn about other comparison operators in the next sec-
tion, but this is the one we need for the guessing while loop.

We need to tell Java what statements to repeat in the while loop, so
I’ve added an opening brace, {, on the line after the while statement. In
the same way that braces group all the statements together in the main()
method, these braces group statements together inside the while loop.

There are three statements that we want to include inside the loop. First
we need the println() statement that prompts the user to guess a number.
Then we need the statement that scans the keyboard and records the guess
with the nextInt() method. Finally, we need the println() statement that tells
the user what they entered. To turn this set of statements into a block of
code that will be run repeatedly in the while statement, we write the while
statement and condition first, then an opening brace, then all three state-
ments, and finally, a closing brace. Don’t forget the closing brace! Your pro-
gram won’t run if it’s missing.

One good programming practice that will help you keep your code
organized and readable is using tab spacing correctly. Highlight the three
statements inside the braces for the while statement and then press the tab
key to indent them.

The result should look like the following code:

 int guess = 0;
 while(guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();

22 Chapter 2

 System.out.println("You entered " + guess + ".");
 }
 }
}

Correct indentation will help you remember to match up your opening
and closing braces, and it will help you quickly see which statements are
inside a loop or other block of code, as well as which statements are outside
the loop. Indentation doesn’t affect how your program runs, but if done
well, it makes your program much easier to read and maintain.

Save your program now and run it to check that it works. The game
is almost playable now, but we still need to tell the program to check if
the user’s guess is too high, too low, or just right. Time for (drum roll,
please . . .) if statements!

if Statements: Testing for the Right Conditions
Now that the user is able to guess until they are correct, we need to check
the guess to let them know whether they were too high or too low. The
statement that allows us to do this is the if statement.

An if statement will select whether to run a block of statements once or
not at all based on a condition, or a conditional expression.

We used a conditional expression before in the guessing loop: (guess !=
theNumber). To check whether a guess is too high or too low, we just need a
few more comparison operators: less than (<), greater than (>), and equal
to (==).

First, instead of just telling the user what their guess was, let’s write
some code to check whether their guess was too low. Replace the last line
of the while statement with the following two-line if statement:

 while (guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 }

The if statement begins with the keyword if, followed by a conditional
expression in parentheses. In this case, the condition is guess < theNumber,
which means the value of the user’s guess is less than the value of the ran-
dom secret number. Notice there’s no semicolon after the parentheses,
because the println() statement that follows is actually part of the if state-
ment. The whole statement tells the program that if the condition is true,
it should print the user’s guess and let them know they guessed too low.
We use the concatenation operator (+) between the user’s guess and the
string of text telling them the guess was too low. Note the space after the
first double quote and before is. This separates the user’s guess from the
word is.

Build a Hi-Lo Guessing Game App! 23

If you run the program now and enter a low guess, like 1, the if state-
ment should tell the program to say your guess is too low. That’s a good
start, but what if we guess a number that’s too high instead? In that case,
we need an else statement.

The else statement gives the program a way to choose an alternative
path, or set of steps, if the condition in the if statement is not true. We can
test for guesses that are too high or too low with an if-else statement pair.
Let’s add an else statement right after the if statement:

 u if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");

 v else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");

 Notice that the code at v looks similar to the code at u. Often when
we’re using if-else statements, we need to check for multiple conditions in
a row, instead of just one. Here, we need to check for a guess that’s too low,
too high, or just right. In cases like this, we can chain if-else conditions
together by placing the next if statement inside the else portion of the
previous if-else statement. At v we’ve begun the next if statement immedi-
ately after the else from the previous condition. If the guess is higher than
the number, the program tells the user their guess is too high. Now that the
program can tell the user if their guess is too high or too low, we just need
to tell them if they guessed correctly and won!

If neither of the previous conditions is true—the user’s guess is not too
high and not too low—then they must have guessed the number. So we add
one final else statement:

 u if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");

 v else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");

 w else
 System.out.println(guess + " is correct. You win!");

Notice that we don’t need a conditional expression for this final else
statement w. A correct guess is the only remaining option if the number
is neither too high nor too low. In the case of a winning guess, we provide
the statement to let the user know they’ve won. The full program up to this
point is shown in Listing 2-4. Save your HiLo.java file and run the program
to check that it works. It should prompt you to enter guesses until you guess
the correct number.

import java.util.Scanner;

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);

24 Chapter 2

 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");
 else
 System.out.println(guess + " is correct. You win!");
 } // End of while loop for guessing
 }
}

Listing 2-4: The Hi-Lo guessing game is complete for a single full round of play.

The full program is now a completely playable guessing game! After the
user wins, the program tells them that they guessed correctly and won, and
then it ends, as shown in Figure 2-6.

Figure 2-6: One full play-through of the Hi-Lo guessing game—
the program ends when the user guesses the secret number.

Give yourself a hand! You’ve built a program in Java from scratch, and
if this is your first program ever in Java, you deserve some kudos. Enjoy the
game for a few rounds and see if you can guess the number in fewer tries
each time. Test your program to make sure it works the way you want, and
we’ll add some improvements in the next section.

Build a Hi-Lo Guessing Game App! 25

Adding a Play Again Loop
Right now, the only way to play the guessing game again is to rerun the
program in Eclipse. Fortunately, we already know there’s a way to make
our program do something over and over again—we need another loop!

The guessing game program ends when the user guesses the right num-
ber because there’s nothing after the while loop. The while loop ends when
the condition (guess != theNumber) is no longer true. A user might want to
play over and over once they get the hang of the game. For this play again
loop, we’ll learn a new keyword and a new kind of loop: the do-while loop.

Like the while loop, a do-while loop repeats a block of statements as long
as a condition is true. Unlike the while loop, however, the block of code inside
a do-while loop is guaranteed to run at least once. There are times when the
condition at the top of a while loop may be false before the loop even starts,
so the entire loop and all the lines of code inside it are ignored. Think of the
condition of a while loop as being like a thermostat on a heater. If the temper-
ature of the room is already warm enough and the condition for the heater to
turn on isn’t met, the heater may not turn on at all.

For our guessing game, or almost any game program in general, we
choose a do-while loop (we sometimes call this the game loop), because the
user probably wants to play the game at least once. We also usually want to
ask the user if they would like to play again, and the user typically responds
yes or no (or y or n in a text-based game like this one). The game will con-
tinue to play through the game loop as long as the user responds with a yes.

To check the user’s response, we’ll need a new type of variable: a String.
Strings are objects that hold text within double quotation marks, like "y",
or "yes", or "My name is Bryson! I hope you like my game!". Earlier we used an
integer variable, or int type, to hold the numbers the user was guessing, but
now we need to hold text, so we’ll use a String instead. We can add a String
variable to the top of the program, right after the Scanner setup:

 Scanner scan = new Scanner(System.in);
 String playAgain = "";

Notice the String type begins with an uppercase S. This is because the
String type is actually a class, complete with several useful functions for
working with strings of text. I’ve named the variable playAgain, using camel
case with a capital A to start the second word. Remember, no spaces are
allowed in variable names. And, just like how we gave an initial value of 0 to
the guess variable with int guess = 0, here we’ve given an initial value to the
playAgain variable with playAgain = "". The two double quotes, with no space
between, indicate an empty string, or a String variable with no text in it.
We’ll assign a different text value to the variable later, when the user enters
y or n.

Just as we did with the while loop, we’ll need to figure out which state-
ments should be repeated in the do-while loop. The do-while loop will be our
main loop, so almost all of the statements in the program will go inside it.
In fact, all the remaining statements after the Scanner and String playAgain
statements will be contained in the do-while loop. Those steps describe one

26 Chapter 2

full round of play, so for each round, the game repeats all of those steps
again, from choosing a new random number to declaring a winning guess
and asking the user to play again.

So, we can add the do keyword and an opening brace immediately after
these two lines and before the code that creates the secret number:

 Scanner scan = new Scanner(System.in);
 String playAgain = "";
 do {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber)
 {

Then, after the closing brace for the while loop for guessing and the
brace following our last else statement, we’ll ask the user if they would like
to play again and get their response from the keyboard.

Then we need to close the do-while loop with a while condition to check
whether the user replied with a yes:

 } // End of while loop for guessing
 u System.out.println("Would you like to play again (y/n)?");
 v playAgain = scan.next();
 w } while (playAgain.equalsIgnoreCase("y"));
 x }
y }

The prompt asks the user "Would you like to play again (y/n)?" u, to
which they can reply with a single letter, y for yes or n for no. At v, the
scan.next() function scans the keyboard for input, but instead of looking
for the next integer as nextInt() does, it looks for the next character or
group of characters that the user types on the keyboard. Whatever the
user types will get stored in the variable playAgain.

The line at w closes the block of code that repeats the game with a
brace, and it contains the while condition that determines whether the code
will run again. Within the while condition, you can see an example of the
equals() method of a String object. The equals() method tells you whether a
string variable is exactly the same as another string of characters, and the
equalsIgnoreCase() method tells you whether the strings are equal even if
their capitalization is different. In our game, if the user wants to play again,
they are asked to type y. However, if we just test for a lowercase y, we might
miss an uppercase Y response. In this case, we want to be flexible by check-
ing for the letter y, whether it is uppercase or lowercase, so we use the
string method equalsIgnoreCase().

The final statement tells Java to keep do-ing the game loop while the
string variable playAgain is either an uppercase or lowercase y. The final two
closing braces at x and y are the ones that were already in the program.

Build a Hi-Lo Guessing Game App! 27

The one at x closes the main() method, and the one at y closes the entire
HiLo class. I’ve included them just to show where lines u through w should
be inserted.

The complete game to this point is shown in Listing 2-5.

import java.util.Scanner;
public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 String playAgain = "";
 do {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");
 else
 System.out.println(guess + " is correct. You win!");
 } // End of while loop for guessing
 System.out.println("Would you like to play again (y/n)?");
 playAgain = scan.next();
 } while (playAgain.equalsIgnoreCase("y"));
 }
}

Listing 2-5: The Hi-Lo guessing game is ready to play over and over again.

Review your code to make sure you’ve added everything in the correct
place, check your braces and semicolons, and take a moment to save your
file. We’ll test the game in the next section.

n o t e Your indentation, which is the tab spacing at the beginning of each line, may not look
exactly like the last code snippet because we’ve added braces in a couple of new places.
Fortunately, adding new features, including loops and other blocks of code, is so com-
mon in Java that Eclipse has a menu option to clean up indentation automatically.
First, select (highlight) all the text in your HiLo.java file on the screen. Then, go to
Source4Correct Indentation. Eclipse will correctly indent each line of code to show
which statements are meant to be grouped together. As I mentioned before, the inden-
tation doesn’t matter to the computer (the program will run just fine even with no
tabs or extra spaces), but good indentation and spacing help make the program easier
to read.

28 Chapter 2

Testing the Game
Now that the play again loop is in place, the game should run perfectly.
First, save your HiLo.java file and choose Run4Run to test the program.
After you guess the first random number correctly, the program should
ask you if you’d like to play again. As long as you respond y (or Y) and
press enter, the program should keep giving you new random numbers
to guess. In the screenshot in Figure 2-7, notice that the game starts over
when I respond y to the prompt to play again.

Figure 2-7: The guessing game is fully playable for multiple
rounds as long as the user answers y or Y.

When the user finishes playing and responds to the play again question
with n, or anything other than y or Y, the game will end. However, we might
want to thank them for playing after they’ve finished the game. Add the
following line after the final while statement, before the final two closing
braces:

 } while (playAgain.equalsIgnoreCase("y"));
 System.out.println("Thank you for playing! Goodbye.");
 }
}

Build a Hi-Lo Guessing Game App! 29

Finally, the last line we’ll add to the guessing game app is to address a
warning you may have noticed in Eclipse. This warning appears as a faint
yellow line under the declaration of the scan object, as well as a yellow tri-
angle with an exclamation point to the left of that line. Eclipse is bringing
to our attention that we’ve opened a resource that we haven’t closed. In
programming, this can create what’s known as a resource leak. This doesn’t
usually matter if we just open one Scanner object for keyboard input, but if
we leave multiple Scanner objects open without closing them, the program
could fill up memory, slowing or even crashing the user’s system. We use
the close() method of the Scanner class to tell our program to close the con-
nection to the keyboard.

Add the following line after the println() statement thanking the user
for playing, before the final two closing braces:

 System.out.println("Thank you for playing! Goodbye.");
 scan.close();
 }
}

You’ll notice that the yellow warning disappears from the Eclipse editor
window when we add this line. Eclipse helps with common programming
errors like misspellings or missing punctuation, and it even warns us about
problems that could occur like resource leaks and unused variables. As you
build bigger, more complex applications in Java, these features of the IDE
will become even more valuable. You can find more information on using
Eclipse to debug your programs in Appendix B.

The finished program, shown in Listing 2-6, is a fully playable guessing
game, complete with the option to play again and guess a new random
number every game.

import java.util.Scanner;

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 String playAgain = "";
 do {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");
 else
 System.out.println(guess + " is correct. You win!");

30 Chapter 2

 } // End of while loop for guessing
 System.out.println("Would you like to play again (y/n)?");
 playAgain = scan.next();
 } while(playAgain.equalsIgnoreCase("y"));
 System.out.println("Thank you for playing! Goodbye.");
 scan.close();
 }
}

Listing 2-6: The finished text-based, command line guessing game

There are a few things worth noting about the finished Hi-Lo guessing
game program. First, despite all the work in writing it, the code is relatively
short—fewer than 30 lines long. Nevertheless, you could play it forever if you
wanted to. Second, this program not only demonstrates conditions and loop-
ing, it also makes use of a loop inside another loop. This is called a nested loop,
because the guessing loop is contained in, or nested inside, the play again
loop. The indentation helps us see where the do-while loop begins and ends,
and we can see the smaller while loop and its if statements tabbed over and
nested inside the bigger do-while loop. Finally, we end the program neatly—
both for the user, by thanking them for playing, and for the computer, by
closing the scanner resource.

What You Learned
While building a simple, fun, playable game, we’ve picked up several valu-
able programming concepts along the way. That’s the way I first learned
how to code as a kid—I would find a fun game or graphical app, program
it, then change it, take it apart, and try new things. Play and exploration are
an important part of learning anything new, and I hope you’ll take a little
time to try new things with each program. The Programming Challenges
at the end of each chapter will also give you an opportunity to try a few new
things.

In building this guessing game, we’ve developed a wide range of skills
in Java:

•	 Creating a new class, HiLo

•	 Importing an existing Java package, java.util.Scanner

•	 Using a Scanner object to accept keyboard input

•	 Declaring and initializing integer and string variables

•	 Generating a random number with Math.random() and casting it to an
integer

•	 Using while and do-while loops to repeat a set of steps while a condition
is true

•	 Printing text strings and variable values to the command line console

•	 Scanning integers and strings from the keyboard and storing them in
variables

Build a Hi-Lo Guessing Game App! 31

•	 Testing various conditional expressions in if and if-else statements

•	 Using String methods to compare string values with equalsIgnoreCase()

•	 Closing input resources like Scanner objects with the close() method

•	 Running a command line program from inside Eclipse

In addition to practical skills, you’ve also developed a working knowl-
edge of several important programming concepts in Java:

Variables theNumber is an integer variable, or int, and so is guess.
playAgain is a string variable, or String. We change the values of these
variables as we play the game by entering new number guesses or
answering y or n.

Methods Methods are what we call functions in Java. Math.random()
is a method for generating random numbers between 0.0 and 1.0.
The scan.nextInt() method accepts numeric input from the user.
System.out.println() is a function for displaying text to the console or
terminal window.

Conditionals The if-else statements allow us to test whether a condi-
tion, like guess < theNumber, is true and run a different block of code
depending on the outcome of that test. We also use conditional expres-
sions to determine whether to perform a loop again, as in the statement
while (guess != theNumber). This statement will loop as long as guess is
not equal to theNumber. Remember the test for “is equal to” is the double
equal sign: ==.

Loops A while loop lets us repeat a block of code as long as a condi-
tion is true. We used a while loop in the guessing game to keep asking
the user for another guess until they got the right number. A do-while
loop always runs at least once, and we used one to ask the user if they
wanted to play again.

Classes The whole HiLo app is a Java class, public class HiLo. A class is
a template. Now that we’ve built a class template for the HiLo guessing
game, we can reuse it to play the guessing game across many different
computers. We also imported the Scanner and Math classes in this app to
accept user input and generate random numbers. We’ll write our own
classes to do something new, and we’ll take advantage of the classes
already included in Java to do everyday tasks like input, math, and more.

Programming Challenges
Try these programming challenges to review and practice what you’ve
learned and to expand your programming skills. If you get stuck, you can
visit the book’s website at http://www.nostarch.com/learnjava/ to download
sample solutions, or you can watch this lesson in the video course online at
http://www.udemy.com/java-the-easy-way/ for step-by-step solutions. Chapter 2
is free to preview, and you can use the coupon code BOOKHALFOFF to
save 50 percent when you buy the full course.

32 Chapter 2

#1: Expanding Your Range
For this first programming challenge, change the guessing game to use
a bigger range of numbers. Instead of 1 to 100, try having the user guess
between −100 and 100! (Hint: Multiply Math.random() by 200 and subtract
100 from the result.)

Remember to change both the programming statement that generates
the random number and the prompt that tells the user the range they should
guess between.

If you want an easier game, you can change the range from 1 to 10 and
wow your friends when you can guess the secret number in just four tries.
Try other ranges, like 1 to 1,000, or even 1 to 1,000,000, or use negative
ranges if you want! (Remember that you can’t use commas when writing the
number in Java.) You’ll not only get better at programming, but you might
also improve your math skills. Change the program however you’d like and
have fun with it!

s t r at eGi z e Your Gue sse s

You may discover that the more you play the guessing game, the faster you’ll be
able to guess the secret number. You might even stumble onto the fact that you
can guess the number fastest by guessing in the middle of a range with each
new guess. This technique is called a binary search. Guessing a number in the
middle of the possible range cuts the number of possibilities in half each time.

Here’s how it works. For a number from 1 to 100, guess 50. If that’s too
low, you know the secret number must be between 51 and 100, so guess
75, right in the middle of this range. If that’s too low, try a number halfway
between 76 and 100, which would be 87. One reason the binary search is
so valuable is that we can reduce the number of guesses to just seven tries (or
fewer) to find a secret number between 1 and 100, every time. Try it out!

When you get the hang of guessing a number between 1 and 100 in
seven tries or less, try guessing a number from 1 to 1,000 in just 10 tries. If
you’re really brave (and have a pencil nearby), try guessing a number from 1
to 1,000,000. Believe it or not, it should take you just 20 guesses.

#2: Counting Tries
We’ve already built a pretty cool guessing game app, but let’s try adding one
more feature to the game. Your challenge is to count and report how many
tries it takes the user to guess the secret number. It could look something
like the following:

62 is correct! You win!
It only took you 7 tries! Good work!

Build a Hi-Lo Guessing Game App! 33

To accomplish this task, you’ll need to create a new variable (you might
add a line like int numberOfTries = 0;), and you’ll have to add to the number
of tries every time the guessing loop executes. You can do this by increas-
ing the variable numberOfTries by one for each new loop using numberOfTries =
numberOfTries + 1. Be sure to include text to let the user know the number of
tries.

It may take a few tries to get all the code working in the right order at
the right time, but it’s worth the effort and will help you practice your new
skills. In the next chapter, we’ll build this feature into a different version of
the guessing game. In the meantime, I hope you’ll come up with even more
ideas for improving and changing the game. Playing with your programs,
taking them apart, and rebuilding them can be the best way to learn.

#3: Playing MadLibs
For your final challenge in this chapter, let’s write a completely new pro-
gram. We’ve learned how to ask a user for input and store it in a variable.
We’ve also learned how to print out both text and variable values to the
screen. With those skills, you can build even more interesting and fun
programs.

Have you ever played MadLibs? Let’s try to use our new skills to build a
program in that same style. MadLibs ask a player for various words or parts
of speech, such as a color, a past-tense verb, or an adjective, and then insert
the words the player chose into a template, usually resulting in a funny
story. For example, if a player gave a color of “pink,” a past-tense verb of
“burped,” and an adjective of “silly” and then inserted them into the tem-
plate “The ____ dragon ____ at the ____ knight,” we would get the result
“The pink dragon burped at the silly knight.”

Now, the challenge is to write a new program, MadLibs.java, with a class
called MadLibs and a main() method that prompts the user for several words.
Those words should each be stored in a different String variable, like color,
pastTenseVerb, adjective, and noun, which you initialize as empty strings. Then,
after the user has entered their last word, the program should print a com-
pleted sentence or story by replacing the empty strings with the words the
user provided, like this:

 System.out.print("The " + color + " dragon " + pastTenseVerb + " at the " + adjective);
 System.out.println(" knight, who rode in on a sturdy, giant " + noun + ".");

Note that the first statement is a print() statement instead of a println().
The print() statement continues printing at the end of the same line, allow-
ing us to build a longer paragraph or story. The println() statement, how-
ever, always skips a line after printing, like when you press enter at the end
of the line. You can write a longer MadLibs story by using different variable
names like noun1, noun2, and noun3. Give it a try, and get ready to laugh at the
funny stories you create! Try to personalize each program you create by
adding new features and making it your own.

	_GoBack

