
In the previous chapter we discussed 
JavaScript’s primitive data types, which rep-

resent a single piece of data, like a number or 
a string. Now  we’ll look at JavaScript’s compound 

data types, arrays and objects, which combine multiple 
pieces of data into a single unit. Compound data types 
are an essential part of programming because they allow 
us to  organize and work with collections of data of any 
size. You’ll learn how to create and manipulate arrays 
and objects, and how to combine them into more com-
plex data structures.

3
C O M P O U N D  D A T A  T Y P E S

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



38   Chapter 3

Arrays
A JavaScript array is a compound data type that holds an ordered list of 
values. The ele ments of an array can be of any data type. They  don’t all 
have to be the same type, although they typically are. For instance, an array 
might function as a to-do list by holding a series of strings describing tasks 
that need to be performed, or it might hold a collection of numbers repre-
senting temperature readings taken at regular intervals from a par tic u lar 
location.

Arrays are perfect for  these sorts of structures  because they collect the 
related values together in one place, and they have the flexibility to grow 
and shrink as values are added or removed. If you had a fixed number of 
to-do items— say, four— then you might use separate variables to hold them, 
but using an array enables you to hold an unbounded, changing number of 
items and keep them in a fixed order. Also, once you have your ele ments 
together in a single array, you can write code to efficiently operate on each 
item in the array in turn, as you’ll see in Chapter 4.

Creation and Indexing
To create an array, list its ele ments separated by commas inside a pair of 
square brackets:

let primes = [2, 3, 5, 7, 11, 13, 17, 19];
primes;
(8) [2, 3, 5, 7, 11, 13, 17, 19]

This array contains the first eight prime numbers and is stored in the primes 
variable. When you enter primes; the Chrome console should print the length 
of the array (8) followed by its ele ments.

 Every ele ment in an array has an index number associated with it. Like 
strings, arrays are zero- indexed, so the first ele ment is found at index 0, the 
second at index 1, and so on. To access an individual ele ment of an array, 
place its index number in square brackets  after the name of the array.  Here, 
for example, we access the first ele ment of the primes array:

primes[0];
2

 Because arrays are zero- indexed, the index of the last ele ment of the 
array is one less than the array’s length. So, the last ele ment of our eight- 
element primes array is at index 7:

primes[7];
19

If you  don’t know how long an array is and you want to get its last ele-
ment, you can first use dot notation to access its length property and look up 
the array’s length, as we did with strings in Chapter 2:

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   39

primes.length;
8
primes[7];
19

Or, to do this in a single statement, you can simply subtract 1 from the 
length to get the ele ment at the last index, like so:

primes[primes.length - 1];
19

If you use an index outside the range of the array, JavaScript returns 
undefined:

primes[10];
undefined

To replace an ele ment in an array, assign the ele ment a new value using 
indexing syntax:

primes[2] = 1;
primes;
(8) [2, 3, 1, 7, 11, 13, 17, 19]

 Here we add a 1 in the third position (index 2) of primes, replacing the value 
that was previously at that index. The console output confirms that 1 is the 
new third ele ment in the array.

Arrays of Arrays
Arrays can contain other arrays.  These multidimensional arrays are often 
used to represent two- dimensional grids of points, or  tables. To illustrate 
this, let’s make a  simple tic- tac- toe game.  We’ll create an array ( we’ll call 
this the outer array) containing three ele ments, each of which is another 
array ( we’ll call  these the inner arrays) representing one of the rows of the 
tic- tac- toe board. Each inner array  will contain three empty strings to repre-
sent the squares within that row:

let ticTacToe = [
 ["", "", ""],
 ["", "", ""],
 ["", "", ""]
];

In order to make the code easier to read, I’ve put each inner array on 
a new line. Usually when you press enter (commonly to start a new line), 
the JavaScript console  will run the line of code you just entered, but in this 
case, it’s clever enough to realize that the first line  isn’t finished,  because 
 there’s no closing square bracket to match the opening bracket. It  will 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



40   Chapter 3

interpret every thing up to the final closing bracket and semicolon as a sin-
gle statement, even if you include additional brackets and carriage returns.

N O T E  The Chrome console automatically applies indentation to the inner arrays, to indi-
cate that  they’re nested inside the outer array. Chrome and VS Code by default use 
four spaces for each level of indentation, but this is a  matter of personal preference. 
Throughout this book I’ll be using two spaces for indentation, both  because this is 
more common in modern JavaScript code and  because it helps some of the bigger list-
ings fit on the page.

I could have written this array on one line, as shown  here, but this way 
it’s harder to see its two- dimensionality:

let ticTacToeOneLine = [["", "", ""], ["", "", ""], ["", "", ""]];

Now let’s see what happens when we ask the console for the value of the 
ticTacToe variable:

ticTacToe;
(3) [Array(3), Array(3), Array(3)]

In this case, the length of the outer array is shown as (3), indicating that it’s 
an array with three ele ments. Each ele ment of the array is Array(3), which 
means each inner array is another three- element array.

To expand the view and see what’s in  those inner arrays, click the arrow 
on the left:

(3) [Array(3), Array(3), Array(3)]
  0: (3) ['', '', '']
  1: (3) ['', '', '']
  2: (3) ['', '', '']
   length: 3
  [[Prototype]]: Array(0)

The first three lines show the values of the inner arrays at indexes 0, 1, and 2. 
 After  these, the outer array’s length property is shown, with its value of 3. The 
final property, [[Prototype]], is where the array’s built-in methods come from 
(more on this in Chapter 6).

 We’ve created our tic- tac- toe board, but it’s empty. Let’s set an X in the 
top- right corner. The first inner array represents the top row; we access it 
with ticTacToe[0]. The top- right corner is the third ele ment of that row, or 
index 2 of the inner array.  Because ticTacToe[0] returns an array, we can just 
add [2] on the end to access the ele ment we want: ticTacToe[0][2]. Knowing 
this, we can set this ele ment to "X" as follows:

ticTacToe[0][2] = "X";

Now let’s look at the value of ticTacToe again, clicking the arrow to 
expand the outer array:

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   41

ticTacToe;
(3) [Array(3), Array(3), Array(3)]
  0: (3) ['', '', 'X']
  1: (3) ['', '', '']
  2: (3) ['', '', '']
   length: 3
  [[Prototype]]: Array(0)

The top- right corner of the tic- tac- toe board now contains an X.
Next, let’s set an O in the bottom- left corner. The bottom row is index 2 

of the outer array, and the leftmost square of that row is index 0 of the inner 
array, so we enter the following:

ticTacToe[2][0] = "O";
ticTacToe;
(3) [Array(3), Array(3), Array(3)]
  0: (3) ['', '', 'X']
  1: (3) ['', '', '']
  2: (3) ['O', '', '']
   length: 3
  [[Prototype]]: Array(0)

Now  there’s an O in the bottom- left corner of the board.
To summarize, if you want to access an ele ment in a nested array, use 

one set of square brackets to select the ele ment in the outer array (which 
returns one of the inner arrays), then a second set to select the ele ment in 
the inner array.

T RY IT YOURSEL F

3-1.   Play a game of tic- tac- toe against yourself, using the ticTacToe array . 
Remember, the first index number should be the row of the board, and  
the second index number should be the column .

Array Methods
JavaScript has several useful methods for working with arrays.  We’ll look at a 
few impor tant ones in this section. Some of  these methods modify the array 
in question, which is known as mutation. Example mutations include adding 
or deleting array ele ments, or changing the ele ments’ order. Other methods 
create and return a new array while leaving the original array unchanged, 
which is useful if you still need the original array for other purposes.

It’s impor tant to be aware of  whether or not the method  you’re using 
 will mutate the array. For example, say you have an array containing the 
months of the year listed chronologically, but one part of your program 
needs them in alphabetical order. You’d want to be sure that alphabetizing 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



42   Chapter 3

the months  doesn’t inadvertently change the original, chronological array, 
or other parts of your program might start thinking April is the first month 
of the year. On the other hand, if you have an array representing a to-do 
list, you’d prob ably want the original array itself to be updated when a task 
is added or removed, rather than creating a new array.

Adding an Ele ment to an Array

The push method mutates an array by adding a supplied ele ment to the end 
of the array. The return value of the push method is the new length of the 
array. As an example, let’s use push to build up an array of programming 
languages:

let languages = [];
languages.push("Python");
1
languages.push("Haskell");
2
languages.push("JavaScript");
3
languages.push("Rust");
4
languages;
(4) ['Python', 'Haskell', 'JavaScript', 'Rust']

First we create a new array called languages and initialize it with [], 
an empty array. The first time we call the push method, we pass the value 
"Python". The method returns 1, which means  there’s now one ele ment in 
the array. We do this three more times, and fi nally ask for the value of 
languages by entering languages;. This returns the four languages we added 
to the array, in the order we added them.

To add an ele ment to the beginning of the array rather than the end, 
use the unshift method, like so:

languages.unshift("Erlang");
5
languages.unshift("C");
6
languages.unshift("Fortran");
7
languages;
(7) ['Fortran', 'C', 'Erlang', 'Python', 'Haskell', 'JavaScript', 'Rust']

 Here  we’ve added three more languages to the front of the languages 
array.  Because each ele ment is added to the beginning of the array, they 
end up in the opposite order to how they  were added. Like push, calling 
unshift returns the new length of the array.

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   43

Removing Ele ments from an Array

To mutate an array by removing its last ele ment, use the pop method.  Here 
we call the pop method on the languages array, deleting its last ele ment:

languages.pop();
'Rust'
languages;
(6) ['Fortran', 'C', 'Erlang', 'Python', 'Haskell', 'JavaScript']

The method returns the value of the ele ment being removed, in this case 
"Rust". When we then check the array, it contains only six ele ments.

 Because the pop method returns the array ele ment being removed, 
it’s particularly useful if you want to do something with that ele ment as 
 you’re removing it. For example,  here we delete another ele ment from the 
languages array and use it in a message:

let bestLanguage = languages.pop();
let message = `My favorite language is ${bestLanguage}.`;
message;
'My favorite language is JavaScript.'
languages;
(5) ['Fortran', 'C', 'Erlang', 'Python', 'Haskell']

This time when we call languages.pop() we store the method’s return 
value in the bestLanguage variable, which we incorporate into a string using a 
template literal. When we print the resulting message, it includes the word 
JavaScript. This was the ele ment removed from the array, which is now down 
to five languages.

To remove the first ele ment from an array, rather than the last, use the 
shift method. Like pop, the shift method returns the removed ele ment:

let worstLanguage = languages.shift();
message = `My least favorite language is ${worstLanguage}.`;
message;
'My least favorite language is Fortran.'
languages;
(4) ['C', 'Erlang', 'Python', 'Haskell']

As with the previous example, we save the result of calling shift in 
a variable, this time called worstLanguage, and use it in a template literal. 
This variable contains the string "Fortran", and languages is left with four 
ele ments.

The four methods  we’ve looked at so far, pop, unshift, push, and shift, are 
commonly used to implement more specialized data structures, like queues. 
A queue is a data structure that resembles a line of  people, where new items 
are added to the end and items are removed and pro cessed from the begin-
ning. This is useful when you want to  process data in the order it arrives. 
For example, imagine a Q and A app, where many users can ask questions. 
You could use an array to store the list of questions, with the push method 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



44   Chapter 3

adding each new question to the end of the array. When the answerer is 
ready to answer a question, they would use shift to get the first ele ment in 
the array and remove it from the array. This ensures that only unanswered 
questions are in the array, and that  they’re answered in the order they  were 
received.

T RY IT YOURSEL F

3-2.   Create a new empty array and save it in a variable called rainbow (see 
the section “Adding an Ele ment to an Array” on page 42 to see how to 
create a new empty array) . Your task is to add the colors of the rainbow 
("Red", "Orange", "Yellow", "Green", "Blue", "Indigo", "Violet") to this 
array, but with a twist: you must start by adding "Green", and use push 
and unshift to add the rest . If you make a  mistake, you can use pop or 
shift to remove the color you just added .

Combining Arrays

The concat method (short for concatenate) adds two arrays together.  Here, 
for example, we start with two arrays, fish and mammals, and combine them 
into a new array, saving that into the animals variable:

let fish = ["Salmon", "Cod", "Trout"];
let mammals = ["Sheep", "Cat", "Tiger"];
let animals = fish .concat(mammals);
animals;
(6) ['Salmon', 'Cod', 'Trout', 'Sheep', 'Cat', 'Tiger']

When you call concat on an array, a new array is created with all the ele-
ments from the first array (the array on which you called concat) followed 
by all the ele ments from the second array (the array passed as an argument 
to concat). The original arrays remain unchanged  because, unlike the other 
methods  we’ve looked at so far, concat  isn’t a mutating method. This is use-
ful  here,  because we  wouldn’t want our fish array to suddenly contain the 
ele ments from mammals!

To combine three or more arrays, pass multiple arrays as arguments to 
concat, as in this example:

let originals = ["Hope", "Empire", "Jedi"];
let prequels = ["Phantom", "Clones", "Sith"];
let sequels = ["Awakens", "Last", "Rise"];
let starWars = prequels .concat(originals, sequels);
starWars;
(9) ['Phantom', 'Clones', 'Sith', 'Hope', 'Empire', 'Jedi', 'Awakens', 'Last', 'Rise']

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   45

 Here we create three separate arrays, originals, prequels, and sequels, repre-
senting the three sets of Star Wars movies. Then we use concat to combine 
them into a single nine- element starWars array. Notice that the ele ments in 
the combined array appear in the order in which the arrays  were passed as 
arguments.

Finding the Index of an Ele ment in an Array

To find out where a par tic u lar ele ment is in an array, use the indexOf method. 
This method returns the index of the first occurrence of the specified ele ment. 
If the ele ment  isn’t found in the array, indexOf returns -1:

let sizes = ["Small", "Medium", "Large"];
sizes .indexOf("Medium");
1
sizes .indexOf("Huge");
-1

In this example, we want to check the position of "Medium" in the sizes array, 
and we get back the answer 1. Then,  because "Huge"  isn’t in the array, we get 
the answer -1.

If the array contains multiple instances of the given value, indexOf returns 
the index of the first matching ele ment only. For example,  here’s an array 
with the colors of the flag of Argentina:

let flagOfArgentina = ["Blue", "White", "Blue"];
flagOfArgentina .indexOf("Blue");
0

Even though "Blue" is found twice in the array, indexOf returns only the 
index of the first occurrence.

Turning an Array into a String

The join method converts an array into a single string, joining all the ele-
ments together, as shown  here:

let beatles = ["John", "Paul", "George", "Ringo"];
beatles.join();
'John,Paul,George,Ringo'

Notice how the separate strings in the beatles array are combined into 
one string. By default, join places a comma between each ele ment to form 
the returned string. To change this, you can give your own separator as an 
argument to join. For example, if you want nothing in between each ele-
ment, pass an empty string as an argument:

beatles.join("");
'JohnPaulGeorgeRingo'

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



46   Chapter 3

You can pass any valid string as a separator. In the next example, 
we pass a space, an ampersand, and a newline escape character to set  
each ele ment on its own line. As you learned in Chapter 2, we have to use 
console.log for the newlines to display correctly in Chrome:

console.log(beatles.join("&\n"));
John&
Paul&
George&
Ringo

Keep in mind that the separator appears only between array ele ments, 
not  after each one. This is why  there  isn’t an extra ampersand and newline 
 after Ringo.

If you use join on an array containing non- string values,  those values 
 will be converted to strings, as in this example:

[100, true, false, "hi"].join(" - ");
'100 - true - false - hi'

As with the previous joins, the result is one long string, joined together 
by the separator (in this case, " - "). The difference is that the non- string 
values (the number 100 and the Booleans true and false) had to be automat-
ically converted to strings before the join. This example also shows how you 
can call array methods directly on array literals, rather than having to save 
the array into a variable first.

T RY IT YOURSEL F

3-3.  Use the join method to convert the array ["X", "X", "X"] into the string 
"XoXoX" .

Other Useful Array Methods

 Here are some other useful array methods you might want to try out:

arr .includes(elem)    Returns true or false depending on  whether a given 
elem is in the arr array.

arr.reverse()    Reverses the order of ele ments in the array. This is a 
mutating method, so it modifies the original array.

arr.sort()    Sorts the array ele ments, modifying the original array. If 
the ele ments are strings,  they’re sorted in alphabetical order. Other-
wise, the sorting happens as if the ele ments  were converted to strings.

arr.slice(start, end)    Creates a new array by extracting ele ments from 
the original array starting at index start, up to but not including index end. 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   47

This method is equivalent to the slice method on strings, introduced 
in the previous chapter. If you call slice() without any arguments, 
the entire array is copied into a new array. This is useful if you need 
to use a mutating method like sort but you  don’t want to mutate the 
original array.

arr.splice(index, count)    Removes count ele ments from the array, start-
ing at index.

Objects
Objects are another compound data type in JavaScript.  They’re similar to 
arrays in that they hold a collection of values, but they differ in that objects 
use strings called keys instead of numeric indices to access the values. Each 
key is associated with a specific value, forming a key- value pair.

Whereas arrays are commonly used to store ordered lists of ele ments 
of the same data type, objects are usually used to store multiple pieces of 
information about a single entity.  These pieces of information often are 
not all of the same data type. For example, an object representing a per-
son might hold information like the person’s name (a string), their age (a 
number),  whether or not  they’re married (a Boolean), and so on. Objects 
are better suited for this purpose than arrays  because each piece of infor-
mation is given a meaningful name— its key— rather than a generic index 
number. It’s much clearer what the values 35 and true mean if  they’re stored 
in a person object  under the keys "age" and "married" than it would be if they 
 were stored in a person array  under the indices 1 and 2.

Creating Objects
One way to create an object is with an object literal, which consists of a pair of 
braces ({ and }) enclosing a series of key- value pairs, separated by commas. 
Each key- value pair must have a colon between the key and the value. For 
example,  here’s an object literal called casablanca containing some informa-
tion about that movie:

let casablanca = {
 "title": "Casablanca",
 "released": 1942,
 "director": "Michael Curtiz"
};
casablanca;
{title: 'Casablanca', released: 1942, director: 'Michael Curtiz'}

 Here we create a new object with three keys: "title", "released", and 
"director". Each key has a value associated with it. I’ve written each key- 
value pair on its own line to make the object literal easier to read, but this 
 isn’t strictly necessary. As you’ll see in  later examples, the key- value pairs 
can also all be written on the same line.

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



48   Chapter 3

All object keys are strings, but if your key is a valid identifier, it’s com-
mon practice to omit the quotes. A valid identifier is any series of characters 
that can be used as a JavaScript variable name. An identifier can consist of 
letters, numbers, and the characters _ and $, but it  can’t start with a num-
ber. It also  can’t contain other symbols, like *, (, or #, nor can it include 
whitespace characters like spaces and newlines.  These other characters 
are allowed in object keys, but only if the key is enclosed in quotes. For 
example:

let obj = { key1: 1, key_2: 2, "key 3": 3, "key#4": 4 };
obj;
{key1: 1, key_2: 2, key 3: 3, key#4: 4}

 Here key1 and key_2 are valid identifiers, so they  don’t need quotes. However, 
key 3 contains a space and key#4 contains a hash mark, making them invalid 
identifiers. They must be enclosed in quotes to be used as object keys.

Accessing Object Values
To get the value associated with a key, call the name of the object with the 
string key in square brackets:

obj["key 3"];
3
casablanca["title"];
'Casablanca'

This is just like the syntax for accessing an ele ment from an array, but 
instead of using the numeric index, you use the string key.

For keys that are valid identifiers, you can use dot notation instead of 
square brackets, with the key name coming  after the dot:

obj.key_2;
2

This  doesn’t work for keys that  aren’t valid identifiers. For example, you 
 can’t write obj.key 3  because to JavaScript that looks like obj.key followed 
 after the space by the number literal 3.

Notice that this dot notation looks like the syntax we used for accessing 
the length property of strings (in Chapter 2) and arrays ( earlier in this chap-
ter). That’s  because it’s the same  thing! A property is just another name for 
a key- value pair.  Behind the scenes, JavaScript treats strings like objects, and 
arrays, too, are actually a special kind of object. When we write something 
like [1, 2, 3].length, we say  we’re accessing the array’s length property, but 
we could also say  we’re getting the value associated with the array’s length 
key. Likewise, when we write something like casablanca.title, we often say 
 we’re accessing the object’s title property instead of the value associated 
with its title key.

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   49

Setting Object Values
To add a new key- value pair to an object, use the same bracket or dot nota-
tion used to look up a value.  Here, for example, we set up an empty dictionary 
object, then add two definitions:

let dictionary = {};
dictionary.mouse = "A small rodent";
dictionary["computer mouse"] = "A pointing device for computers";
dictionary;
{mouse: 'A small rodent', computer mouse: 'A pointing device for computers'}

We first create a new, empty object using a pair of empty braces. We 
then set two new keys, "mouse" and "computer mouse", giving each a defini-
tion as a value. As before, we can use dot notation with the valid identifier 
mouse, but we need bracket notation for "computer mouse"  because it contains 
a space.

Changing the value associated with a key that already exists follows the 
same syntax:

dictionary.mouse = "A furry rodent";
dictionary;
{mouse: 'A furry rodent', computer mouse: 'A pointing device for computers'}

The output confirms that the definition for mouse has been updated.

Working with Objects
JavaScript has plenty of methods for working with objects;  we’ll examine a 
few of the most common ones  here. Unlike with arrays, where the methods 
are called directly on the array you want to operate on, object methods are 
called as static methods by entering Object.methodName() and passing the object 
you want to operate on as an argument inside the parentheses.  Here, Object 
is a constructor, a type of function used to create objects, and static methods are 
methods defined directly on the constructor instead of on a par tic u lar object. 
 We’ll discuss constructors in more detail in Chapter 6.

Getting an Object’s Keys

To get an array of all the keys of an object, use the static method Object.keys. 
For example,  here’s how you could retrieve the names of my cats:

let cats = { "Kiki": "black and white", "Mei": "tabby", "Moona": "gray" };
Object.keys(cats);
(3) ['Kiki', 'Mei', 'Moona']

The cats object has three key- value pairs, where each key represents a cat 
name and each value represents that cat’s color. Object.keys returns just the 
keys, as an array of strings.

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



50   Chapter 3

Object.keys can be helpful in cases like this where the only pieces 
of information you need from an object are the names of its keys. For 
example, you might have an object tracking how much money you owe 
your friends, where the keys are your friends’ names and the values are the 
amounts owed. With Object.keys you can list just the names of the friends 
that  you’re tracking, giving you a general sense of whom you owe money to.

You might be wondering why keys is a static method— that is, why we 
need to call it with Object.keys(cats) rather than with cats.keys(). To under-
stand why this is the case, consider this piano object:

let piano = {
 make: "Steinway",
 color: "black",
 keys: 88
};

The object has a property named "keys" that represents the number of 
keys on the piano. If methods like keys could be called directly on the piano 
object itself, the property name and method name would conflict, which 
 isn’t allowed. JavaScript has many more built-in object methods besides keys, 
and it would be tedious to have to remember all of their names to make 
sure they  don’t conflict with any of your objects’ property names. To avoid 
this issue, the designers of the language made  these object methods static. 
 They’re attached to the overall Object constructor instead of to individual 
objects like cat or piano, so  there’s no possibility of a naming conflict.

N O T E  None of this is an issue with arrays. Method names must be valid identifiers, mean-
ing they  can’t start with a number. Therefore,  there’s no way an array method could 
conflict with the array’s numerical indices.

Getting an Object’s Keys and Values

To get an array of the keys and values of an object, use Object.entries. This 
static method returns an array of two- element arrays, where the first ele-
ment of each inner array is a key and the second is its value.  Here’s how it 
works:

let chromosomes = {
 koala: 16,
 snail: 24,
 giraffe: 30,
 cat: 38
};
Object.entries(chromosomes);
(4) [Array(2), Array(2), Array(2), Array(2)]

We create an object with four key- value pairs, showing how many chro-
mosomes vari ous animals have. Object.entries(chromosomes) returns an array 
containing four ele ments, each of which is a two- element array. To expand 
the outer array and view its full contents, click the arrow:

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   51

(4) [Array(2), Array(2), Array(2), Array(2)]
  0: (2) ['koala', 16]
  1: (2) ['snail', 24]
  2: (2) ['giraffe', 30]
  3: (2) ['cat', 38]
   length: 4
  [[Prototype]]: Array(0)

This shows that each inner array contains a key from the original object as 
its first ele ment, and the associated value as its second ele ment.

Converting an object into an array with Object.entries makes it easier to 
cycle through all of the object’s key- value pairs and do something with each 
one in turn.  We’ll see how to do this with loops in Chapter 4.

Combining Objects

The Object.assign method lets you combine multiple objects into one. For 
example, say you have two objects, one giving the physical attributes of a 
book and the other describing its contents:

let physical = { pages: 208, binding: "Hardcover" };
let contents = { genre: "Fiction", subgenre: "Mystery" };

With Object.assign, you can consolidate  these separate objects into one 
overall book object:

let book = {};
Object.assign(book, physical, contents);
book;
{pages: 208, binding: 'Hardcover', genre: 'Fiction', subgenre: 'Mystery'} 

The first argument to Object.assign is the target, the object that the keys 
from the other objects are assigned to. In this case, we use an empty object 
called book as the target. The remaining arguments are the sources, the 
objects whose key- value pairs are to be copied into the target. You can pass 
as many source objects  after the initial target argument as you want— we’re 
just  doing two  here. The method mutates and returns the target object 
with the key- value pairs copied from the source objects. The source objects 
themselves are untouched.

You  don’t have to create a new, empty object to use as the target for 
Object.assign, but if you  don’t, you’ll end up modifying one of your source 
objects. For example, we could remove the first argument, book, from the 
previous call and still get an object with the same four key- value pairs:

Object.assign(physical, contents);
physical;
{pages: 208, binding: 'Hardcover', genre: 'Fiction', subgenre: 'Mystery'} 

The prob lem  here is that physical is now the target object, so it gets 
mutated, gaining all the key- value pairs from contents. This usually  isn’t 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



52   Chapter 3

what you want, as the original, separate objects are often still impor tant to 
other parts of your application. For this reason, it’s common practice to use 
an empty object as the first argument to Object.assign.

Nesting Objects and Arrays
As with arrays, we can nest objects in other objects. We can also nest objects 
in arrays, and arrays in objects, to create more sophisticated data struc-
tures. For example, you might want to make an object representing a person 
that contained a children property containing an array of objects represent-
ing that person’s  children. We build  these nested structures in two ways: by 
creating an object or array literal with nested object or array literals inside, 
or by creating the inner ele ments, saving them to variables, and then build-
ing up the composite structures using the variables.  We’ll examine both of 
 these techniques  here.

Nesting with Literals
First, let’s build a nested structure using literals.  We’ll create an array of 
objects representing dif fer ent book trilogies:

let trilogies = [
1 {
  title: "His Dark Materials",
  author: "Philip Pullman",
  books: ["Northern Lights", "The Subtle Knife", "The Amber Spyglass"]
 },
2 {
  title: "Broken Earth",
  author: "N. K. Jemisin",
  books: ["The Fifth Season", "The Obelisk Gate", "The Stone Sky"]
 }
];

The variable trilogies contains an array of two ele ments, 1 and 2, 
each of which is an object with information about a par tic u lar trilogy. Notice 
that each object has the same keys, since we want to store the same pieces of 
information about each trilogy. One of  those keys, books, itself contains an 
array of strings representing the book titles within the trilogy. We thus have 
an array within an object within an array.

Accessing an ele ment from one of  these inner arrays requires a combi-
nation of array indexing and object dot notation:

trilogies[1].books[0];
'The Fifth Season'

 Here, trilogies[1] means we want the second object in the outer array, 
.books means we want the value of that object’s books key (which is an 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   53

array), and [0] means we want the first ele ment from that array. Putting it 
together, we get the first book from the second trilogy in the outer array.

Nesting with Variables
An alternative technique for making nested structures is to create objects 
containing the inner ele ments, assign  those objects to variables, and then 
build the outer structure out of  these variables. For example, say we want to 
create a data structure modeling the change in our pocket. We create four 
objects representing a penny, nickel, dime, and quarter, assigning each to 
its own variable:

let penny = { name: "Penny", value: 1, weight: 2.5 };
let nickel = { name: "Nickel", value: 5, weight: 5 };
let dime = { name: "Dime", value: 10, weight: 2.268 };
let quarter = { name: "Quarter", value: 25, weight: 5.67 };

Next, we use  these variables to create an array representing the specific 
combination of coins in our pocket. For example:

let change = [quarter, quarter, dime, penny, penny, penny];

Notice that some of the coin objects appear in the array multiple times. 
This is one advantage of assigning the inner objects to variables before we 
create the outer array: an object can be repeated within the array without 
having to manually write out the object literal each time.

Accessing a value from one of the inner objects again requires a combi-
nation of array indexing and object dot notation:

change[0].value;
25 

 Here, change[0] gives us the first ele ment of the change array (a quarter 
object) and .value gives us its value key.

An in ter est ing consequence of building the array from object variables 
like this is that the repeated ele ments share a common identity. For exam-
ple, change[3] and change[4] refer to the same penny object. If the US govern-
ment de cided to update the weight of a penny, we could update the weight 
property of the under lying penny object, and that update would be reflected 
in all the penny ele ments of the change array:

penny.weight = 2.49;
change[3].weight;
2.49
change[4].weight;
2.49
change[5].weight;
2.49

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



54   Chapter 3

 Here we change the weight property of penny from 2.5 to 2.49. Then we check 
the weight of each penny in the array, confirming that the update has car-
ried over to each one.

T RY IT YOURSEL F

3-4.  Try changing the value property of quarter and check to see if that 
change is reflected in the change array . Now, change the weight of 
change[0] . Do you see that change reflected in quarter as well?

Exploring Nested Objects in the Console
The Chrome console makes it easy to explore nested objects, like we did 
 earlier in this chapter with the nested ticTacToe array. To illustrate,  we’ll cre-
ate a deeply nested object and try to look inside:

let nested = {
 name: "Outer",
 content: {
  name: "Middle",
  content: {
   name: "Inner",
   content: "Whoa..."
  }
 }
};

Our nested object contains three layers of objects, each with a name and 
content property. The value of content for the outer and  middle layers is 
another object. Getting the value of the innermost object’s content property 
requires a long chain of dot notation:

nested .content .content .content;
'Whoa...'

This is equivalent to asking for the content property of the content property 
of the content property of the outermost object.

Now try viewing the value of nested as a  whole:

nested;
{name: 'Outer', content: {...}}

The console just gives an abbreviated version with the value of the outer 
object’s content property shown as {...} to imply that  there’s an object  here 
but  there  isn’t room to display it. Click the arrow to expand the view of the 
outer object. Now the next nested object (with name: "Middle") is shown in 

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



Compound Data Types   55

abbreviated form. Click the arrow to expand this object, too, and then one 
more time to expand the object with name: "Inner". You should now see the 
entire content of the object in the console:

{name: 'Outer', content: {...}}
 content:
  content:
    content: "Whoa..."
    name: "Inner"
   [[Prototype]]: Object
   name: "Middle"
  [[Prototype]]: Object
  name: "Outer"
 [[Prototype]]: Object

The [[Prototype]] properties refer to the Object constructor, which  we’ve 
previously used to call object methods like Object.keys and Object.assign. 
 We’ll discuss prototypes in detail in Chapter 6.

Using the console like this to view complex objects is a very helpful 
debugging tool. You’ll often be working with objects that come from dif-
fer ent JavaScript libraries, or that contain data you fetch from a server, 
and you  won’t necessarily know the “shape” of the data— what properties 
the objects contain, how many levels of nesting they have, and the like. 
With the console, you can interactively explore the objects and see their 
contents.

Printing Nested Objects with JSON.stringify
Another way to view a nested object is to turn it into a JSON string. JSON, 
or JavaScript Object Notation, is a textual data format based on JavaScript 
object and array literals that’s heavi ly used across the web and beyond to 
store and exchange information. The JSON.stringify method converts a 
JavaScript object into a JSON string. Let’s pass it the nested object as an 
example:

JSON.stringify(nested);
'{"name":"Outer","content":{"name":"Middle","content":{"name":"Inner","content":"Whoa..."}}}'

The result is a string (it’s enclosed in single quotes) containing a JSON 
repre sen ta tion of the nested object. Essentially, it’s the equivalent of the 
original object literal we used to create nested. Just like JavaScript, JSON 
uses braces to enclose objects, colons to separate keys from values, and 
commas to separate dif fer ent key- value pairs. All that’s missing from this 
repre sen ta tion are the original line breaks and indentations we used to 
clarify the object literal’s nested structure. To re- create  those, we can pass 
JSON.stringify another argument representing the number of spaces to 
indent each new nested object:

nestedJSON = JSON.stringify(nested, null, 2);
console.log(nestedJSON);

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan



56   Chapter 3

{
 "name": "Outer",
 "content": {
  "name": "Middle",
  "content": {
   "name": "Inner",
   "content": "Whoa..."
  }
 }
}

The second argument to JSON.stringify lets you define a replacer func-
tion that can modify the output by replacing key- value pairs, but we  don’t 
have a need for that  here, so we pass null. Passing 2 for the third argument 
modifies the be hav ior of JSON.stringify to add newlines  after each prop-
erty and  after opening braces and brackets, and then two extra spaces of 
indentation for each additional level of nesting. If we viewed the result in 
the console directly, we’d see a bunch of \n escape characters for all the 
newlines. Instead, we store the result in a variable and pass it to console.log, 
giving us a well- formatted view of the object’s nested hierarchy.

Calling JSON.stringify in this way is helpful for getting a quick visual 
repre sen ta tion of an object without having to repeatedly click the arrows in 
the console to expand each nested level. The method works on non- nested 
objects, too, but in that case the regular view of the object in the console is 
usually sufficient.

Summary
This chapter introduced you to JavaScript’s compound data types, which 
allow you to combine multiple values into a single unit. By  organizing data 
in this way, you can manipulate unbounded amounts of information more 
efficiently. You learned about arrays, which are ordered collections of values 
identified by numerical indices, usually all of the same data type, and about 
objects, which are collections of key- value pairs where each key is a string 
and the values are often of dif fer ent data types.  You’ve seen how arrays are 
useful for storing lists of similar values, such as a list of prime numbers or 
a list of programming languages. Meanwhile, objects are useful for collect-
ing multiple pieces of information about a single entity, such as information 
about a par tic u lar book or movie.

JavaScript Crash Course (Sample Chapter) © 11/6/23 by Nick Morgan




