
9
T IMERS AND SLEEP FUNCT IONS

In Chapter 8, in learning how to design
programs that respond to signals, we took

another step towards being able to write in-
teractive and event-driven programs, but we

still have a few more concepts to understand. These
types of programs, whether they’re system programs
or other types of applications, often treat time and time
intervals as part of their input data. For example, a
program that pops up a message such as “Are you still
there?” when it hasn’t detected any user activity for a
while uses the length of a time interval to decide when
it needs to display a message to its user. Some programs
display flashing cursors, which blink at regular time in-
tervals. A large class of system programs that monitor
resource usage are capable of producing some type of
animated or dynamic output, such as a graph that up-
dates regularly as time progresses, or a terminal dis-

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

play that refreshes itself at regular intervals. Commands
that fall into this category include:

• top, which displays extensive information about all processes in the
system

• pidstat, which displays information about selected processes

• vmstat, which displays information about memory usage

• iostat, which displays information about input/output activity

By default, the top command refreshes its information every few seconds.
The others do so when the user enters a refresh interval as an option. For
example, entering vmstat 3 tells the vmstat command to append new data to
its report every 3 seconds. These types of programs have a way of control-
ling the precise times at which they execute specific functions.

In this chapter we’ll learn how to design and develop programs that
can time their behavior in the same way. To do so, we’ll need to learn a bit
about time and time measurement in Unix systems. This journey will take
us through an exploration of clocks and hardware timers as well, since they
underlie the management of time in any computer system. We’ll explore the
concept of software timers and examine the relationship between timers,
sleeping, and clocks. Although our primary focus is the part of the kernel’s
API related to timing and timers, we’ll also examine two sleep functions we
haven’t yet seen. We’ll put all of these ideas to use in the design and develop-
ment of a few programs that work with time.

Introduction

Programs that are capable of doing specific tasks at regular intervals must
have a way to keep track of time and perform tasks at scheduled times. Let’s
think about some real-world analogs to this problem. In the real world, when
we need to perform tasks at precise intervals of time, we often use a timer.
For example, when we need to adjust the temperature of an oven in 30 min-
utes, to remember to do this, we set a timer to notify us when that time elapses.
If we’re conducting some experiment that requires collecting data every ten
minutes, we use a more advanced type of timer that can repeatedly signal
us every ten minutes. In general, we use timers to inform us when a speci-
fied amount of time has elapsed. When that amount of time has elapsed, we
call it a timeout. We set a timer by giving it a length of time. Usually setting a
timer also arms the timer. To arm a timer means to start it, whereas setting it
specifies the length of the interval. When the interval expires, it notifies us,
usually with some type of audible or visual indication.

Alarm Clocks and Timers
A timer is not the same as an alarm clock. Normally, we wouldn’t use an
alarm clock in the preceding situations. When our goal is to be notified

440 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

when a fixed amount of time has passed, using an alarm clock is inconve-
nient. Alarm clocks are used for notifying us when a specific wall clock time
has been reached, not when a timeout has occurred. We set an alarm clock
with a specific wall clock time and at that time, it notifies us. A timer’s input,
on the other hand, is the length of a time interval. It doesn’t need the time
of day in order to work, but it does need some type of internal timekeeping
device to keep track of the elapsed time. Although alarm clocks do serve
a purpose in a computer system, such as scheduling jobs that have to take
place at a certain time of day, they’re not a solution to the types of problems
we just considered.

Sleep Functions and Timers
Up until now, our programs relied entirely on sleep functions such as sleep()
and usleep() to insert some form of time-dependent delay into their execu-
tions. When a process calls a sleep function, it specifies an interval of time
as the argument to the call, and it’s immediately suspended. When that time
has elapsed, it wakes up and resumes execution at the instruction following
the call, unless an unhandled signal interrupted its sleep, in which case it
was most likely terminated. For example, if we wanted a program to check
whether some file will have been modified within the next 30 seconds, with
what we know now, we’d make it sleep for 30 seconds and then check the file
when it wakes up. The problem with this solution is that the program can’t
do anything while it’s waiting, which is neither useful nor efficient.

Let’s consider how we could program a progress bar if all we had at our
disposal were sleep functions. Suppose that our process performs some very
lengthy task, such as copying a large number of files from one filesystem to
another, and that we’d like it to display a dynamic indicator of how much it’s
accomplished and update it at regular intervals. This is what a progress bar
does. Suppose that at any instant of time, the program can compute what
fraction of the task has been completed. If the only way to schedule an up-
date of the progress bar at some future time is by sleeping for that amount
of time, we couldn’t do the work whose progress we’re trying to measure!
Clearly sleep functions are useless for solving this problem.

Suppose instead that we could use some type of software timer analo-
gous to a real-world timer. If a program needed to do some particular task
at a future time, like checking a file, it could set a timer, just like a real-world
timer, to interrupt it when that amount of time elapsed. In this way, it could
continue to do its work in the meanwhile. When the timer expired, it would
temporarily stop what it was doing, perform the scheduled task (such as
checking the file), and return to the interrupted work. Let’s consider how
we could program a progress bar if we had timers at our disposal. Suppose
that a program could set a timer to expire repeatedly, at regular intervals.
Each time that it received a notice of a timeout, the program could compute
the amount of work completed and update the indicator. Assuming that the
calculation and update are fast, this is an efficient way to keep the user in-
formed of its progress.

Timers and Sleep Functions 441

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

With this in mind, let’s see what we can learn from the on-line docu-
mentation about timers and related functions. Our objective is to learn what
services the kernel provides for user programs so that they can use timers.
There are questions though, such as how fine a granularity we can expect
from a timer, and how accurate they are. We also need to know how they
notify our programs when timeouts occur. We need the answers to these
questions.

Time, Clocks, and Timing
We’ll begin our exploration as we’ve done in previous chapters, by trying to
find a man page that contains an overview, guidance and possibly references
to other resources. Whenever they exist, the man pages in Section 7 are al-
ways a good place to start. Therefore, we’ll search Section 7 for a page about
timers or something similar, trying the keywords time and timers:

$ apropos -s7 time timer

--snip--

sys_time.h (7posix) - time types

sys_times.h (7posix) - file access and modification times structure

systemd.time (7) - Time and date specifications

time (7) - overview of time and timers

time.h (7posix) - time types

time_namespaces (7) - overview of Linux time namespaces

utime.h (7posix) - access and modification times structure

¶ timer: nothing appropriate.

Among the matches is the time (7) man page that we first discovered in
Chapter 3. Back then we were interested in dates and times, not timers,
but this page has information about timers as well. We’ll start by reviewing
it, but notice, before we continue that there isn’t a man page about timers
specifically ¶, suggesting that this is the right place to start.

An Overview of Timers and Clocks
The time (7) man page is divided into brief sections with background infor-
mation about general topics. It starts with information about distinctions
between real and process time, distinctions between hardware and software
clocks, concepts of time measurement and time representation, and finally,
a brief discussion of timers, with references to specific system calls related
to timers. We do need to understand something about clocks and time mea-
surement to use timers properly, but let’s first see what kinds of timers are
available.

The set of available timers is listed in the section entitled “Sleeping and
setting timers” on the man page. There it mentions several timer system
calls, including alarm(), getitimer(), timerfd_create(), and timer_create(). It
also mentions two system calls for sleeping that we haven’t examined yet,
nanosleep() and clock_nanosleep(). We’ll read about them shortly. Before we

442 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

do, we’ll explore the basic concepts underlying clocks and time measure-
ment.

Hardware Clocks and Hardware Timers
Most computers have a designated hardware clock called the Real Time Clock
(RTC) that keeps wall clock time, which we called calendar time in Chapter
3. Some computers have more than one hardware clock, and they’re also
called RTCs. Among all of the RTCs, there’s one that is backed up by a bat-
tery while the computer is turned off or in a low-power state, so that it keeps
its time. To avoid confusion, we’ll call this battery-backed hardware clock
the RTC and ignore the fact that there might be other real time clocks in the
computer.

The principal purpose of the RTC is to record the wall clock time. Linux
systems only use it to initialize various software structures that store time
and date for functions such as time() and gettimeofday(), which return the
correct date and time. The RTC does have other capabilities though, one of
which is that it can be programmed to generate periodic interrupts on a ded-
icated interrupt line, at selected frequencies ranging between 2 Hz (Hertz)
and 8192 Hz. It can also generate an interrupt for every clock tick, which
is usually once per second. Lastly, it can be programmed so that when it
reaches a pre-specified number of recorded ticks, it generates an interrupt,
so that it can function like an alarm clock. Exactly how it works is architecture-
dependent.

Many computers also have a hardware device called a Programmable
Interval Timer (PIT). The PIT issues an interrupt, called a timer interrupt,
whenever it times out. The PIT is essentially a hardware timer, like a kitchen
timer, except that it continues to generate interrupts at the same rate as long
as the machine is powered. Linux kernels typically program the PIT to issue
interrupts about once every millisecond, for a frequency of 1000 Hz. The
interval between adjacent interrupts is called a tick. The PIT’s ticks are like
a metronome inside the computer; they are used by the kernel to control
all aspects of its timing. Multimedia playback and media streaming depend
upon these ticks for smooth playing. The kernel constant HZ is the frequency
at which these ticks are generated, and the term jiffy refers to the length of
the time interval between ticks of this timer.

A third type of timekeeping device is called a Time Stamp Counter. Linux
systems sometimes use this hardware counter for higher precision timing;
the oscillator in this device can have much higher frequencies than the PIT,
as high as 1 GHz, making it useful for finer resolution timing.

Lastly, many modern computers have high resolution timers, called High
Precision Event Timers (HPETs). These timers are supported in Linux kernels
from 2.6 onward. They contain internal counters that they update at least
once every ten microseconds, a frequency of at least 100 KHz. They have
internal circuitry so that they can be programmed to generate interrupts
at periodic intervals or only once, when a counter reaches a specific value.
They’re used by the kernel to support the high resolution timers that we’ll
learn about later in this chapter.

Timers and Sleep Functions 443

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

The System Clock
The system clock is a software clock, which means that time is recorded and
updated entirely by software. Whenever the computer is rebooted, the ker-
nel initializes the system clock, either by reading the time from the RTC or,
if it has a network connection, by getting it from a network time service such
as an NTP server (NTP for Network Time Protocol). Until it’s initialized, the
time on a system clock is just the time that elapsed since the machine was
rebooted. Once it’s initialized, the system clock stores the calendar time,
meaning the number of seconds since the Epoch.

The system clock is updated every time it receives an interrupt from the
PIT. In other words, the system clock is initialized from a hardware clock
when the computer boots, but after that, it keeps time by recording ticks
from a hardware timer. As mentioned in “Hardware Clocks and Hardware
Timers”, the amount of time between successive clock ticks is a jiffy. If the
PIT generates ticks at a rate of 100 Hz, each jiffy is 0.01 seconds. If the rate
is 250 Hz, then a jiffy is 0.004 seconds. There is no single value for a jiffy; it
is machine-dependent. On some systems it might be 0.01, on others, 0.004,
and so on.

This discussion about clocks and clock ticks is both relevant and impor-
tant because on older Linux kernels the resolution of software timers de-
pends on the value of a jiffy—a timer can’t be more accurate than the length
of a jiffy. The man page tells us as much. On newer kernels, some timer sys-
tem calls aren’t based on jiffies, but are based on the high resolution timers
(HRTs) such as the HPETs.

High Resolution Sleep Functions
We’ve used the sleep() system call extensively so far. One problem with
sleep() is that its resolution is one second, which is too coarse for many ap-
plications. We also used usleep(), which has a resolution of one microsec-
ond. The u in usleep() is the Roman character set’s approximation to the
Greek letter µ, the symbol for micro. Even though its unit is a microsecond,
a call such as usleep(usecs) doesn’t guarantee that the length of the interval
during which the process sleeps will be exactly usecs microseconds, only that
it’s at least this much. According to the man page, it can be longer either
because the underlying timers are not fine enough or because of “system
activity.”

Sleep functions such as sleep() and usleep() are implemented with hid-
den, software timers. One problem with both of them is that they share a
single software timer given to the process, which implies that multiple over-
lapping calls to usleep() or sleep() can interfere with each other, causing un-
expected results. They also share the same timer as the alarm() system call,
with similar consequences. Furthermore, they may interfere with signal gen-
eration and delivery, because their implementations rely on signals. The
man page for usleep() suggests that, to avoid this signal problem, programs
should use nanosleep() instead.

444 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

The nanosleep() System Call
POSIX requires implementations of Unix to provide a nanosleep() system
call, which is guaranteed not to interact with signals, and has, as its name
suggests, nanosecond resolution. The SYNOPSIS on its man page is:

#include <time.h>

int nanosleep(const struct timespec *req, struct timespec *rem);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nanosleep(): _POSIX_C_SOURCE >= 199309L

A calling program must define _POSIX_C_SOURCE with a value of at least 199,309
before including any header files. The call’s two parameters are pointers
to timespec structures. We first encountered the timespec structure in the
section “Calendar Time System Calls” in Chapter 3, in the man page for
clock_gettime(), which we opted not to use because time() was a simpler func-
tion. I redisplay its definition for convenience:

struct timespec {

time_t tv_sec; /* Seconds */

long tv_nsec; /* Nanoseconds */

};

The value in tv_nsec must be an integer in the range 0 to 999,999,999, so that
it doesn’t exceed one second, but it can represent any fraction of a second
accurate to the nanosecond. This implies that, unlike sleep() and usleep(),
the nanosleep() function lets us specify time intervals with nanosecond reso-
lution.

The nanosleep() function’s first argument is required; it’s the length of
the time interval during which the process should sleep. The second ar-
gument may be NULL. If it isn’t NULL, then it should point to a timespec struc-
ture that will be filled with the remaining time if the call to nanosleep() is in-
terrupted by a signal, in which case nanosleep() returns –1 and sets errno to
EINTR. The following code snippet shows how we can detect when nanosleep()

was interrupted, in order to continue the sleep, assuming that requested_delay
and remaining_time are timespec structures:

if (-1 == nanosleep(&requested_delay, &remaining_time))

if (errno == EINTR)

/* remaining_time contains the time left in the interval. */

Since timespec structures will play a part in several programs from this point
on, I’ve written a few utility functions to make it easier to use them. Their
declarations, which follow, are in the file include/time_utils.h of the source
code repository:

time_utils.h /** dbl_to_timespec(t, *ts) converts the number of seconds represented by the

double-precision float t into a timespec structure, storing it in *ts. */

int dbl_to_timespec(double t, struct timespec *ts);

Timers and Sleep Functions 445

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

/** timespec_to_dbl(ts, *t) converts the time represented by the timespec

ts to a double-precision float and stores it in *t. */

void timespec_to_dbl(struct timespec ts, double *t);

/** add_dbl_to_timespec(t, &ts, &newtime) adds the number of seconds

represented by double t to timespec ts, storing the sum into timespec

newtime. */

void add_dbl_to_timespec(double t, struct timespec *ts,

struct timespec *newtime);

/** timespec_diff(ts1, ts2, *diff) computes the difference ts1 - ts2,

storing it in *diff. */

void timespec_diff (struct timespec ts1, struct timespec ts2,

struct timespec *diff);

/** timespec_add(ts1, ts2, &sum) stores the sum of timespecs ts1 and ts2

into &sum. */

void timespec_add(struct timespec ts1, struct timespec ts2,

struct timespec *sum);

The implementations are in the file common/time_utils.c in the book’s source
code distribution. The only implementation displayed here is for timespec_diff(),
which requires a tiny bit of finesse:

timespec_diff() void timespec_diff(struct timespec ts1, struct timespec ts2,

struct timespec *diff)

{

long temp;

diff->tv_sec = ts1.tv_sec - ts2.tv_sec;

temp = ts1.tv_nsec - ts2.tv_nsec;

¶ if (temp < 0) {

/* Because temp < 0, we need to borrow 1 sec from tv_sec and

add it to tv_nsec as 1000000000 nanoseconds. */

diff->tv_sec--;

diff->tv_nsec = 1000000000 + temp;

}

else

diff->tv_nsec = temp;

}

It’s easy to overlook the need to adjust the structure when temp is negative ¶
in this function. A similar problem occurs in timespec_add().

Let’s look at a small program that demonstrates how to use nanosleep().
The program appears in Listing 9-1.

nanosleep
_demo1.c

#include "common_hdrs.h"

#include "time_utils.h"

446 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

void sigint_handler(int signum)

{

return; /* Just catch the signal and return to main(). */

}

int main(int argc, char *argv[])

{

struct timespec initial_sleep, remainder;

char errmssge[100];

int retval;

double delay = 5; /* Default delay if no command argument */

struct sigaction act;

if (argc >= 2) { /* User supplied a delay on command line. */

retval = get_dbl(argv[1], NON_NEG_ONLY | PURE, &delay, errmssge);

if (retval < 0) /* Not a valid number */

fatal_error(retval, errmssge);

else if (delay <= 0) /* Valid number but negative */

fatal_error(retval, "get_dbl requires a positive number"

" without trailing characters.\n");

}

/* Convert delay in seconds to a timespec. */

dbl_to_timespec(delay, &initial_sleep);

/* Set up and install SIGINT handler. */

act.sa_flags = 0;

sigemptyset(&act.sa_mask);

act.sa_handler = sigint_handler;

if (-1 == sigaction(SIGINT, &act, NULL))

fatal_error(errno, "sigaction");

printf("About to sleep for %10.10f seconds...\n", delay);

if ((-1 == nanosleep(&initial_sleep, &remainder)) && (errno == EINTR)) {

/* Sleep was interrupted by a handled signal (SIGINT). */

timespec_to_dbl(remainder, &delay); /* Convert remaining time. */

printf("nanosleep() had %10.10f seconds left when it was "

"interrupted.\n", delay);

}

return 0;

}

Listing 9-1: A program showing how to use nanosleep()

Most of the pieces of the program are self-explanatory. The program installs
a signal handler to catch a CTRL-C, but it doesn’t do anything except return.
Why? We want the call to nanosleep() to be interrupted by a signal, so that we
can test the code that extracts how much time is left. Therefore, we need to
catch the signal so that the program is not terminated and we want execu-

Timers and Sleep Functions 447

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

tion to resume in main() after the handler is called. That’s why the handler
does nothing except calling return().

When we build and run this program, we want to give it a delay long
enough that we can enter CTRL-C and witness its output, as well as show that
it accepts real-valued delays, as shown next:

$./nanosleep_demo1 5.67891234

About to sleep for 5.6789123400 seconds...

^Cnanosleep() had 3.9501537770 seconds left when it was interrupted.

From the output you can see that I entered CTRL-C about 1.73 seconds into
the sleep. This program is designed only to catch SIGINT; it will be killed by
any other signal. It’s left as an exercise to write a similar program that re-
ports the remaining time regardless of which signal was delivered, other
than SIGKILL and SIGSTOP.

Let’s consider the more interesting problem of ensuring that the pro-
gram sleeps for the entire duration that the user requested no matter how
many signals are delivered to it. For simplicity let’s limit the set of handled
signals to SIGINT. To get nanosleep() to run again for the remaining time af-
ter an interruption, we’d need to execute instructions such as the following
pseudocode:

// if (nanosleep(&initial_sleep, &remainder) was interrupted) {

// Set initial_sleep to value of remainder

nanosleep(&initial_sleep, &remainder);

}

This works if it gets one more signal. However, what if a third, or a fourth
signal is delivered and interrupts the call? In this case, we would need to call
nanosleep() over and over, until it completes the sleep without being inter-
rupted, implying that the remainder is at last zero. We need to replace the if

statement with a loop, something like this:

while (nanosleep(&initial_sleep, &remainder) is interrupted) {

initial_sleep = remainder; /* Sleep for remainder. */

}

If nanosleep() is not interrupted by a signal, the loop will terminate. If it
does, it will run again with the remaining time as its initial_sleep. Since
the remaining time is strictly smaller than the initial time, eventually the call
completes because the sleep time requested is strictly smaller in each itera-
tion. The following C do-while loop is the proper way to do this:

do {

retval = nanosleep(&initial_sleep, &remainder);

if (retval == -1) { /* An error or an interruption occured. */

if (errno == EINTR) /* Received SIGINT */

initial_sleep = remainder;

else /* Some other non-recoverable error occurred. */

fatal_error(errno, "nanosleep");

448 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

}

} while (retval < 0);

The loop exits when retval >= 0, which can only be true if nanosleep() wasn’t
interrupted and had no other errors.

The next question is whether the total amount of time that the process
sleeps equals the original requested time. The man page tells us that the du-
ration of the sleep is at least the time specified in the request, not equal to
it. It also warns in its NOTES that the interval is rounded up in case it isn’t an
exact multiple of the granularity of the underlying clock. Yet another source
of possible increase is the scheduling activity of the kernel—the process will
always experience some small delay before it runs again after a sleep. Inside
a loop, these tiny increases in the sleep time build up into what people call
timer drift, a slowly increasing change in the accuracy of the timer. We’ll have
more to say about this shortly.

To test whether the preceding loop ensures that a program sleeps for
at least the full duration requested, we can get the time just before the loop
and immediately after it and compute the difference. There’s a hitch though;
the only function that we’ve used so far for getting the current time is time(),
and this has one-second resolution. The deprecated gettimeofday() that we
discovered in Chapter 3 has microsecond resolution, still not fine enough,
but we did read about clock_gettime() there, and its man page synopsis is:

#include <time.h>

int clock_gettime(clockid_t clockid, struct timespec *tp);

--snip--

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_gettime()

_POSIX_C_SOURCE >= 199309L

We chose not to use it to implement spl_date because of performance con-
siderations, but we need it now, since it’s the only function with the same
resolution as nanosleep(). Its man page suggests that for the first parameter
we use either the real time clock ID, CLOCK_REALTIME, or the monotonic clock
ID, CLOCK_MONOTONIC. The former is actual wall clock time but can sometimes
have small discontinuous jumps, sometimes decreasing, whereas the latter
is smooth but measures time differently. I’ll use the monotonic clock since
all we need is the time difference, not the actual wall clock time. The main
program, with only the relevant code displayed, is in Listing 9-2.

nanosleep
_demo2.c

#include "common_hdrs.h"

#include "time_utils.h"

void handler(int signum)

{

const char mssge[] = "Signal received.\n";

write(STDOUT_FILENO, mssge, strlen(mssge)); /* SAFE */

}

Timers and Sleep Functions 449

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

int main(int argc, char *argv[])

{

struct timespec initial_sleep, remainder, starttime, endtime, difftime;

--snip--

if (-1 == clock_gettime(CLOCK_MONOTONIC, &starttime)) /* Get starttime. */

fatal_error(errno, "clock_gettime");

do {

retval = nanosleep(&initial_sleep, &remainder);

if (retval == -1) {

if (errno == EINTR) /* Received SIGINT */

initial_sleep = remainder;

else /* Some other non-recoverable error */

fatal_error(errno, "nanosleep");

}

} while (retval < 0); /* Repeat until retval is zero. */

if (-1 == clock_gettime(CLOCK_MONOTONIC, &endtime)) /* Get endtime. */

fatal_error(errno, "clock_gettime");

/* Compute the time difference (endtime - starttime) as timespecs. */

timespec_diff(endtime, starttime, &difftime);

timespec_to_dbl(difftime, &total); /* Convert to double and then print. */

printf("Sleep lasted %10.10f seconds, "

"%10.10f seconds longer than requested.\n", total, total - delay);

return 0;

}

Listing 9-2: Excerpts of a program that sleeps for the entire duration of the original re-
quested sleep time, calling nanosleep() repeatedly, and measuring the total elapsed time
of the sleep

The complete program, named nanosleep_demo2.c, is in the book’s source
code distribution. The signal handler (handler()) prints a message when it’s
run so that we can see how many signals were delivered. The program uses
a few of the utility functions for working with timespec structures that were
described earlier. Their declarations are in time_utils.h. I built the program,
naming it nanosleep_demo2, and ran it, entering several CTRL-Cs:

$./nanosleep_demo2 6.789123456

Delaying for 6.7891234560 seconds...

^CSignal received.

^CSignal received.

^CSignal received.

^CSignal received.

Sleep lasted 6.7895459130 seconds, 0.0004224570 seconds longer than requested.

This output shows that the total elapsed time (6.7895459130 seconds) is less
than a half millisecond greater than the requested sleep time (6.789123456

450 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

seconds). Repeated runs with the same number of delivered signals have
similar timer drifts, but as the number of signals increases, the drift increases.
For example, when I send 14 signals without changing the requested delay
interval, the drift is 0.0011846140 seconds, still relatively small. When I send
32 signals, the drift is 0.0035780350 seconds.

The nanosleep() man page NOTES contains a brief discussion about timer
drifts caused by repeated restarts of nanosleep(). It recommends calling a
different function, clock_nanosleep(), specifying an absolute time value to
avoid this.

The clock_nanosleep() System Call
Why do we need a sleep function that avoids timer drifts when it’s inter-
rupted frequently? Consider designing a video game or some other pro-
gram with animated output that requires very high frequency updates to its
output display. In these types of programs, signals are generated frequently
because of user input and, with a sleep function like nanosleep(), timer drifts
will increase and the animation can start to appear non-uniform.

The synopsis from the clock_nanosleep() man page shows that this system
call has two parameters not needed for nanosleep():

#include <time.h>

int clock_nanosleep(clockid_t clockid, int flags,

const struct timespec *request,

struct timespec *remain);

Link with -lrt (only for glibc versions before 2.17).

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():

_POSIX_C_SOURCE >= 200112L

The first (clockid) is a clock ID, like the ones used by the clock_gettime()

function, and the second (flags) is a flag set. This function accepts fewer
choices of clock ID than clock_gettime(). For our purposes, CLOCK_REALTIME
and CLOCK_MONOTONIC are the ones we’ll consider. The man page has informa-
tion about the other clock IDs that can be passed to it. The second parame-
ter (flags) can either be 0 or the symbolic constant TIMER_ABSTIME.

When flags is 0, the requested time (*request) is interpreted as a time
interval, as it would be with nanosleep(). In this case we say clock_nanosleep()

is called to do a relative sleep, and the function behaves like nanosleep()—if it’s
interrupted by a signal, the remaining time is stored in *remain so that it can
be called again to complete the relative sleep. We’d call it, passing it either
the real time or monotonic clock ID, as follows:

clock_nanosleep(CLOCK_REALTIME, 0, &requestedtime, &remainingtime);

Unlike nanosleep() it lets us choose the clock source.
Its more interesting use is to make a program do an absolute sleep by

passing it the TIMER_ABSTIME flag. When we pass this flag to the function, the

Timers and Sleep Functions 451

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

requested time (*request) is interpreted as an absolute time as measured by
the clock with ID (clockid). It’s like setting an alarm clock—we give it a fu-
ture clock time, the process is immediately suspended, and when the clock
reaches that time, the process wakes up. If *request isn’t later than the cur-
rent time on the clock, then clock_nanosleep() returns immediately without
suspending the process; that would be like setting an alarm clock to a past
time! With absolute sleeps, the last parameter is ignored and can be set to
NULL because the requested time is absolute - if the process is not interrupted,
it’s guaranteed to sleep until the clock reaches the time specified in *request,
and if it is interrupted, it can be called again with the same time in *request,
to continue the sleep until that time. Figure 9-1 illustrates the difference be-
tween absolute and relative sleep requests.

 . . . time10 11 1312 14 15 1716 18 19 2120 22 23 2524

Absolute time expiration

Relative time expirationnow = 11 and
requested_time = 15

26

Figure 9-1: The difference between an absolute time specification and a relative one,
when the current time is 11 and the request is 15

To be clear, suppose that the time at which it’s called is t1 seconds since
the Epoch, and the requested time is t2 seconds since the Epoch, where t1 <
t2. If no signal is delivered to the process, the sleep caused by calling

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, t2, NULL);

will end at time t2, not t1 + t2. The time isn’t treated as an interval; it’s taken
as a point of time in the future. Therefore, in order to use clock_nanosleep()

to delay for an interval of time (a relative sleep), say sleep_interval, a pro-
gram must call clock_gettime() with the same clock ID, such as CLOCK_REALTIME,
add sleep_interval to the returned time, and call clock_nanosleep() with that
later time as its third parameter, as in the following semi-pseudocode:

clock_gettime(CLOCK_REALTIME, ¤t_time);

stop_time = current_time + sleep_interval;

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &stop_time, NULL);

The last issue regarding clock_nanosleep() is its relationship to signals
and signal handlers. Like nanosleep(), clock_nanosleep() doesn’t interfere with
signal disposition. Also like nanosleep(), if clock_nanosleep() is interrupted
by a signal that the process catches, it isn’t restarted, even if the SA_RESTART

flag is set in the sigaction structure when the handler is installed. Lastly, as
noted before, if it’s interrupted by a signal, the time interval is relative, and
remaining is not NULL, then the unfinished time is store in *remaining. The sim-
ilarities end there, because these two functions are different in a subtle way

452 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

that has dire consequences if it’s overlooked, namely in their return values.
The library wrappers for most system calls return –1 when they fail, but this
one does not.

A SUBTLE AND SIGNIFICANT DISTINCTION

When boxlst() is interrupted by a signal handler’s execution, it returns –1 and
sets errno to the value EINTR. When clock_nanosleep() is interrupted by a
signal handler, it returns the error code EINTR, not –1. Error codes are positive
numbers. Therefore checking whether it was interrupted requires a different test,
such as

retval = clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &timetoresume, NULL);
if (retval == EINTR)

/* Call was interrupted by a signal. */
else if (retval > 0)

/* Some other error occured. */
else

/* Call was successful and returned at time timetoresume. */

As a way to compare the behavior of clock_nanosleep() and nanosleep(), I
modified nanosleep_demo2.c slightly, so that it calls clock_nanosleep() instead.
To make it sleep for the specified interval (a relative sleep), I used the strat-
egy described in the preceding pseudocode. The relevant portions of this
revised program, named clock_nanosleep_demo.c, is in Listing 9-3. The com-
plete program is in the book’s source code distribution.

clock_nanosleep
_demo.c

#include "common_hdrs.h"

#include "time_utils.h"

--snip--

int main(int argc, char *argv[])

{

--snip--

printf("Delaying for %10.10f seconds...\n", delay);

if (-1 == clock_gettime(CLOCK_MONOTONIC, &starttime))

fatal_error(errno, "clock_gettime");

/* Add delay time to clock time. */

add_dbl_to_timespec(delay, &starttime, &endsleep);

/* Repeatedly call clock_nanosleep() until it returns 0. */

do {

retval = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&endsleep, NULL);

if (retval != EINTR && retval > 0) /* An error, not an interrupt */

fatal_error(errno, "nanosleep");

} while (retval != 0); /* Repeat until retval is zero. */

Timers and Sleep Functions 453

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

if (-1 == clock_gettime(CLOCK_MONOTONIC, &endtime)) /* Get time now. */

fatal_error(errno, "clock_gettime");

timespec_diff(endtime, starttime, &difftime);

--snip--

}

Listing 9-3: Parts of a program using clock_nanosleep() for sleeping for a relative time
interval

I built the executable and ran it with the same delay as I used for nanosleep_demo2.c,
entering four CTRL-Cs as well:

$./clock_nanosleep_demo 6.78912345

Delaying for 6.7891234500 seconds...

^CSignal received.

^CSignal received.

^CSignal received.

^CSignal received.

Sleep lasted 6.7892145100 seconds, 0.0000910600 seconds longer than requested.

The nanosleep_demo2.c run had a timer drift of 0.0004225 seconds, whereas
this is only 0.0000911 seconds. I ran it several more times, forcing 14 inter-
rupts, and each time the timer drift was about 0.00012 seconds. A final set
of runs with 30 interrupts each time resulted in an average drift of about
0.00012 seconds. This shows that even with repeated interrupts, the drift
stays at the same magnitude. It is mostly the result of system activity such as
scheduling delays.

Software Timers
We’ll begin our study of software timers with the lower resolution ones based
on traditional software clocks, because they’re easier to use and understand.
We’ll start with the alarm() system call, after which we’ll take a look at the
higher resolution timers commonly known as POSIX timers.

The alarm() System Call
The very first timer to appear in Unix was the alarm() system call, making its
appearance in Seventh Edition Unix in 1979. It’s the easiest timer to use and
understand. The alarm() system call has limited functionality; let’s see what
its man page tells us:

ALARM(2) Linux Programmer's Manual ALARM(2)

NAME

alarm - set an alarm clock for delivery of a signal

SYNOPSIS

#include <unistd.h>

454 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

unsigned int alarm(unsigned int seconds);

DESCRIPTION

alarm() arranges for a SIGALRM signal to be delivered to the calling

process in seconds seconds. If seconds is zero, any pending alarm is

canceled. In any event any previously set alarm() is canceled.

RETURN VALUE

alarm() returns the number of seconds remaining until any previously

scheduled alarm was due to be delivered, or zero if there was no

previously scheduled alarm.

--snip--

This is very straightforward. Summarizing alarm()’s features:

• Its resolution is one second.

• It notifies the calling process of its timeout by sending it a SIGALRM

signal.

• A program cancels a previously set alarm by calling it again with an
argument of 0, as in alarm(0).

• If it’s called while a previously set alarm is active, the previous one is
cancelled, and alarm() returns the number of seconds remaining on
the previous alarm.

Let’s clarify this last point. Suppose that at some point in time, a process
calls alarm() to have a SIGALRM sent to itself in 10 seconds:

alarm(10);

and that exactly 4 seconds later, the same process calls alarm() again, this
time setting it for 20 seconds:

seconds_left = alarm(20);

The return value of alarm() is 10 - 4 = 6 seconds, and it’s stored into seconds_left.
The alarm is reset to 20 seconds, and the next SIGALRM will be delivered to the
process 20 seconds after this second call.

The alarm() system call has a few different applications. For one, a pro-
cess can set an alarm prior to starting a long task that it might not complete
if the input data set is unexpectedly large. When it receives the SIGALRM, it
can stop the task. This way, the alarm prevents the process from spending
too much time on a potentially endless task. A process can also set an alarm
to perform a task at some future time, perhaps dependent upon the state of
its data.

The first program we’ll write is a trivial one that just calls alarm() and
then calls pause() to put itself to sleep until it receives a signal. In effect this
program will act like the sleep command. It expects the user to enter the
number of seconds to sleep. We’ll name it alarm_demo1.c.

Timers and Sleep Functions 455

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

alarm_demo1.c int main(int argc, char *argv[])

{

int k, resultcode;

if (2 > argc)

usage_error("alarm_demo1 <alarm-interval>");

resultcode = get_int(argv[1], NON_NEG_ONLY | PURE, &k, NULL);

if (resultcode < 0 || k < 1)

fatal_error(resultcode, "get_int expects a positive integer");

printf("Sleeping for %d seconds...\n", k);

alarm(k); /* Set the alarm for k seconds. */

pause(); /* Suspend itself indefinitely (until a signal arrives) */

return 0;

}

Listing 9-4: A program like the sleep command, that suspends itself for a given amount of
time, using alarm() and pause()

Because this program doesn’t have a signal handler, when it receives the
SIGALRM signal, the default action is taken, meaning the program terminates.
I built the executable, naming it alarm_demo1, and ran it to demonstrate its
behavior:

$./alarm_demo1 10

Sleeping for 10 seconds...

Alarm clock # 10 seconds later

The string “Alarm Clock” is written to the terminal when a process receives
a SIGALRM and doesn’t handle it. The next example is a modification of the
preceding program. It differs in two ways:

• Instead of calling pause(), it enters a loop in which it prints the elapsed
time every second, by calling nanosleep() for a one-second sleep and
printing when it times out.

• This program catches the SIGALRM with a signal handler that prints a
message to the terminal.

The program, alarm_demo2.c, is displayed in Listing 9-5.

alarm_demo2.c #include "common_hdrs.h"

#include <signal.h>

#define DEFAULT_DELAY 5

char MESSAGE[] = "Received a wake-up signal!\n";

void catchalarm(int signum) /* The signal handler for SIGALRM */

{

write(STDOUT_FILENO, MESSAGE, sizeof(MESSAGE));

exit(EXIT_SUCCESS); /* Exit the program. */

}

456 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

int main(int argc, char *argv[])

{

int retval = 0, k = 0, delay = DEFAULT_DELAY;

struct timespec sleeptime = {1, 0}; /* 1 second, 0 nanoseconds */

struct sigaction act;

if (argc >= 2) {

retval = get_int(argv[1], NON_NEG_ONLY | PURE, &delay, NULL);

if (retval < 0 || delay < 1)

fatal_error(retval, "get_int expects a positive integer");

}

act.sa_handler = catchalarm;

sigemptyset(&(act.sa_mask));

sigaction(SIGALRM, &act, NULL);

printf("About to sleep for %d seconds\n", delay);

alarm(delay); /* Turn on alarm. */

while (TRUE) { /* Print seconds elapsed until SIGALRM is received. */

nanosleep(&sleeptime, NULL);

printf(" %d second(s) elapsed\n", ++k);

}

return 0;

}

Listing 9-5: A program like the sleep command, that suspends itself for a given amount of
time, using alarm() and a loop based on nanosleep()

Notice that the signal handler for SIGALRM is safe since it doesn’t call any func-
tions that aren’t async-signal-safe. It’s an old style handler with a single argu-
ment, installed with sigaction(). If the user doesn’t supply an argument to
this program, it defaults to a 5-second timeout, otherwise it uses the timeout
specified by the user on the command line. A run of it looks like this:

$./alarm_demo2 4

About to sleep for 4 seconds

1 second(s) elapsed

2 second(s) elapsed

3 second(s) elapsed

Received a wake-up signal!

The alarm() system call is a one-shot timer—it isn’t intended to be used to
create a sequence of timeouts. Nonetheless, by calling it again from within
the SIGALRM handler we can approximate the same effect as a timer that re-
peatedly expires. Our next program will demonstrate how to do this.

Repeated Alarms: A Progress Bar
The alarm() system call might be simple, but we can still use it to implement
a terminal-based progress bar, partly because progress bars don’t need to

Timers and Sleep Functions 457

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

update more frequently than once per second, and because it doesn’t matter
if the intervals between updates aren’t perfectly even.

Suppose that a program starts some very lengthy operation that might
take a long time to complete. User-friendly programs often display some in-
dication of their progress. Sometimes it’s not possible because there’s no
way to measure the progress, but sometimes there is. If it’s possible to mea-
sure progress, then a program can display a progress bar. The idea is that,
at fixed intervals of time, the program can compute the fraction of the work
completed and update a progress bar in the terminal to show the user how
far along the operation has progressed.

To do this though, we need to reset the alarm each time it expires. There-
fore, the signal handler itself will call alarm() after it updates the progress
bar, and will have the form:

void refresh_progressbar(int signum)

{

Refresh the progress bar.

alarm(refresh_interval);

}

where refresh_interval is the number of seconds in the next interval of the
timer. The main program logic should be something like the following:

1. Initialize a file-scoped (global) variable named fraction_completed to
zero. It has to be global because both the main program and the sig-
nal handler need access to it, and it can’t be passed as a parameter
to a handler.

2. Draw the frame for a progress bar that indicates zero progress.

3. Install a signal handler for SIGALRM. We’ll name it refresh_progressbar()
to make its purpose explicit.

4. Set the first alarm to expire in one second. That should be a reason-
able update interval. Because both the main program and the sig-
nal handler call alarm() with this value, we make it a macro constant
named REFRESH_INTERVAL. It is important that this step comes after the
preceding one—we don’t want to start sending signals until a signal
handler has been installed.

5. Start the lengthy task. To simulate a lengthy task, the program will
enter a while-loop of the form

while (the fraction of the task completed < 1.0)

Simulate the task's completing more work.

Rather than simulating a long task, we could make the program perform
some very long computation, such as calculating tens of thousands of digits
of π, but there’s no need to do that to demonstrate the principles underly-
ing the use of the timer. Instead, the program will simulate the progress of
a lengthy task by repeatedly sleeping a tiny amount of time and increasing a

458 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

variable representing the fraction of work it completed. To make the simu-
lation a bit more natural, we make the increases in the fraction of work com-
pleted random by basing them on the values returned by a random number
generator. We can also control approximately how long the simulation runs
with a macro constant MIN_SIMULATION_SECS, set to 16. To control how quickly
the simulated task runs, we’ll introduce another variable, progress_rate, that
stores the maximum increase in the fraction of work completed in each iter-
ation of the simulating loop.

We’ll consolidate this behavior in a function, named lengthy_task(). Its
logic, partly in pseudocode, is essentially

let dt be a tiny amount of time in seconds

¶ let progress_rate = dt / MIN_SIMULATION_SECS

while (fraction_completed < 1.0) {

sleep for dt seconds.

let randfraction be a random number generated in the interval [0,1.0]

fraction_completed = fraction_completed + (progress_rate * randfraction);

if (fraction_completed > 1.0)

fraction_completed = 1.0;

}

Since the generated random number, randfraction, is in the range [0,1],
the expression progress_rate * randfraction is in the range [0, progress_rate].
This limits the maximum increase of fraction_completed in any single loop
iteration to progress_rate. Since 1/progress_rate is the least number of itera-
tions of the loop, and each takes dt many seconds, the least amount of time
that the task runs is

MIN_SIMULATION_SECS = dt × (1/progress_rate)

and on average it should take about double this much time, because the av-
erage of large number of uniformly generated random numbers in the in-
terval [0,1] is 0.5. This explains why, in the code ¶, progress_rate is assigned
dt/ (1/MIN_SIMULATION_SECS), so that the simulation runs at least that much
time.

We’ll use nanosleep() to do the sleeping in this code because it doesn’t
interact with any signals, including SIGALRM. We’ll also make the number of
nanoseconds in the timespec passed to nanosleep() a macro, SLEEPNSECS, de-
fined here as 480,000,000, so that the sleep is about a half-second.

As it stands, there’s a race condition on the update to fraction_completed,
because if a SIGALRM is delivered to the program in the middle of an update,
the refresh_progressbar() handler will run.

NO T E A race condition occurs when two or more processes or threads access some shared
resource and the outcome of their sharing it is that the correctness of the computation
depends on the order in which they do so. If all processes just read the resource with-
out modifying it, there is no possibility of a race condition. But if one or more can
modify it, then a race condition might exist.

Timers and Sleep Functions 459

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Although the handler doesn’t modify fraction_completed, the value it sees
when it runs may be stale. To prevent the race condition, we’ll use sigprocmask()

(see Chapter 8) to block the signal during the update in lengthy_task(), call-
ing it before and after the update to block and unblock it respectively. There-
fore, we’ll declare

sigset_t blocked_signals;

make it empty and add SIGALRM to it:

sigemptyset(&blocked_signals);

sigaddset(&blocked_signals, SIGALRM);

The update would then be nested in between calls to sigprocmask():

sigprocmask(SIG_BLOCK, &blocked_signals, NULL);

fraction_completed += progress_rate * drand48();

if (fraction_completed > 1.0)

fraction_completed = 1.0;

sigprocmask(SIG_UNBLOCK, &blocked_signals, NULL);

The last issue is how to generate a random number between 0 and 1.0.
We search the man pages for a random number generator by entering
apropos -s2,3 random. The search returns many possibilities, but most share
a single man page. All but one of these return integers. It would be easier if
it returned a fraction. The one that does is drand48(), which returns double
precision floats in the range from 0 to 1.0. Its synopsis is:

#include <stdlib.h>

double drand48(void);

It requires no argument and doesn’t need to be seeded. For example, x = drand48()

assigns some random number between 0 and 1.0 to x.
Putting all of these ideas together, the lengthy_task() is as follows.

lengthy_task() void lengthy_task()

{

double sleep_secs = (double) (1.0*SLEEPNSECS) / 1000000000 ;

double progress_rate = sleep_secs / MIN_SIMULATION_SECS;

struct timespec dt = {0, SLEEPNSECS}, rem;

sigset_t blocked_signals;

sigemptyset(&blocked_signals);

sigaddset(&blocked_signals, SIGALRM);

while (fraction_completed < 1.0) {

if (-1 == nanosleep(&dt, &rem))

nanosleep(&rem, NULL);

sigprocmask(SIG_BLOCK, &blocked_signals, NULL);

fraction_completed += progress_rate * drand48();

if (fraction_completed > 1.0)

460 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

fraction_completed = 1.0;

sigprocmask(SIG_UNBLOCK, &blocked_signals, NULL);

}

}

The next step is to develop the signal handler code that updates and
displays the progress bar. For the sake of simplicity, the progress bar will
be a fixed length, and will contain two types of characters. An initial prefix
of number sign (#) characters (also called pound signs, hashes, and hashtags)
will represent the completed segment. The remainder of the bar, meaning
the portion representing the unfinished work, will be represented by dashes
(-). The entire bar will be enclosed in square brackets and the percent com-
pleted as an actual percentage will be written to the right of the bar. For ex-
ample, a few snapshots of the bar would look like the following:

[#####---] %8

time passes

[############--] %21

more time passes

[###################---] %32

Let’s develop the code to animate this bar. The program will be easier to
modify if we declare a few macro constants:

#define MIN_SIMULATION_SECS 16 /* Minimum simulation time (seconds) */

#define REFRESH_INTERVAL 1 /* Number of seconds between refreshes */

#define BAR_LENGTH 64 /* Length of progress bar between [] */

#define DONE_CHAR '#' /* Character for completed part */

#define NOT_DONE_CHAR '-' /* Character for incomplete part */

#define SLEEPNSECS 480000000 /* Nanoseconds in simulated dt */

The signal handler will need two variables:

char bar[BAR_LENGTH+1]; /* The string representing the progress bar */

int finished_work; /* The number of chars in the completed segment */

The extra character in the bar is for a NULL byte.
The instruction to calculate the length of the completed segment is

therefore

finished_work = (int) (fraction_completed * BAR_LENGTH);

The cast to int does not round; it removes the fractional part of the number.
The next question is whether there’s a way to fill a string with multiple

copies of the same character without looping. A man page search for a suit-
able library function or system call with apropos -s2,3 fill outputs:

$ apropos -s2,3 fill

getentropy (3) - fill a buffer with random bytes

memset (3) - fill memory with a constant byte

Timers and Sleep Functions 461

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

--snip--

wmemset (3) - fill an array of wide-characters with a constant wid...

The memset() library function is exactly what we need; we used it in Chapter 7
in the implementation of spl_pwd to pad the pathname with leading periods.
We give it the starting address of the string to fill, the character to fill it with,
and the number of characters to write. It doesn’t add a terminating NULL byte
and cannot detect if we write too many characters at that address. The func-
tion returns a pointer to the memory area, which we don’t need to use. We
can create a bar representing fraction_completed work with the following in-
structions:

finished_work = (int) (fraction_completed * BAR_LENGTH);

bar[BAR_LENGTH] = '\0';

memset(bar, NOT_DONE_CHAR, BAR_LENGTH);

memset(bar, DONE_CHAR, finished_work);

This first memset() call writes all of the dashes and the second replaces the
leftmost finished_work many dashes by number signs.

In order to make the bar appear as if dashes are being replaced by pound
signs in each update, we need to redraw the entire line. If we try using this
instruction

printf("[%s]", bar);

the bar will not overwrite itself; we’ll get multiple bars one after the other, as
in

[------------...----------][##---------...-------][###----------...

The solution requires some knowledge about the characters that control
how lines are displayed in a terminal, inherited from those ancient machines
called typewriters. The line feed character (\n), also called new line, is the
character that causes the cursor to go to one line below its current position
in the same column, like rotating the knob on an old typewriter. By writing
a return character before writing the bar, like so:

printf("\r[%s]", bar);

in effect we make each new print instruction overwrite the previous one. We
need to include the percentage after the bar as well. To write a percent sign,
we need to use double percent signs:

printf("\r[%s] %%%d", bar, (int)(100 * fraction_completed));

The signal handler is almost complete. As it stands, it won’t work the way
we expect. That’s because of the way the C library buffers its output. Unless
you put a newline in a printf(), the output won’t appear immediately. This
is because the C library uses line buffering for all I/O to or from terminal
devices.

462 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

LINE BUFFERING IN THE C I/O LIBRARY

The C I/O library uses a method of buffering called line buffering for terminal
devices. When a process uses C library functions for output, that output is put
into buffers. The contents of these buffers are not sent immediately to the
terminal. It’s only sent when one of the following actions take place.

• The process tries to do output and the output buffer is full.
• The stream is closed or the process terminates.
• A newline is written to the stream.
• An input operation on the terminal stream (the standard input stream)

takes place.
• fflush(stdout) is called to force the output to the terminal.

When output is not terminated with a newline and it needs to appear
immediately, calling fflush(stdout) flushes it to the terminal.

To make the progress bar appear to be refreshed incrementally, the signal
handler needs to call fflush(stdout) after calling printf(). The entire signal
handler follows:

refresh
_progressbar()

void refresh_progressbar(int signum)

{

char bar[BAR_LENGTH + 1];

int finished_work = (int) (fraction_completed * BAR_LENGTH);

bar[BAR_LENGTH] = '\0';

memset(bar, NOT_DONE_CHAR, BAR_LENGTH);

memset(bar, DONE_CHAR, finished_work);

printf("\r[%s] %%%d", bar, (int)(100 * fraction_completed));

fflush(stdout);

alarm(REFRESH_INTERVAL);

}

Before coding the main() function, there are a few other issues to ad-
dress. The first is that a progress bar ought to appear on the screen imme-
diately, without a user’s feeling a pause or delay in the program’s reaction
time. A function to draw this initial progress bar follows.

draw_initial_bar() void draw_initial_bar()

{

char initial_bar[BAR_LENGTH + 1];

memset(initial_bar, NOT_DONE_CHAR, BAR_LENGTH);

initial_bar[BAR_LENGTH] = '\0';

printf("\r[%s]", initial_bar);

fflush(stdout);

}

Timers and Sleep Functions 463

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

It draws the square brackets with BAR_LENGTH-many NOT_DONE_CHARs.
Another issue is whether the bar should remain in the terminal window

when the program finishes, and the other is what the program should do if
a terminating keyboard signal such as SIGINT or SIGQUIT is sent to it. Usually
progress bars disappear when the monitored task completes. Ours should
too. The program will replace the bar and the percentage indicator by a
blank line. The following function does this, and returns the cursor to the
leftmost position in the same line, so that it looks like it just disappeared:

erase
_progress_bar()

void erase_progress_bar()

{

char blanks[BAR_LENGTH + 10]; /* Allows for percentage after bar */

memset(blanks, ' ', BAR_LENGTH + 9); /* Fill blanks with space chars. */

blanks[BAR_LENGTH + 9] = '\0'; /* NULL-terminate it. */

printf("\r%s\r", blanks); /* Return to left, write spaces. */

fflush(stdout); /* Force output. */

}

To address the second issue, we’ll catch the two signals with a single handler,
which will erase the progress bar and then force the program to terminate
by raising SIGTERM:

sig_handler() void sig_handler(int signum)

{

erase_progress_bar(); /* Erase the bar. */

raise(SIGTERM); /* Force termination. */

}

The main program is displayed, without the macro definitions and func-
tions already presented, in Listing 9-6. The program is named progress_bar1.c;
when we get to interval timers, we’re going to write another version based
on them.

progress_bar1.c #include "common_hdrs.h"

#include <signal.h>

--snip-- // OMITTED: Macros and functions

double fraction_completed = 0; /* Fraction of operation completed */

int main(int argc, char *argv[])

{

struct sigaction act;

const struct timespec slight_pause = {2, 0}; /* 2-second interval */

struct timespec remaining_sleep;

draw_initial_bar();

sigemptyset(&(act.sa_mask));

act.sa_flags = 0;

act.sa_handler = sig_handler;

464 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

if (sigaction(SIGINT, &act, NULL) == -1)

fatal_error(errno, "sigaction");

if (sigaction(SIGQUIT, &act, NULL) == -1)

fatal_error(errno, "sigaction");

act.sa_handler = refresh_progressbar;

if (sigaction(SIGALRM, &act, NULL) == -1)

fatal_error(errno, "sigaction");

alarm(REFRESH_INTERVAL); /* Set first alarm. */

lengthy_task(); /* Run the simulated task. */

if (-1 == nanosleep(&slight_pause, &remaining_sleep))

nanosleep(&remaining_sleep, NULL);

¶ alarm(0); /* Turn off the alarm. */

erase_progress_bar(); /* Erase the progress bar. */

printf("Done\n"); /* Print 'Done' at end. */

return 0;

}

Listing 9-6: A program that displays a simulated progress bar, using alarm() as its timer

The program turns off the last alarm in case it’s outstanding, by calling alarm(0)

¶, so that the bar is not redrawn after it’s erased.
There’s no way to show how this program runs on paper of course. You

can build it and run it to see how the bar progresses. By changing the vari-
ous macro parameters, you can adjust the rate of progress.

Interval Timers
The one-second time granularity, or resolution, of alarm() is too coarse to
be useful for many applications. Furthermore, although we used alarm() to
generate signals at regular intervals for our progress bar program, it isn’t de-
signed to do this, and we have to call it within the signal handler to achieve
this effect. The resulting SIGALRM signals are then subject to cumulative de-
lays contributed to partly by the time that elapses in the handler before it
calls alarm() to arm the timer again, and in part by scheduling and other sys-
tem activities that delay the start of the handler. This solution will not work
when the measurements require more accuracy and finer resolution.

Overview
Interval timers were developed to overcome this deficiency. Their first ap-
pearance was in 4.2BSD as well as in SVR4 (1988), and they were standard-
ized in POSIX.1-1994, also known as the Single UNIX Specification, Issue
4. The original interval timer interface defined two system calls, setitimer()
and getitimer(). The CONFORMING TO section in their shared man page states
that POSIX marked them as obsolete in 2008 and recommends the use of
the POSIX timer API, specifically timer_gettime() and timer_settime() instead.

Timers and Sleep Functions 465

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Regardless of whether we use the older interval timers or the newer
ones, the principles are the same, so before we take a look at the man pages,
let’s begin with an overview of how they work.

An interval timer has two components: an initial value and a repeat in-
terval, which is often just called the timer interval. The initial value is the
amount of time that elapses until the first timer expiration. The repeat in-
terval is the amount of time between successive timer expirations after the
first one. For example, if the initial value is 5 milliseconds (msecs) and the
timer interval is 2 msecs, then the sequence of timer expirations will occur
5, 7, 9, 11 msecs and so on from the time that the timer was set. More gen-
erally, if an interval timer is started at time t0, with initial value α and repeat
interval β, then it will expire at times t0 + α, t0 + α + β, t0 + α + 2β, t0 + α + 3β
and so on until the process terminates or turns off the timer.

When a timer expires, a timer notification is sent to the process (or
thread) that started the timer. With the older interval timer interface using
setitimer() to set a timer, the notification is always a signal, one of SIGALRM,
SIGVTALRM, or SIGPROF, depending on the type of interval timer it set up. The
newer POSIX timers, we’ll see are more general and give the process a choice
of how it should be notified. In addition, a process can have more than one
POSIX timer of the same type, unlike the older interval timers.

POSIX Timers
The setitimer() man page suggests using timer_settime() instead of setitimer()
in new code, referring us to the timer_create() system call in its SEE ALSO sec-
tion. We’ll begin our exploration of POSIX timers by learning how to cre-
ate and delete them, after which we’ll examine how to arm and disarm them
and retrieve their settings. We’ll put them to use in a few different programs,
the first of which will be a second version of the progress bar program we
implemented using the alarm() system call. Lastly, we’ll discuss the concept
of timer overruns.

Creating and Deleting Timers
The timer_create() system call creates an interval timer for the calling pro-
cess. Its SYNOPSIS is:

#include <signal.h>

#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *sevp,

timer_t *timerid);

Link with -lrt.

The note about linking tells us that programs calling timer_create() need to
link to the real time library, librt, with the linker option -lrt. The timer_create()

call creates a new interval timer for the calling process, initially unarmed,
and returns its ID in the buffer pointed to by its third argument (timerid).
The man page refers to this timer as a per-process timer because it’s only ac-
cessible to the calling process.

466 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

The first argument (clockid) is the ID of the clock that the timer will use
for measuring time. I introduced clock IDs when we worked with clock_nanosleep().
There are several other types of clocks that can be used with these interval
timers, but for now we’ll use only CLOCK_REALTIME and CLOCK_MONOTONIC clocks.

One of the major differences between the older timers and POSIX timers
is that POSIX timers provide more choices for how a process is notified
when they expire. The second argument to timer_create() (sevp*) serves this
purpose; it points to a sigevent structure, which has its own man page. This
structure specifies the details about event notifications. Its declaration is

struct sigevent {

int sigev_notify; /* Notification method */

int sigev_signo; /* Notification signal */

union sigval sigev_value; /* Data passed with notification */

void (*sigev_notify_function) (union sigval);

/* Function used for thread notification (SIGEV_THREAD) */

void *sigev_notify_attributes;

/* Attributes for notification thread (SIGEV_THREAD) */

pid_t sigev_notify_thread_id; /* ID of thread to signal; Linux-specific */

};

The sigev_notify member specifies the method of notification, which can be
one of the following symbolic values:

SIGEV_NONE The process is not notified.

SIGEV_SIGNAL The process is sent the signal specified by sigev_signo. If
the process used sigaction() to install a handler for this signal, then the
si_code field of the siginfo_t structure passed to the handler will have the
value SI_TIMER and the si_signo field will have the signal number.

SIGEV_THREAD The function specified by sigev_notify_function is run in a
new thread for the process. This function is given sigev_value as its only
argument.

SIGEV_THREAD_ID This is like SIGEV_SIGNAL except that the signal is sent to
the thread of the process whose thread ID is stored in sigev_notify_thread_id.

If we’re willing to accept the default notification method, we can just set
sevp* to NULL. This has the same effect as if it pointed to a sigevent structure
in which sigev_notify were set to SIGEV_SIGNAL and sigev_signo were set to
SIGALRM. In this case, the timer ID of the expiring timer is made available to a
handler with a siginfo_t argument in that structure’s si_value member.

The following code snippet demonstrates how to create a timer that uses
a CLOCK_MONOTONIC clock that delivers a SIGUSR1 signal when it expires, making
the timer ID available to the handler. The code declares a variable named
timerid, of type timer_t, and a struct sigevent variable named sig_event.

timer_t timerid; /* To store returned timerid */

struct sigevent sig_event; /* sigevent to pass to timer_create() */

--snip--

Timers and Sleep Functions 467

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

/* Set up sigevent structure. */

sig_event.sigev_notify = SIGEV_SIGNAL; /* Notify by signal. */

sig_event.sigev_signo = SIGUSR1; /* Send SIGUSR1. */

sig_event.sigev_value.sival_ptr = &timerid; /* Make timer ID available. */

if (timer_create(CLOCK_MONOTONIC, &sig_event, &timerid) == -1)

// OMITTED: Failed - handle the error.

This code fragment sets the timer to send a SIGUSR1 signal. Recall from Chap-
ter 8 that SIGUSR1 and SIGUSR2 are the two signals that programs can use for
whatever purpose they choose because they have no pre-defined meaning.
Shortly we’ll introduce the class of real-time signals, which we can use in-
stead.

Whenever a program dynamically creates a resource, it should delete
it; it’s a good housekeeping principle. Creating a timer obliges us to delete it
when we no longer need it. Timers use system resources; by deleting them
right away, we make our programs more efficient and allow other processes
to access them. The SEE ALSO section of timer_create()’s man page mentions
the system call for deleting timers, timer_delete(). It’s a relatively simple
function, whose synopsis is

#include <time.h>

int timer_delete(timer_t timerid);

Link with -lrt.

It deletes the timer whose ID is passed to it. If the timer is armed at the time
of the call, it is first disarmed. The man page notes that POSIX doesn’t spec-
ify what an implementation is supposed to do if there are any pending sig-
nals from this timer. Linux systems let pending signals stay pending. Other
Unix implementation may handle them differently.

Arming and Disarming Timers
The timer_settime() system call arms the timer whose timer ID is passed to it.
The SYNOPSIS on its man page is:

#include <time.h>

int timer_settime(timer_t timerid, int flags,

const struct itimerspec *new_value,

struct itimerspec *old_value);

--snip--

Link with -lrt.

The function simultaneously sets and arms the timer specified in its first ar-
gument (timerid). The clock that it uses for measuring time is the one that
was specified when that timer was created. The third and fourth arguments
(new_value and old_value) each point to an itimerspec structure. This structure
specifies an initial value and a timer interval based on the nanosecond reso-
lution timespec structure, the same structure passed to both nanosleep() and
clock_nanosleep(). The *new_value structure contains the value with which to

468 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

set the timer and *old_value will be used to save the previous setting and re-
maining time, which I’ll explain shortly. We can pass a NULL to it if we don’t
need the old setting. The function can fail for a few reasons, and if it does, it
returns –1 and sets errno to the reason code.

The itimerspec structure, as given on the man page, is

struct itimerspec {

struct timespec it_interval; /* Timer interval */

struct timespec it_value; /* Initial expiration */

};

The it_value member specifies the initial value and it_interval specifies the
timer interval, also called its period in the documentation.

If the initial value (it_value) is zero and the timer was already armed, it’s
disarmed; that’s how we can turn off a timer. If it isn’t zero, meaning that
either it_value.tv_sec or it_value.tv_nsec is not zero, then the timer is armed
and it will expire for the first time after the interval specified by it_value,
provided flags is zero. The timer starts at the time of the call. If the initial
value is non-zero and the timer was previously armed, the old settings are
overwritten and the new value is used.

The it_interval field specifies the repeat interval of the timer. If this
value is zero, it doesn’t repeat; it’s a one-shot timer. Otherwise, each time
that the timer expires, it’s reloaded from the value in this field and is armed
again. This implies that from the time of the first call to timer_settime(),
the timer will send endless notifications to the process at this regular in-
terval. It’s up to the process to stop them by calling timer_settime() with
new_value->it_value set to zero, or by calling timer_delete().

If old_value isn’t NULL, then the it_interval from the previous call is copied
into old_value->it_interval and the amount of time until the timer would
have expired next is copied into old_value->it_value.

The flags parameter can be used to change the interpretation of the ini-
tial value (new_value->it_value) from a relative time to an absolute time. The
discussion in “The clock_nanosleep() System Call” on page 451 explained
absolute time. If flags = TIMER_ABSTIME then the initial value is interpreted as
the absolute time at which to send the notification, based on the underlying
clock of the timer. If that time has passed already, the timer expires immedi-
ately.

Counting Timer Overruns
Sometimes a timer sends more signals to a process than it can handle. This
can happen for a couple of reasons. One is that, because of kernel schedul-
ing or other system activities, there can be a long delay between when a
signal is generated by a timer and when it’s delivered. In the interim, addi-
tional timer expirations can occur, generating more signals. The other situa-
tion is when a process has temporarily blocked the signal, because the timer
notifications can’t be delivered until the signal is unblocked.

The kernel queues at most one signal per timer for a process. The con-
sequence is that some timer notifications are never delivered. Event notifi-

Timers and Sleep Functions 469

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

cations that are generated but never delivered or accepted are called timer
overruns. The timer overrun count is the number of these overruns. A process
can call timer_getoverrun() to get this count. Its synopsis is:

#include <time.h>

int timer_getoverrun(timer_t timerid);

The single argument is of type timer_t; the calling program passes the timerid

that was returned by a call to timer_create(). For example,

if (-1 == timer_create(CLOCK_MONOTONIC, &sev, &timerid))

fatal_error(errno, "timer_create");

--snip--

if (-1 == timer_settime(timerid, 0, &interval, NULL))

fatal_error(errno, "timer_settime");

--snip--

printf("Timer overruns: %d\n", timer_getoverrun(timerid));

This function can also be called within the handler that catches the signal
sent by the timer. As long as the timer is still active, timer_getoverrun() can
be called; once it’s disarmed, the returned count will be zero regardless of
whether there were overruns or not. The program timer_overrun_demo.c
in the book’s source code distribution shows how to use this function. It
counts the number of timer overruns in a given interval. The man page for
timer_create() also has a sample program that counts these overruns, which
is also available as posix_timer_manpage_example.c in the source code distribu-
tion.

Timer overrun counting is significant because it’s a way to keep track
of exactly how many timer notifications were generated, even if the process
never saw them. If, for example, each notification is supposed to result in
some value being incremented, the count could be used to apply the missing
increments. Missed notifications may make a computation invalid.

We’re ready to create some programs that put the preceding concepts
and tools to use. We’ll begin by re-writing the progress bar program that we
implemented with the low resolution, one-shot alarm() timer. After that we’ll
develop two other programs, one that simulates a system resource monitor
similar to the iostat command we mentioned earlier, and one that shows
how to employ real-time signals and multiple timers.

A POSIX Timer-Based Progress Bar
The opening remarks about interval timers mentioned the two deficiencies
of using the alarm() system call as an interval timer: its low resolution, and
the timer drift that occurs because of repeated small delays introduced in
the signal handler. We eliminate both of these problems by using a POSIX
timer instead. Therefore, our first application of a POSIX timer will be an
enhanced version of the progress bar program, named progress_bar2.c.

This version gives the user the option to enter the timer interval, so that
the refresh rate of the progress bar can be chosen at runtime. If the user

470 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

doesn’t provide it, the program will use a default value. We’ll also set the
sigevent notification method to deliver a SIGUSR1 signal instead of a SIGALRM, to
eliminate any possibility of interference with other functions that might use
SIGALRM.

Allowing the user to specify the refresh interval introduces a few new
problems. First, consider the part of the lengthy_task() function shown here:

while (fraction_completed < 1.0) {

if (-1 == nanosleep(&dt, &rem))

nanosleep(&rem, NULL);

sigprocmask(SIG_BLOCK, &blocked_signals, NULL);

fraction_completed += progress_rate * drand48();

--snip--

}

In lengthy_task(), the delay time (dt), which is the requested sleep time, is
currently 0.48 seconds, which means that if the period of the timer is smaller
than that, it is likely that the sleep will be interrupted. The code handles
this by calling nanosleep(&rem,NULL) to complete the sleep. However, if the pe-
riod is small enough, say 0.2 seconds or less, then that call will also be inter-
rupted. The effect on the simulation is that the length of the simulated task
can be shortened considerably because each small delay that nanosleep() was
intended to impart is much smaller because the repeated sleeps are much
shorter. This prevents us from seeing the effect of very small timer intervals
on the progress bar’s behavior.

One solution is to temporarily block the SIGUSR1 signals for the duration
of nanosleep(). This will prevent the interruptions and consequent speeding
up of the simulation. We’d only need to make the following small change,
highlighted in bold, in the simulated task:

while (fraction_completed < 1.0) {

sigprocmask(SIG_BLOCK, &blocked_signals, NULL);

if (-1 == nanosleep(&dt, &rem))

nanosleep(&rem, NULL);

¶ sigprocmask(SIG_UNBLOCK, &blocked_signals, NULL);

sigprocmask(SIG_BLOCK, &blocked_signals, NULL);

fraction_completed += progress_rate * drand48();

--snip--

}

If we did this, there’d be just a tiny window of time ¶ between when the
signal was unblocked and when it was blocked again, during which a signal
could be delivered. Since only one signal per timer is queued when they’re
blocked, many signals might be discarded and the program would have timer
overruns, signals that were never delivered.

The alternative solution is to replace the call to nanosleep() by a call to
clock_nanosleep(), passing the TIMER_ABSTIME flag to it, using the paradigm de-
scribed in “Arming and Disarming Timers” earlier. That function, when in

Timers and Sleep Functions 471

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

absolute time mode, doesn’t lose any time when it’s restarted after an inter-
rupt. Although it’s a bit more complex to code up, there won’t be any timer
overruns, because each signal will be delivered, barring scheduling activity in
the kernel, and provided that the period of the timer is not extremely small.
It’s worth the extra trouble to take this approach.

The revised function uses the same logic as was used in the clock_nanosleep_demo.c
program (Listing 9-3.) It’s partially displayed in Listing 16-1 with these changes
highlighted.

lengthy_task()
(revised)

void lengthy_task()

{

--snip--

struct timespec endts, startts;

int ret;

sigemptyset(&blocked_signals);

sigaddset(&blocked_signals, SIGUSR1);

while (fraction_completed < 1.0) {

if (-1 == clock_gettime(CLOCK_MONOTONIC, &startts))

fatal_error(errno, "clock_gettime");

timespec_add(dt, startts, &endts);

do {

ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &endts,

NULL);

if (ret != EINTR && ret > 0)

fatal_error(errno, "clock_nanosleep");

} while (ret != 0);

sigprocmask(SIG_BLOCK, &blocked_signals, NULL);

fraction_completed += progress_rate * drand48();

if (fraction_completed > 1.0)

fraction_completed = 1.0;

sigprocmask(SIG_UNBLOCK, &blocked_signals, NULL);

}

}

Listing 9-7: The long running task simulation, using clock_nanosleep() instead of
nanosleep()

Allowing the user to choose the refresh interval introduces another prob-
lem. If the refresh interval is too large, when the task has finished, the last
refresh to the progress bar, meaning the one that shows that it has reached
100%, won’t appear on the terminal unless the program delays long enough
before erasing it and cleaning up. It will be discarded. On the other hand,
if the refresh interval is short and the program waits a long time, the shell
prompt will take more time to return than it should. Clearly, the amount of
time between when the simulated task ends and when the program should
start its clean-up depends on the refresh interval.

The revised main program accounts for this by making the sleep time
passed to nanosleep() near the end of main() a function of the refresh inter-

472 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

val, but this introduces a different problem if the refresh interval is very
small. In this case, the progress bar will disappear before the user ever gets
a chance to see that it reach 100% because it could be just a few milliseconds
before it disappears, too small a time to see it. Therefore the program needs
a lower bound on the length of time before it erases the progress bar.

The following function incorporates all of these ideas. The second pa-
rameter (refresh_timespec) is the refresh interval entered by the user, con-
verted to a timespec value. For example, if the user enters 2.75, then
refresh_timespec.tv_sec will be 2 and refresh_timespec.tv_nsec will be 750,000,000.

short_pause() void short_pause(double refresh_secs, struct timespec refresh_timespec)

{

struct timespec slight_pause;

struct timespec remaining_sleep;

if (refresh_secs > 3.0)

slight_pause = refresh_timespec;

else {

slight_pause.tv_sec = 3;

slight_pause.tv_nsec = 0;

}

if (-1 == nanosleep(&slight_pause, &remaining_sleep))

nanosleep(&remaining_sleep, NULL);

}

Using POSIX timers instead of alarm() requires more setting up; the main()

function needs the following new variables as a result:

double refresh_secs = 0.5; /* Default refresh interval */

double max_interval; /* Max allowed refresh interval */

timer_t timerid; /* timer ID from timer_create() */

struct timespec zero_interval = {0,0}; /* For zero-ing a timer value */

struct timespec refresh_timespec; /* timespec for refresh interval */

struct itimerspec refresh_interval; /* The timer value and repeat */

struct sigevent sev; /* Notification structure */

The program also has a few more steps than the first version had, which are:

1. Checking whether the command line has a refresh interval argu-
ment, and if so, checking that it’s within limits.

2. Setting up the interval timer’s sigevent structure and the timer val-
ues in the itimerspec argument.

3. Disarming the timer and changing the signal disposition after the
simulated task finishes.

The last step is included in a small function that consolidates all of the pro-
gram’s clean-up activities:

void clean_up()

Timers and Sleep Functions 473

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

{

struct sigaction act;

act.sa_handler = SIG_IGN;

if (sigaction(SIGUSR1, &act, NULL) == -1)

fatal_error(errno, "sigaction");

erase_progress_bar();

printf("Done\n");

}

The main() function of the revised program, named progress_bar2.c, is
displayed in Listing 9-8. The variable declarations and some code that wasn’t
changed are omitted to save space. The complete program is available in the
book’s source code distribution.

progress_bar2.c
main()

int main(int argc, char *argv[])

{

--snip--

max_interval = (double) MIN_SIMULATION_SECS / 2.0;

/* Check if command line has a refresh interval. */

if (argc >= 2) {

retval = get_dbl(argv[1], NON_NEG_ONLY, &refresh_secs, errmssge);

if (retval < 0)

fatal_error(retval, errmssge);

else if (refresh_secs <= 0)

fatal_error(retval, "get_dbl requires a positive number.\n");

}

/* Check that refresh interval is a suitable size. */

if (refresh_secs > max_interval || refresh_secs < 0.001) {

sprintf(errmssge, "Argument must be between 0.001 and %4.1f",

max_interval);

usage_error(errmssge);

}

draw_initial_bar(); /* Draw empty bar. */

--snip-- // OMITTED: Setting up signal handling omitted.

/* Set sigevent struct to send SIGUSR1 signal when timer expires. */

sev.sigev_notify = SIGEV_SIGNAL;

sev.sigev_signo = SIGUSR1;

sev.sigev_value = (union sigval) 0; /* Zero this field. */

/* Create the timer with this sigevent structure. */

if (-1 == timer_create(CLOCK_MONOTONIC, &sev, &timerid))

fatal_error(errno, "timer_create");

/* Convert refresh_secs to a timespec. */

dbl_to_timespec(refresh_secs, &refresh_timespec);

474 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

/* Set the timer initial value and timer interval to refresh_timespec. */

refresh_interval.it_value = refresh_timespec;

refresh_interval.it_interval = refresh_timespec;

/* Arm the timer with the itimerspec interval. */

if (-1 == timer_settime(timerid, 0, &refresh_interval, NULL))

fatal_error(errno, "timer_settime");

lengthy_task(); /* Simulate the task. */

short_pause(refresh_secs, refresh_timespec);

/* Zero the timer to disarm it. */

refresh_interval.it_value = zero_interval;

if (-1 == timer_settime(timerid, 0, &refresh_interval, NULL))

fatal_error(errno, "timer_settime");

clean_up();

return 0;

}

Listing 9-8: A revised progress bar simulation that uses POSIX timers instead of alarm() to
generate signals for updating the progress bar

Most of this code is explained by the comments in the listing. Because the
program’s output changes over time, the only way to see its behavior is by
building it and running it with different values for the command line argu-
ment. If you do this, you’ll see that you can control the refresh rate of the
progress bar at runtime.

Resource Monitors
In the beginning of the chapter, I mentioned a few commands that dynam-
ically monitor real-time resource usage over a period of time, including top,
pidstat, vmstat, and iostat. Each of these displays a report in the terminal
window with statistics about a particular type of resource, such as process-
related events, memory, or I/O activity. Most are user-configurable, let-
ting us customize their behavior, and most also have some limited interac-
tion with the user while they’re running. For example, the user can force
refreshes, suspend them, or terminate them by entering various key combi-
nations.

With what we know about timers now, we could, with effort, implement
one of these commands. It would be sufficiently challenging, we’d have writ-
ten a useful and fairly large program as a result, and it would be a good ap-
plication of POSIX timers. However, there are a few reasons not to try this
yet. One is that we haven’t covered processes yet and wouldn’t really under-
stand much about the data that these programs collect and display. Another
reason is that, in order to format and update their output dynamically, most
of them use features of terminal I/O that we’ve yet to explore. In fact, sev-
eral of them depend on the ncurses library, which is a library of terminal-

Timers and Sleep Functions 475

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

independent functions that programs can use for updating character screens
dynamically. We’ll cover these topics in later chapters: processes in Chapters
10 and 11, terminal I/O in Chapter 18, and the ncurses library in Chapter 19.

Instead we’ll implement a dynamic resource monitor that’s similar to
those commands and equally useful, but only builds on what we’ve covered
in preceding chapters, namely a dynamic file I/O monitor.

Sometimes, a program that writes a large amount of data to a file takes
a long time to finish, either because of the amount of data or the amount
of time it takes to generate the data. Often when this happens, we can’t do
more work until all of the data is written to the file. For example, when I
copy a very large file from a remote server and I want to work on the copy,
I have to wait for the file transfer to finish. File transfers over a network can
take a long time, making the operation take longer than expected. I know
I’ve often wanted to monitor the file in a separate terminal window that I
can watch while I do other work, so that as soon as the transfer is complete,
I can work on that file. Sometimes the program that drives the transfer noti-
fies us when it’s complete, but not all do.

The program, which I’ll name watchfiles, will accept a list of file path-
names on the command line. It will display, for each valid file, its name
and size, updating the size at regular intervals, until the size of the file stops
changing. It will also give us the option to terminate the program by enter-
ing “q” (for “quit”) at any time. For now, we’ll have to limit the number of
files to watch because if that number isn’t smaller than the number of rows
in the screen, we won’t be able to see them all. We don’t yet know how to get
the current number of rows in a terminal and therefore can’t check whether
the number of files exceeds that actual number of rows. In Chapters 18 and
19, we’ll see how to handle this type of problem.

As an example of the program’s behavior, if we run it as follows:

$./watchfiles /tmp/zoom_amd64.deb /tmp/linux-6.1.37.tar.gz bigfile

then once it starts, it would clear the screen and display the files and their
current sizes in two labeled columns, one for filenames and one for their
sizes, updating the sizes periodically. For example, for the preceding run of
watchfiles, the initial display might look like this:

File Size

/tmp/zoom_amd64.deb 16789823

/tmp/linux-6.1.37.tar.gz 872838217

bigfile 0923331

Enter 'q<RETURN>' to quit:

Listing 9-9: Snapshot of watchfiles at an arbitrary time t

Then, after some short time interval, in the very next screen refresh, the
screen might look like this:

File Size

/tmp/zoom_amd64.deb 23781637

476 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

/tmp/linux-6.1.37.tar.gz 879145201

bigfile 12008657

Enter 'q<RETURN>' to quit:

Listing 9-10: Snapshot of watchfiles at time t + 1

The only differences in the displayed data are the sizes of the files.
To make the program a bit more versatile and challenging to develop,

we’ll add a few of the features that commands such as top have. One is a
command line option that specifies how often the data will be refreshed.
Another is a command line option that specifies how many screen refreshes
without a change in any file’s size are needed to decide that the file sizes
have stabilized and that the program can terminate. The program’s synop-
sis is therefore:

watchfiles [options] file [file ...]

where options can be one or more of

-i <seconds> The length of the update interval [default = 1]

-l <count> The number of updates in which no files changed

size to force the program to terminate. [default = 10]

Developing this program will pose many of the same challenges that top
would. Summarizing its behavior:

1. On startup, it checks the command line, gets the options and path-
name arguments and checks each pathname to make sure it has the
permission to access its metadata. It removes any file it can’t access
from the list of files it will watch. It checks whether the number of
files is less than the maximum allowed number of files (20), and ex-
its with a usage message if it isn’t.

2. It clears the screen completely.

3. It sets up the signal handlers, and creates, sets, and arms the timer
whose expirations drive the updates to the file sizes.

4. Each time the timer expires, a signal handler runs to check every
file. If any disappeared, it replaces its size with the word, disappeared.
(This can happen if someone deleted the file after the program
started.) For each file, the handler gets its current size. If the cur-
rent size is different from the previous size, it records this. It then
updates the display with the new file sizes or messages.
If none of the files being watched changed size, the handler incre-
ments a count of the number of consecutive intervals without a
change in any file’s size. If one or more files changed, it resets this
count to zero. If the count exceeds the threshold value, it notifies
the program to terminate by setting a global flag that the main pro-
gram can check.

5. The main program also checks whether the user entered a “q” and if
so, it terminates.

Timers and Sleep Functions 477

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Let’s explore how to implement these steps in the order they’re listed.

Setting Up the File List
The first step is pretty routine at this point – parsing the command line and
getting the options and arguments. For each file, the program needs to get
its size. We can use any of stat(), lstat() or statx() (see Chapter 6) to get the
size of a file as long as the program has execute permission on every direc-
tory in its pathname. It doesn’t have to open the file. If the program can’t
stat the file, it should display a message and delete it from its list of files to
display.

This implies that the program needs to create a list of files to display
from the argv[] array passed to it. There’s no need to duplicate the file-
names in the argv[] array in order to do this. We can create an array, say
filelist[], whose entries are pointers to the filenames in the argv[] array
that we can watch. Figure 9-2 shows how this second array would simply
point to the elements of argv[] that can be watched. In the figure, the shaded
pathnames and argv[] entries are the ones that can’t be watched for one rea-
son or another.

"progname"

argv

filelist

"namefile1" "badfile" "badfile2"

NULL

NULL NULL NULL NULL NULL

"datafile" "goodfile" "optfile"

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Figure 9-2: The filelist[] array that points to only those pathnames in argv[] that can
be “stat-ed” and watched

However, there’s another problem. The terminal window has a fixed
width. What if the user enters a pathname so long that it’s impossible to
display a single line for the file in the terminal? We could just accept it and
wrap it across multiple lines, but it would be nicer to truncate the pathname
so that it fits on the line, replacing the leading directory names in the path-
name by an ellipsis, the way we did in the implementation of the spl_pwd

command in Chapter 7. We can define a constant, MAX_LENGTH equal to the
maximum length of a displayed pathname. Ideally it should depend on the
number of columns in the terminal, but for this version of the program we’ll
just set it to 50. Thus, if one of the supplied pathnames is

/data/ubuntu-22.04.2-src-1/pool/main/a/alsa-topology-conf # length = 57

the program would truncate it on the left and replace the deleted part with
an ellipsis, as follows:

...u-22.04.2-src-1/pool/main/a/alsa-topology-conf # length = 50

478 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

This in turn implies that for each file that the program will watch, it
needs to store a separate display name as well as its actual pathname. The
simplest solution is to check the length of every pathname, and for each, if
this length is small enough, copy the actual pathname into the display name,
and if not, copy a truncated version of it into the display name. Therefore,
we’ll need an array of display names, one for each watched file. The main
program can allocate this array once it knows how many files it’s watching.

We’ll left-align the displayed names and right-align the file sizes on the
screen. We’ll make the width of the first column a fixed size equal to a de-
clared constant, MAX_LENGTH. This makes it possible to construct the output
string using only async-signal-safe functions from the string library such as
strcat() and strncpy(), without needing the formatted output functions from
glibc. The main program will right-pad all display names that are shorter
than MAX_LENGTH with blanks. The code fragment in main() to create the dis-
play names padded with blanks as needed (without error-handling) is:

for (i = 0; i < numfiles; i++) {

len = strlen(filelist[i]);

displayname[i] = calloc(MAX_LENGTH + 1, sizeof(char));

if (len > MAX_LENGTH) {

sprintf(displayname[i], "...%*s",

MAX_LENGTH - 3, filelist[i] + len - MAX_LENGTH + 3);

}

else {

memset(displayname[i], ' ', MAX_LENGTH);

displayname[i][MAX_LENGTH] = '\0';

strncpy(displayname[i], filelist[i], len);

}

}

Listing 9-11: A code fragment that truncates or right-pads all filenames with space charac-
ters as needed

Files whose names exceed MAX_LENGTH aren’t padded. To pad the shorter names,
the displayname string is first filled with blanks, after which the leftmost part
of the string is overwritten by strncpy() when it copies the filename into it.

Refreshing the Screen
Before we explore how a program can clear the screen, it’s best if we clarify
what this means and get a basic understanding of terminals.

There’s a difference between the terms screen, console, and terminal. We
use the term screen to refer to the visible area in what we’ve been calling a
terminal window so far. For example, to clear the screenmeans to make that
area completely blank. Similarly, if we refer to the top of the screen, we mean
the highest line in the terminal window. The term console usually refers to
the physical display device and keyboard attached to the computer through
which we interact with it. In Linux, a virtual console is a software representa-
tion of a keyboard and display device. The device files whose names are of
the form /dev/tty* are virtual consoles in Linux.

Timers and Sleep Functions 479

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

The word terminal has a few meanings. Some people use it to refer to a
piece of hardware through which we interact with the computer. This is rare
these days. Some use it to mean the software emulated terminal that appears
in a window on the display device, which, on a bit-mapped display, is techni-
cally called a terminal emulator. Some people use the term more generally to
refer to the interface that both hardware and software terminals present to
the user. In this sense, hardware terminals, terminal emulators, and virtual
consoles all present a terminal to a user. In Unix, a terminal is represented
by a device special file. Here, I use the word terminal in this last sense, as the
interface, whether hardware or software-emulated, that allows the kernel
and processes to send text output to a user, and allows the user to enter text
input. In this section, we’ll explore just enough about terminals to solve the
current programming problem. Terminals and terminal I/O are covered in
more depth in Chapter 18.

Terminals normally perform two functions: to accept input and to dis-
play output. When character codes are delivered to the terminal driver,
they undergo some preliminary processing. Some codes are actual charac-
ters to be displayed, called printable characters, such as letters, numbers, and
punctuation. Their graphical representations on the screen are called glyphs.
Other codes are control characters. You’re familiar with some of them, such
as CTRL-C and CTRL-\, but there are several others. Some sequences are con-
secutive bytes that tell the driver where to position the cursor, or what colors
to use to display text, whether to wrap text, clear the screen, and so on.

In the early years of computing, there were different types of terminals
sold by various manufacturers. Each different type had its own set of con-
trol sequences. This made it hard to write portable programs. In 1976, the
set of control sequences was standardized by the European Computer Man-
ufacturers Association (ECMA). The standard was updated several times
and ultimately adopted by the International Organization for Standardiza-
tion (ISO) and the International Electrotechnical Commission (IEC) and was
named ISO/IEC 6429. It was also adopted by the American National Stan-
dards Institute (ANSI) and known as ANSI X3.64. These sequences are now
commonly called the ANSI escape sequences, even though ANSI withdrew
the standard in 1997.

An ANSI escape sequence is a sequence of ASCII characters, the first
two of which are the ASCII escape character, whose decimal code is 27, fol-
lowed by the left-bracket character [. The escape character is often written as
the octal code \033 or the hexadecimal code \x1b. The string \033[is known
as the Control Sequence Introducer or CSI. The character or characters follow-
ing the CSI are an alphanumeric code that specifies a particular keyboard
or display function. For example, the ANSI escape sequence “\033[2J” is the
CSI “\033[” followed by the control code 2J. The code “2J” erases the entire
video display. Therefore, if we want to clear the screen, we can send the se-
quence “\033[2J” to the terminal by printing it as a string to standard output:

printf("\033[2J");

480 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Almost all terminal emulators running on Unix systems interpret these
ANSI escape sequences in the same way, which means that, in principle, a
program that uses these sequences should behave the same regardless of
which terminal is being emulated; however, this is not guaranteed. This is
why the Curses library (now called Ncurses), was developed. This library
provides a consistent, standardized interface to the terminal. We’ll cover the
Ncurses library in Chapter 19.

It’s surprisingly easy to find the escape sequences that are available:

$ apropos -a escape sequence

console_codes (4) - Linux console escape and control sequences

--snip--

The console codes man page describes the different types of control codes
and escape sequences that are supported by Linux consoles, including soft-
ware emulated terminals. It also includes a summary of the steps that take
place when character codes are sent to the terminal driver, but we’ll explain
how that works in Chapter 18.

The subsection entitled “Linux console controls” has tables of the dif-
ferent types of control codes and escape sequences, not just the ANSI ones,
but others as well. The notation might be a bit confusing at first; it requires
a careful reading. It explains that command letters such as ‘H’ and ‘J’ in the
tables are the final characters in the sequence and that they’re preceded by
one or more parameters separated by semicolons. The white space is not
part of the syntax. Some examples to clarify this follow:

Man page
notation Example Action
ESC [1 J \033[1J Erase from top of display to cursor
ESC [2 J \033[2J Erase entire display
ESC [H \033[10;20H Move cursor to row 10, column 20 (origin at 1,1)
ESC [E \033[5E Move cursor to column 1, 5 lines down

These are the only escape sequences we’ll need. We can use them to
clear the screen in a couple of different ways, and to move the cursor to any
position on the screen. The book’s source code distribution has two pro-
grams that demonstrate how to use several different escape sequences. One,
escapeseq_demo1.c, writes a sequence of symbols on the terminal periodically,
and the other, escapeseq_demo2.c, displays a screen menu and lets you enter
different commands that alter the screen.

Continuing along, a few macros will make our program easier to read:

#define REFRESH write(STDOUT_FILENO, "\033[1J", 4)

#define CLEARDISPLAY write(STDOUT_FILENO, "\033[2J", 4)

#define MOVETOHOME write(STDOUT_FILENO, "\033[1;1H", 6)

#define MOVETO(row) write(STDOUT_FILENO, "\033[",2); \

write(STDOUT_FILENO, row, strlen(row)); \

write(STDOUT_FILENO, ";1H", 3)

Timers and Sleep Functions 481

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

The MOVETO(row) macro moves the cursor to position (row,1). For example,
MOVETO(22) moves it to (22,1). We already know how to do the third step, set-
ting up the signal handlers and timer, so we’ll move on to the issue of updat-
ing the file sizes.

Updating the File Sizes
The set of files is updated with every timer expiration, implying that the
code to determine and print the changes should be in the signal handler,
which we’ll name update_files(). The handler’s code is essentially a loop that
calls stat() on each file in the list of files.

Most of the major variables accessed by the handler have to be either
global (file-scoped) or static locals. For example, in order for the handler
to keep track of whether a file’s size has changed from one update to the
next, file sizes have to be preserved across calls to the handler. Since the
number of files isn’t known until runtime, the array of file sizes has to be
allocated dynamically. It’s better if main() allocates the storage as soon as it
has parsed the command line and counted the files that can be stat-ed suc-
cessfully. Hence the array must be global. Similar reasoning applies to the
array of display names.

There are two ways to replace the displayed file size at each update. One
is, for each file, to move the cursor to the start of its size in the display area,
erase the current size and write the new size. The other is to erase the screen
from the top line down to the line containing the last file, construct a sin-
gle string in memory with all of the new sizes, and print that entire string to
the screen all at once at cursor position (1,1). The second method is a lot
cleaner and easier than the first. Figure 9-3 illustrates this idea.

To avoid calling the output functions declared in stdio.h, none of which
are async-signal-safe, the handler will construct the strings to print using
strcpy() and strcat(), after which it can use write() to print the entire string
to the terminal.

The preceding discussion suggests the following sequence of steps that
the signal handler should perform.

482 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Enter 'q′ to quit:

File Size
/data/project1/inputfile 23567
/data/project1/mirror 87238
localfile 52
teamcopy 23578

Terminal

Refresh
region

Static
region

Figure 9-3: A depiction of the terminal window showing the region above the static
prompt that needs to be refreshed by the signal handler every time the timer expires

1. Erase the screen from line 1 down to the last line of filenames.

2. Move the cursor to the upper-left screen corner (1,1).

3. Create a string with a heading of the form "File ... Size".

4. For each file i, do the following:
(a) Call lstat() on file i, filling a stat buffer.
(b) If not successful because the file doesn’t exist, create an

output line with the filename and the word “disappeared”
where the size was before. If it isn’t successful for any other
reason, create an output line with an error message that
stat() failed.

(c) Otherwise, get the new size from the stat buffer, create an
output line for the file with the new size, compare the old
and new sizes, and if different, set changed to TRUE.

(d) Append the output line just constructed to the string to be
printed using strcat().

5. Call write() to write the string constructed in the preceding loop to
the terminal.

6. If changed is FALSE, no file’s size changed in this update, so increment
the count of unchanged updates: stable_cnt++. otherwise, at least
one file’s size changed, so reset stable_cnt to 0.

7. If stable_cnt has reached the stopping criterion limit nochange_limit,
set a flag named stopflag so that the main program can terminate.

8. Move the cursor 2 lines below the last file’s line and display a prompt
of the form Enter 'q<ENTER>' to quit:.

We’re ready to assemble the pieces of the program.

Timers and Sleep Functions 483

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Assembling the Program
Based on the preceding discussion, several of the variables must be declared
with file scope. They are:

char **filelist; /* Files for processing */

char **displayname; /* Name to display in case path too long */

int numfiles = 0; /* Number of files to be processed */

char linecnt_str[3]; /* String storing count of lines to refresh */

long long *prevsize; /* Array of file sizes in previous update */

int stable_cnt = 0; /* Count of consecutive unchanged updates */

int nochange_limit; /* When stable_cnt reaches it, time to stop */

const int MAX_LENGTH = 50; /* Width of filename field in output */

const int MAX_FILES = 20; /* Maximum number of files allowed to track */

char heading[66]; /* Heading with column labels to be displayed */

char rownum[3]; /* Row number of line containing the prompt */

volatile sig_atomic_t stopflag = 0; /* Flag that handler sets to stop main */

The signal handler code follows. It makes no calls to unsafe functions; the
file size is converted to a string by a function lltostr() whose source is in the
file common/llongtostr.c in the source code repository. The inline comments
explain the steps.

void update_stats(int signum)

{

const char prompt[] = "Enter \'q\' to quit:";

struct stat statbuf; /* stat structure filled by statx() */

char outbuffer[4096]; /* String to display with every update */

char one_line[256]; /* Buffer to store one file's line */

long long newfilesize; /* New size of file */

char size_str[20]; /* Size of filename stored as a string */

static BOOL changed = FALSE; /* Flag to indicate if a file changed */

int i = 0;

MOVETO(rownum); /* Move cursor to prompt line. */

REFRESH; /* Clear the screen from top to this line. */

MOVETOHOME; /* Move cursor to upper left. */

strcpy(outbuffer, heading); /* Copy heading to buffer. */

for (i = 0; i < numfiles; i++) {

if (lstat(filelist[i], &statbuf) < 0)

if (errno == ENOENT) {

strcpy(one_line, displayname[i]);

strcat(one_line, " disappeared\n");

}

else {

strcpy(one_line, displayname[i]);

strcat(one_line, " stat failed\n");

}

else { /* Valid stat of file */

484 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

newfilesize = statbuf.st_size; /* Get new size. */

if (prevsize[i] != newfilesize) { /* Size changed */

changed = TRUE; /* Make a note of it. */

prevsize[i] = newfilesize; /* Save new size. */

}

lltostr(newfilesize, size_str, 15);

strcpy(one_line, displayname[i]);

strcat(one_line, size_str);

strcat(one_line, "\n");

}

strncat(outbuffer, one_line, strlen(outbuffer));

}

/* Write the outbuffer to the terminal display. */

if (-1 == write(STDOUT_FILENO, outbuffer, strlen(outbuffer)))

fatal_error(errno, "write");

if (!changed)

stable_cnt++; /* No file changed in this update increment count. */

else

stable_cnt = 0; /* A file changed - reset count to start again. */

if (stable_cnt >= nochange_limit)

stopflag = 1;

MOVETO(rownum); /* Move cursor to line where prompt is written. */

write(STDOUT_FILENO, prompt, strlen(prompt)); /* Display prompt. */

}

The last task is to write up the main() function. It’s primary work is to per-
form all initializations and set-up, in the following order:

• Getting the command line options and arguments.

• Checking that all argument files exist and that the program has the
appropriate permissions to get their sizes using lstat(). The logic
for accomplishing this is:

for (k = 0, i = optind; i < argc; i++) {

if (lstat(argv[i], &statbuf) < 0) {

fprintf(stderr, "Could not stat %s, skipping it. \n",

argv[i]);

numfiles--; /* Reduce file count. */

}

else

filelist[k++] = argv[i];

}

When this loop finishes, the entries in the filelist[] array will point
to only those elements of argv[] that can be accessed, as we dis-
cussed previously in “Setting Up the File List”.

• Creating the display names for each file, truncating or padding
them as needed. This code was presented in Listing 9-11.

Timers and Sleep Functions 485

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

• Initializing all global variables shared by the signal handler.

• Installing a signal handler for SIGUSR1 and a handler that catches
SIGINT and SIGQUIT and cleans up before terminating the process.

• Setting up and arming the timer.

• Waiting for the user to enter “q” to terminate the program.

The next listing has fragments of the main() function. The complete pro-
gram is available in the source code repository. The missing parts are de-
scribed in the comments.

watchfiles main() int main(int argc, char **argv)

{

--snip-- // OMITTED:

declarations of local variables in main(), initializations of the

usage_message, the heading to be displayed, option-parsing code,

checks that each file in the argument list can be stat-ed,

check for number of files, allocating storage for, truncating,

and padding the display names

act.sa_handler = sig_handler;

act.sa_flags = 0;

sigemptyset(&(act.sa_mask));

if (sigaction(SIGINT, &act, NULL) == -1)

fatal_error(errno, "sigaction");

if (sigaction(SIGQUIT, &act, NULL) == -1)

fatal_error(errno, "sigaction");

CLEARDISPLAY; /* Completely erase the terminal window. */

/* Install update_stats() SIGUSR1 handler. */

act.sa_handler = update_stats;

if (sigaction(SIGUSR1, &act, NULL) == -1)

fatal_error(errno, "sigaction");

/* Set up sigevent structure for timer and create the timer. */

sev.sigev_notify = SIGEV_SIGNAL;

sev.sigev_signo = SIGUSR1;

sev.sigev_value = (union sigval) 0;

if (-1 == timer_create(CLOCK_MONOTONIC, &sev, &timerid))

fatal_error(errno, "timer_create");

--snip-- // OMITTED: setting and arming the timer

while (!stopflag) {

n = read(STDIN_FILENO, &c, 1);

if (-1 == n && errno == EINTR)

continue;

else if (c == 'q')

break;

486 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

}

tcflush(STDIN_FILENO, TCIFLUSH); /* Remove last newline character. */

refresh_interval.it_value = ZERO_TS; /* Disarm timer. */

if (-1 == timer_settime(timerid, 0, &refresh_interval, NULL))

fatal_error(errno, "timer_settime");

if (stopflag) /* Loop exited because no file size changed. */

printf("\nNo changes were detected in the last %2.1f"

" seconds in any file.\n", nochange_limit*refresh_secs);

cleanup(); /* A function that frees all calloc-ed memory */

exit(EXIT_SUCCESS);

}

Listing 9-12: A partial listing of the main() function of watchfiles

The purpose of the call to tcflush() on the standard input stream is to re-
move the newline character from the terminal’s input queue. We haven’t
yet covered how to read characters from the terminal without requiring the
user to enter a newline. If we leave it in the queue, bash will receive an empty
command when the program terminates and display an extra prompt line.

Running the Program
Because the program uses a POSIX timer, it has to be built with the extra
linker flag, -lrt:

$ gcc -D_XOPEN_SOURCE=700 -D_DEFAULT_SOURCE I../include -L ../lib \

watchfiles.c -lspl -lm -lrt -o watchfiles

I’ll display a few snapshots of the running program to show its behavior. In
the first run, I set the interval to 0.75 seconds and the limit to 10 intervals
with no change, giving it two files for which it has permission to access the
file metadata, one with a name that’s too long to display:

$./watchfiles -l10 -i0.75 /var/log/syslog \

~/.local/share/recently-used.xbel.EPDEU1 \

/home/stewart/.mozilla/firefox/hjas8j.profile/webappsstore.sqlite

It clears the screen and displays the files and their sizes. Following is a snap-
shot during a run:

File Size

.../stewart/.local/share/recently-used.xbel.EPDEU1 5351

/var/log/syslog 3943250

...fox/xdjb3t0l.latest_profile/webappsstore.sqlite 29360128

Enter 'q' to quit:

If I let it run until there are no changes, I see the output:

File Size

/var/log/syslog 3943250

...fox/xdjb3t0l.latest_profile/webappsstore.sqlite 29360128

Timers and Sleep Functions 487

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Enter 'q' to quit:

No changes were detected in the last 7.5 seconds in any file.

This time I’ll give it a few more files, a few of which are either nonexistent or
can’t be stat-ed because I don’t have execute permission on some directory
in the pathname. I’ll redirect standard error to a file to save the errors that
the program reported:

$./watchfiles -l5 -i0.75 ../testdata/foo nosuchfile /var/spool/cron/atjobs/anotherbadfile \

~/.cache/mozilla/firefox/xdjb3t0l.latest_profile/cache2/entries/ \

1247B9C6A8F1003F00AE7A3789C91F3487255EF9 2> errors

I let it run until it detects no changes:

File Size

../testdata/foo 400

/var/spool/cron/atjobs 4096

Enter 'q' to quit:

No changes were detected in the last 3.8 seconds in any file.

Notice that several files are missing. The errors file contents are:

Could not stat nosuchfile, skipping it.

Could not stat anotherbadfile, skipping it.

Could not stat .cache/mozilla/firefox/xdjb3t0l.latest_profile/cache2/entries/

1247B9C6A8F1003F00AE7A3789C91F3487255EF9, skipping it.

The error messages do not distinguish between non-existent files and those
without appropriate permissions.

Developing this small resource monitor gave us the chance to employ
a timer in a useful program. The principles involved are the same regard-
less of what resource is being monitored. In addition, we discovered how to
control the terminal just enough to clear the screen and move the cursor to
those positions on the screen where we wanted to display output. Soon we’ll
see other, easier and yet more powerful functions for terminal control, when
we explore the ncurses library.

Real-Time Signals and Multiple Timers
The programs we’ve developed so far have used a single timer, but in many
cases, a program needs more than one. For example, system programs that
control or monitor the activities of many resources need multiple timers.
Animations in which multiple sprites move independently in a screen re-
quire a timer for each sprite.

If a program is limited to just the two unassigned standard signals, SIGUSR1
and SIGUSR2, the only way it could use more than two timers would be to de-
sign the signal handler to extract the timer ID from the siginfo_t parameter
to determine which timer expired and base its action on that ID. The han-
dler code would be larger and the handler would take longer to execute.

488 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Linux, since version 2.2, has supported an extended set of signals that in-
corporates real-time signals, and POSIX.1-2001 made these signals part of
the standard. Real-time signals have no pre-assigned meaning. A program
can use them for its own purposes.

Unlike standard signals, multiple real-time signals of the same type are
queued if delivery is temporarily blocked. Furthermore, they’re queued in
the order they were sent. Their range of values is defined by two macros:
SIGRTMIN, the lower bound, and SIGRTMAX, the upper bound. POSIX requires
that any conforming system have at least eight real-time signals.

A program should not use actual numbers to refer to any of these sig-
nals. Instead, it should use an expression such as SIGRTMIN+n, where n is a
small enough non-negative integer. A program can safely use signals SIGRTMIN,
SIGRTMIN+1, SIGRTMIN+2, up to SIGRTMIN+7 in Linux, but the correct way to use
them is to make sure that SIGRTMIN+n is never more than SIGRTMAX. Also, sig-
nals with smaller numeric values have higher priority in the sense that, if two
or more are sent at the same time, the lower-valued signal will be delivered
before the higher-valued one.

To illustrate the use of multiple timers and real-time signals, I wrote a
short program that creates several timers, each using a unique real-time sig-
nal number. A single handler catches all of these signals. When it runs, it
prints a number that’s unique to the timer that expired, based on the timer
ID associated with the timer that sent the signal. Recall from the discus-
sion about timer creation in “Creating and Deleting Timers” that a three-
parameter sigaction handler can access the timer ID used if when the timer
was created, the sigevent structure’s sigev_value.sival_ptr contained the ad-
dress of that timer ID—the siginfo_t parameter’s si_value.sival_ptr will con-
tain that timer ID when the handler runs.

The program, named posix_timer_demo1.c, creates eight timers, fewer
if the system does not support at least eight real-time signals. Each timer’s
interval is unique: timer n’s interval is a constant multiple of the nth prime
number, which reduces the frequency with which two timers expire at the
exact same time. When a timer expires, the signal handler writes the prime
number length of timer’s interval on the screen. It calls write() for this pur-
pose, so that writing is async-signal-safe. Although the sequence of numbers
displayed on the screen appears somewhat random, it isn’t. Each number is
printed at a frequency inversely proportional to its value, so that 2 appears
most frequently and 19, least. Because all timer signals are caught by the
same handler, which blocks all signals while it’s running, some get queued
and their associated numbers may not be printed in the order in which they
were generated. The program follows.

posix_timer
_demo1.c

#include "common_hdrs.h"

#include <stdint.h>

#include "time_utils.h"

#define CLOCKID CLOCK_MONOTONIC

#define NUMTIMERS 8

char *idstr[] =

Timers and Sleep Functions 489

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

{" 2", " 3", " 5", " 7", " 11", " 13", " 17 ", " 19 "};

void sighandler(int sig, siginfo_t *si, void *uc)

{

long timerid = *(long*) (si->si_value.sival_ptr);

write(STDOUT_FILENO, idstr[timerid], strlen(idstr[timerid]));

fflush(stdout);

}

int main(int argc, char *argv[])

{

timer_t timerid[NUMTIMERS];

struct sigevent sev;

struct itimerspec timer_setting[NUMTIMERS];

struct sigaction sa;

char c;

int i, nbytes;

int numtimers = NUMTIMERS;

const double BASE_UNIT = 0.4; /* Seconds */

int interval[NUMTIMERS] = {2, 3, 5, 7, 11, 13, 17, 19};

if (SIGRTMIN+NUMTIMERS > SIGRTMAX)

numtimers = SIGRTMAX - SIGRTMIN;

/* Install signal handlers. */

sa.sa_flags = SA_SIGINFO | SA_RESTART;

for (i = 0; i < numtimers; i++) {

sa.sa_sigaction = sighandler;

sigfillset(&sa.sa_mask); /* Block all other signals. */

if (-1 == sigaction(SIGRTMIN+1+i, &sa, NULL))

fatal_error(errno, "sigaction");

}

/* Create the timers. */

sev.sigev_notify = SIGEV_SIGNAL;

for (i = 0; i < numtimers; i++) {

sev.sigev_signo = SIGRTMIN + 1 + i;

sev.sigev_value.sival_ptr = &(timerid[i]);

if (timer_create(CLOCKID, &sev, &(timerid[i])) == -1)

fatal_error(errno, "timer_create");

}

for (i = 0; i < numtimers; i++) {

/* Set the intervals for the timers. */

dbl_to_timespec(interval[i]*BASE_UNIT, &(timer_setting[i].it_value));

timer_setting[i].it_interval = timer_setting[i].it_value;

}

for (i = 0; i < numtimers; i++)

if (timer_settime(timerid[i], 0, &(timer_setting[i]), NULL) == -1)

490 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

fatal_error(errno, "timer_settime");

printf("Enter 'q' to terminate this program.\n");

while (TRUE) {

if (-1 == (nbytes = read(STDIN_FILENO, &c, 1)))

fatal_error(errno, "read");

else if (c == 'q')

break;

}

exit(EXIT_SUCCESS);

}

A run of the executable produces the following output. Due to space limita-
tions, only a small portion of it is shown.

$./posix_timer_demo1

Enter 'q' to terminate this program.

2 3 2 5 2 3 7 2 3 2 5 11 2 3 13 2 7 3 5 2 17 2 3 19 2 5 3 7 2 11 2 3

5 2 13 3 2 7 2 3 5 2 3 11 ^C

The pattern is not regular because signals are blocked while the handler is
running, and when they’re delivered, because lower-numbered real-time sig-
nals have higher priority than higher ones, their IDs will be printed ahead of
the others. More importantly, this program demonstrates the way in which a
program can use multiple timers, each with its own unique signal.

Summary
Timers and sleep functions provide a means for processes to control the
points in time at which they perform specific actions. The older sleep func-
tions such as sleep(), usleep(), and nanosleep() suspend the process for a
program-supplied interval of time. The first two have the weakness that they
interact with signals, whereas nanosleep() does not. The newer clock_nanosleep()

function also allows the program to specify a wall clock time at which to
wake up, rather than after an interval of time has elapsed, and it lets the pro-
gram choose which hardware clock it should use for measuring time.

Modern computers contain several different types of time measurement
devices. Most have a designated hardware clock called the Real Time Clock
(RTC) that keeps wall clock time, also called calendar time, backed up by a
battery while the computer is turned off or in a low-power state. Some com-
puters have several RTCs. A RTC on x86 hardware, for example, can be pro-
grammed to generate periodic interrupts at selected frequencies ranging
between 2 Hz and 8192 Hz. or at every clock tick.

Many computers also have a Programmable Interval Timer (PIT). The
PIT issues a timer interrupt whenever it times out. Linux kernels typically
program the PIT to issue interrupts about once every millisecond. Linux sys-
tems sometimes use a Time Stamp Counter for higher precision timing, as
high as 1 GHz, for finer resolution timing. Lastly, many modern computers

Timers and Sleep Functions 491

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

have high resolution timers called High Precision Event Timers (HPETs),
which can be programmed to generate interrupts at regular intervals or only
once, when a counter reaches a specific value. These timers are used to pro-
vide high resolution timers for user programs.

Software interval timers are based on these different hardware clocks
and timers. A program can set an interval timer to expire after an elapsed
time. When the timer expires, it sends the process a notification, which is
usually a signal but need not be. Unlike a sleep function, a timer does not
suspend the process. Timers allow a process to schedule the execution of
code at regular intervals, making it possible to implement commands and
applications such as resource monitors, progress bars and animations.

Unix systems provide a few different types of interval timers. The sim-
plest of these is alarm(), which generates a SIGALRM signal when the timer ex-
pires and whose interval is expressed in units of one second. The setitimer()

function is a higher resolution timer than alarm(), but it is marked as obso-
lete by POSIX.1-2008. POSIX recommends the use of a newer type of timer
called a POSIX timer that has nanosecond granularity. POSIX timers are
created by timer_create() and armed with timer_settime().

This chapter showed how to use several different sleep functions and
timers. We developed a progress bar program based on both the simple
alarm() timer and a POSIX timer. We also developed a simple resource mon-
itor based on a POSIX timer.

Exercises
1. Write a program like nanosleep_demo1.c that catches all terminating

signals that can be caught instead of just SIGINT and reports the re-
maining time when it receives them, just like nanosleep_demo1.c. Ex-
clude signals caused by hardware errors or I/O, such as SIGBUS,
SIGSEGV, and SIGIO.

2. Implement a command named snooze that behaves like the sleep

command except that
• It allows the user to enter a fractional number of seconds,

such as 5.25, defaulting to 1 second if no argument is sup-
plied.

• While the shell is suspended, it displays the message

Delaying for n seconds...

and on the line below this message, it prints a forward slash
alternating with a backslash every 0.1 seconds.

• When it is finished, it erases the alternating slashes and
writes the word “Done”.

If the program receives a terminating signal it should terminate.

3. Implement a command line countdown timer named countdown that
is given a number of minutes as its first argument, and an optional
refresh interval in minutes as its second argument:

492 Chapter 9

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

$./countdown duration [refresh_interval]

It clears the screen completely, and at the top of the cleared screen
it displays “Number of minutes remaining:” followed by the number of
minutes remaining until the duration expires. If the refresh interval
is not supplied, it updates the remaining time every minute, oth-
erwise it refreshes it after every refresh_interval minutes. When it
reaches 0, it clears the message from the screen completely and re-
turns control to the shell. If either argument is anything other than
a positive integer, it displays a suitable usage message and exits.

4. Modify the preceding program so that it accepts a command line
option -s that, when present, means that the values entered by the
user should be taken as seconds instead of minutes. If the program
receives a terminating signal it should terminate.

5. Write a program named wallclock that clears the screen and displays
the current wall clock time, using the user’s LC_TIME locale setting,
on the top line of the screen, updating it every second. It should
replace the previous time with the new time each second.
There are a few different ways to implement this command. Con-
sider whether to use the time() system call or clock_gettime(). Will it
sleep or use a timer?

6. The timer_overrun_demo program in the chapter counts the number of
timer overruns in a given time period. When run as

$./timer_overrun_demo duration timer_interval

in which duration is the number of seconds during which the pro-
gram sends itself SIGRTMIN signals and timer interval is the number
of nanoseconds between successive timer expirations that generate
this signal. For example, if the duration is 2 seconds and the timer
interval is 10,000 nanoseconds, then the program will generate and
attempt to deliver 2,000,000,000 / 10,000 = 200,000 signals. When
the timer intervals are very small, the counting is inaccurate. Exper-
iment with successively smaller intervals to see when it starts to mis-
count. Run it with the same arguments repeatedly. What are some
possible explanations for why the overrun count changes, and why it
becomes less accurate as the timer interval gets smaller and smaller?

7. The watchfiles program in the chapter is unable to detect how many
rows are in the terminal screen. Because of this, it will crash if the
user enters more file arguments than they should. Read the man
page for ioctl() and look at the header file sys/ioctl.h. Using ioctl(),
write a function named winsize() that gets the size of the screen.
(The macro TIOCGWINSZ will be its second argument.) Use your func-
tion to prevent watchfiles from crashing if the user enters more file
arguments than can fit in the window.

Timers and Sleep Functions 493

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

Introduction to System Programming in Linux (Sample Chapter) © 2025 by Stewart N. Weiss

