Symbols and Numbers

== (comparison) operator, 36–37
% (modulo) operator, 78, 255–256
* (splat) operator, 25
2of4bri.txt file, 20
4 Percent Rule, 239–240, 263

A
absolute paths, 329
abstractions, 21
acceleration, 286
actions, 223
actuarial life tables, 245
Adding Habitable Zones to Your Galaxy project, 215–216
aerobraking, 321–322
Alexander, Edward Porter, 87
All the Marbles problem, 264
Anaconda, 195
anagrams, defined, 35
ancestors, 229, 272
apoapsis, 290
apogee, 290
application programming interfaces (APIs), 267
artists, 360
assets, 296
attributes, 225
Audacity, 296
Automatic Anagram Generator project, 62
Automating Possible Keys project, 88, 371–372

B
Babbage, Charles, 107
bar_chart() function, 355, 359, 358–360
Beating Benford project, 364–365, 387–388
Belyayev, Dmitry, 134
Benford, Frank, 347
Benfording the Battlegrounds project, 366
Benford’s law, 348–363
bigrams, 52
Birthday Paradox problem, 238
The Black Swan: The Impact of the Highly Improbable, 2nd Edition (Taleb), 263
black swans, 245
blitting and blit() method, 280, 317
block transfer, 280
block-level objects, 111
British brute-force code, 54–55
brute-force method, 40, 54–55
Building a Galactic Empire project, 213–214, 380–382
Building a Rat Harem project, 144

C
calculators, 240
candidates, 175
Canvas widget, 203
Carnegie Mellon University Pronouncing Dictionary (CMUdict), 148–153
case sensitive letters, 39
CCDs (charge-coupled devices), 325
CCDStack, 331
challenge projects
Adding Habitable Zones to Your Galaxy, 215–216
All the Marbles, 264
Automatic Anagram Generator, 62
Benfording the Battlegrounds, 366
Building a Rat Harem, 144
With a Bullet, 284
Creating a Barred-Spiral Galaxy, 214–215
Creating a More Efficient Safecracker, 144
The Fountainhead, 283
To Haiku, or Not to Haiku, 186
INDEX

Just My Luck! 264
Markov Music, 186
Mars Orbiter game modifications, 320–323
The Middle, 17
Mix and Match, 264
New Word Generator, 184
A Picture Is Worth a Thousand Dollars, 264
Poor Foreign Man’s Bar Chart, 16–17
Recursive Approach, 34
Route Cipher Encoder, 90
Shock Canopy, 283
Three-Rail Fence Cipher, 90
Turing Test, 185
Unbelievable! This Is Unbelievable! Unbelievable! 185–186
Using Monospace Font, 123
Vanishing Act, 344–345
While No One Was Looking, 366
charge-coupled devices (CCDs), 325
check_keys() method, 301
Checking the Number of Blank Lines project, 122–123, 377–378
chi-square goodness-of-fit test, 352–353
Churchill, Winston, 3
cipherlist, 78
ciphertext, 78
Clark, Brooks, 330
Class attributes, 269–270
classes, 223, 229, 298–299
clean_folder() function, 333
Clinton, Hillary, 353–354
CMUdict (Carnegie Mellon University Pronouncing Dictionary), 148–153
The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (Singh), 87, 101
coding conventions, 6
coding style, xxv
Colchester Catch project, 103, 376
collections module, 40
color tables, 297–298
command window, 7
columnspan, 231
comparison operator (==), 36–37
counter modeling, 194
counter performance evaluation, 162
consonant-vowel maps (c-v maps), 52–58
count_first_digits() function, 356
counting syllables, 147–159
cProfile, 20, 30
Cracking Codes with Python (Sweigart), 61, 87, 119
Creating a Barred-Spiral Galaxy project, 214–215
Creating a More Efficient Safecracker project, 144
crossover process, 128, 133
cryptography, 51
current working directory (cwd), 328
c-v maps (consonant-vowel maps), 52–58
cv_map_filter() function, 57
cv_words() function, 58
data
loading, 355–356
object-oriented programming (OOP) and, 223
data verification, 77–78
debugging, 169–171
Deep Sky Stacker, 331
defaultdict container type, 172–173, 355–357
default_input() function, 251–252
de_folders() function, 333
designed development, 2
Dictionary Cleanup project, 33, 368–369
dictionary files, 20–22, 160
digrams, 52–54, 72
directionality, 211
directory paths, 328–329
DirectX API, 267
docstrings, 10–11
Downey, Allen, 2
Drake equation, 187, 190–191
draw() method, 280
duration variable, 254
DVDVideoSoft, 330
E
eccentricity, 301
eccentricity variable, 308–309, 314, 316
Effective Python (Slatkin), 15
electronic ink, 108
Elementary (television show), 105
Emerson, Ralph Waldo, xxii
encapsulations, 21
enjambment, 167
enter key, 5
Enthought Canopy, 195
enumerate() function, 134
epoch timestamps, 31
errors. See also debugging
checking for, 253
false, 8
events, 278
evolutionary algorithms, 125
exceptions, 21
exhaustive search engines, 126
expected counts, 357

F
Fermi’s paradox, 187–211
files and folders, 327–329, 333–334
Finding Digrams project, 61, 369
first digits, 356–357
first-digit law. See Benford’s law
Flink8, 7
flipping and flip() method, 280
font objects, 111
fonts
color, 108
types of, 109–110
using, 119
Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets, Revised Edition (Taleb), 263
for loops, 257
Fountainhead project, 283
4 Percent Rule, 239–240, 263
Frame class, 229
frames per second (fps), 278–280
Frame widget, 229
Free Studio, 330
Free Video to JPG Converter tool, 330
Friedman, William, 65
functions, defining, 250, 309–310

G
A Galaxy Far, Far Away project, 212–213, 379–380
game assets, 227
game loops, 299–300, 315–316
game sketches, 268–269, 293–295
Geany, xxiv
generations, 128–129
genetic algorithms, 125–142
Genetic Algorithms with Python (Sheppard), 143
get_expected_counts() function, 357
getdata() method, 339
global minima and maxima, 140
global scope, 42
Going the Distance project, 282, 385–387
goodness-of-fit test, 352–353, 357–358
Google
PageRank algorithm, 162
style guide, 10–11, 14
graphical models, 199–201
graphical user interface (GUI), 74
gravity, 286–287, 307
groups, 314
Guns of the South (Turtledove), 66

H
Hacking Lincoln project, 87, 370
haiku, 146–147
To Haiku, or Not to Haiku project, 186
handwriting recognition, 162
Hartman, Charles, 145–146, 167, 182, 184
Highlighter tool, 108
hill-climbing algorithm, 139
Hitchhiker’s Guide to Python, 15
Hohmann transfer orbit, 291
human error, 66

I
Identifying Cipher Types project, 88, 370–371
IDLE shell, 3
IDLE text editor, xxiv
image registration, 331
image stacking, 325
images, 334–337
import statements, 250
inline-level objects, 111
instantiation, 314
integrated development environment (IDE), xxiv
invisible electronic ink, 108
ipadx option, 231
itertools module, 51
J

Japanese Haiku (Beilenson), 146
JavaScript Object Notation (json), 152
Jumble, 36, 61
Just My Luck! problem, 264

K

Kepler, Johann, 287
kerning, 109–110
KEYUP event, 316
keys, 172

L

.lower() method, 6
Lanczos filter, 337
letter_pair_filter() function, 58–59
letter-transposition ciphers, 72
LibreOffice Writer, 107
line breaks, 110
list ciphers, 99–101
list comprehension, 22, 71
local minima and maxima, 140
logarithmic scale, 349
logarithmic spiral, 199
logging module, 170–171
logic, 223
loops
game loops, 299–300, 315–316
for loops, 257
while loops, 5, 135, 254, 318
lower case, displaying characters as, 39

M

machine translations, 147
Markov chain analysis, 147, 161–182
Markov Music project, 186
Mars Climate Orbiter, 6
Mars Orbiter game modifications project, 320–323
Mary (queen of Scotland), 91
matplotlib library, 195–196, 198, 248, 250, 355
MCS (Monte Carlo simulation), 218–238
median, 344
methods, 223, 225
microphotography, 80

Microsoft

DirectX API, 267
Office Suite, 107
Outlook, 121

The Middle project, 15–16, 17
Milky Way, 188–189
Mix and Match problem, 264
model of order 0, 162
model of order 2, 162–163
modules, xxi, 21
importing, 250, 355–356
matplotlib, 195–196, 198, 248, 250, 355
pillow, 326–327
pydocstyle, 11, 15
pygame, 267, 281–282, 296–319
Pylint, 7–13, 15
python-docx, 110–111
tkinter, 200–202, 212, 229–231
modulo operator (%), 78, 255–256
monospace fonts, 109–110
Monte Carlo fonts, 109–110
Monte Carlo simulation (MCS), 218–238
most_common() method, 56–57
Mysterious Messages: A History of Codes and Ciphers (Blackwood), 87, 101
Myth Busters, 284

N

natural language processing (NLP), 147
Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit (Bird, Klein and Loper), 155–156
Natural Language Toolkit (NLTK), 148–149
New Word Generator project, 184
Newcomb, Simon, 347
Newton, Isaac, 286–287
Nigrini, Mark, 364
null, defined, 92
null ciphers
defined, 91–92
writing, 98–101
NumPy docstring standards, 10
NumPy library, 195–196, 198

O

object-oriented programming (OOP), 223, 267
Ogg Vorbis format (.ogg), 296, 300
O’Neill, Tip, 366
One-Tangent Burn, 291
OpenGL (Open Graphics Library), 267
OpenOffice Writer, 107
OpenSource Computer Vision (OpenCV), 343
operating systems, xxiv
optimization, 126, 139
orbital mechanics, 288–292
os.chdir() method, 328–329
os.getcwd() method, 328–329
os.listdir() method, 333
os.path.abspath() method, 329
os.path.isdir() method, 333
os.path.join() method, 328–329
os.path.normpath() method, 328–329
os.remove() method, 333–334
PageRank algorithm, 162
palindromes, 19, 23–25
palingrams, 19, 25–33
paragraph objects, 111
patches, 2
path() method, 303
pathnames, 328–329
Peale, Stan, 265
PEP 8, 6, 14
PEP 257, 10–11, 14
periapsis, 290
perigee, 290
permutations, 51
permutations with repetition, 137
persistent data, 155
phonemes, 150
phrase anagrams, 39
phrase_anagrams.py, 43–44
A Picture Is Worth a Thousand Dollars problem, 264
Pig Latin project, 15, 367–368
pillow module, 326–327
PIL (Python Imaging Library), 327
pip (Preferred Installer Program), 7, 11, 110–111
plaintext, 63, 68
planetary motion, 287
planning, importance of, 2
polar coordinates, 200
polynomial equations, 193
Poor Foreign Man’s Bar Chart project, 16–17
Poor Man’s Bar Chart project, 15–16, 368
pop() function, 71, 86, 155
PowerShell, 7
practice projects
Automating Possible Keys, 88, 371–372
Beating Benford, 364–365, 387–388
The Birthday Paradox, 238
Building a Galactic Empire, 213–214, 380–382
Building a Rat Harem, 144
Checking the Number of Blank Lines, 122–123, 377–378
The Colchester Catch, 103, 376
Creating a More Efficient Safecracker, 144
Dictionary Cleanup, 33, 368–369
Finding Digrams, 61, 369
A Galaxy Far, Far Away, 212–213, 379–380
Going the Distance, 282, 385–387
Hacking Lincoln, 87, 370
Identifying Cipher Types, 88, 370–371
Pig Latin, 15, 367–368
Poor Man’s Bar Chart, 15–16, 368
A Roundabout Way to Predict Detectability, 214, 383–385
Route Transposition Cipher: Brute-Force Attack, 88–89, 372–374
Saving Mary, 102–103, 375
Storing a Key as a Dictionary, 88, 371
Syllable Counter vs. Dictionary File, 160, 378–379
predictive text, 147
Preferred Installer Program (pip), 7, 11, 110–111
prep_words() function, 55
print() function, 3
print statements, 5
probability theory, 161. See also Markov chain analysis
process_choice() function, 45–46
product() iterator, 137–138
profiles, 29–31
prograde, 288–289
project code, xxiv–xxv. See also
source code
Benford’s Law of Leading Digits, 355–363
Breeding an Army of Super-Rats, 130–136
Counting Syllables
Count Syllables, 156–158
Missing Words, 151–156
Cracking a High-Tech Safe, 140–142
Finding Palindromes, 24–25
Finding Palingrams, 28–29
Finding Phrase Anagrams, 43–49
Finding Single-Word Anagrams, 38–39
Finding Voldemort
British Brute-Force, 54–61
Gallic Gambit, 50
Generating Pseudonyms, 4–6
Hiding a Vigenère Cipher, 114–119
Markov Chain Analysis, 171–181
Mars Orbiter Game, 297–319
Modeling the Milky Way
Galaxy Simulator, 202–211
Probability-of-Detection, 194–199
Monty Hall Game, 228–238
Plumes of Io, 271–280
Rail Fence Cipher
Decryption, 84–86
Encryption, 82–84
Route Cipher Decryption, 69–79
Simulating Retirement Lifetimes, 250–259
Stacking Jupiter
Cropping and Scaling, 331–337
Enhancing, 340–342
Stacking, 337–340
Trevanion Cipher, 94–98
Verify vos Savant, 221–223
Writing a Null Cipher, 99–101
proportional fonts, 109–110
prototype and patch, 2
pseudocode
defined, 3–4
graphical example, 127–128
pseudonym generator, 1–13
pseudonyms.py, 4–5
Psych, 1
PyCharm, xxiv
pycodestyle, 7
pydocstyle, 11, 15
pygame, 267, 281–282, 296–319
Pylint, 7–13, 15
PyScripter, xxiv
Python Enhancement Proposals, 6
Python IDLE text editor, xxiv
Python Imaging Library (PIL), 327
Python Standard Library, 170
python-docx, 110–111
Q
quadratic equation, 193
QUIT event, 280
R
radians, 275
rail fence cipher, 80–86
random module, 5, 134
raw string, 82
Recursive Approach project, 34
RegiStar, 331
RegiStax, 331
relative paths, 329
repeated random sampling, 218
reStructuredText, 10–11, 15
retrograde, 288–289
rotate() method, 303, 305–306
Roundabout Way to Predict Detectability project, 214, 383–385
Route Cipher Encoder project, 90
route transposition cipher, 64–79
Route Transposition Cipher: Brute-Force Attack project, 88–89, 372–374
run objects, 111
S
Sagan, Carl, 211
Saving Mary project, 102–103, 375
scaffolding, 170
scale invariant, 348
SciPy, 195
SDL (Simple DirectMedia Library), 267
semilogarithmic plots, 349
semordnilap, 26
sensitivity studies, 136
serialization, 155–156
Shakespeare, William, 186
Shannon, Claude, 162, 184
SHARPEN filter, 342
shell utilities module, 329
Sheppard, Clinton, 143
Shock Canopy project, 283
shutil module, 329
shutil.rmtree() method, 333
Simple DirectMedia Library (SDL), 267
Slatkin, Brett, 15
slicing, 23–24
sorted() function, 37
sounds, 315–316
source code. See also project code
 anagrams.py, 38
 benford.py, 355–361
 brute_force_cracker.py, 138
 count_syllables.py, 157–158
 crop_n_scale_images.py, 332–334
 elementary_ink.py, 114–116
 enhance_image.py, 340–341
 galaxy_simulator.py, 202–209
 load_dictionary.py, 22
 list_cipher.py, 99
 markov_haiku.py, 171–180
 mars_orbiter.py, 297–319
 missing_words_finder.py, 151–156
 monty_hall_gui.py, 229–237
 monty_hall_mcs.py, 221–222
 nest_egg_mcs.py, 250–258
 nest_egg_mcs_1st_5yrs.py, 261–262
 null_cipher_finder.py, 95–98
 palindromes.py, 24
 palingrams.py, 28–29
 palingrams_optimized.py, 32
 phrase_anagrams.py, 44–47
 probability_of_detection.py, 195–198
 pseudonyms.py, 4–5
 pseudonyms_main_fixed.py, 12–13
 Pylint, 7–13
 rail_fence_cipher_decrypt.py, 84–86
 rail_fence_cipher_encrypt.py, 82–84
 route_cipher_decrypt_prototype.py, 69–72
 safe_cracker.py, 140–142
 stack_images.py, 338
 super_rats.py, 130–136
 test_count_syllables_w_full_corpus.py, 159
 tvashtar.py, 271–279
 voldemort_british.py, 54–61
 spam detection, 147
 spam filtering, 162
speech recognition, 162
Sphinx, 11
spiral galaxies, 188–189
spiral transfer, 292
splat operator (*), 25
split() function, 70
Sprite class, 272, 274, 298, 304, 314
Stager, Anson, 64
standardized names and procedures, 6
statistics, 217
steganography, 91, 108
stop conditions, 126
Storing a Key as a Dictionary project, 88, 371
string format method, 210
string.punctuation constant, 95–96
strings, 5–6
strip() function, 65
style guide, 6
styles, 111–112
 statistical models of, 168
substitution cipher, 65, 88, 106
superclasses, 229
Syllable Counter vs. Dictionary File project, 160, 378–379
syllables, counting, 147–159
synchronous orbits, 292
sys module, 5
sys.exit(1), 21
T
tableau, 106
Taleb, Nassim, 219, 263
terminal window, 111
text editors, 20
“The Growing Importance of Natural Language Processing”
 (DeAngelis), 155–156
Think Python, 2nd Edition (Downey), 2, 33, 61, 170
third-party modules
 pillow, 326–327
 python-docx, 110–111
 resources for, 15
Three-Rail Fence Cipher project, 90
time.time(), 31
Tk widget, 231
tkinter, 200–202, 212, 229–231
tracking, 109–110
training corpus, 148, 151
transposition cipher, 65
Trevanian cipher, 91–98
trigram_filter() function, 58
trigrams, 52
Trump, Donald, 185–186, 353–354
try statement, 21
Turing, Alan, 185
Turing Test project, 185
Turtledove, Harry, 66
Twain, Mark, 239–240
2of4bri.txt file, 20

U
Unbelievable! This Is Unbelievable!
Unbelievable! project, 185–186
unbreakable cipher. See Vigenère cipher
uncertainty, 245
universal gravity, 286–287, 307
Unix epoch, 31
unpacking, 176
update() method, 277, 303
user interfaces, writing, 178–181
Using Monospace Font project, 123

V
validate_col_row() function, 78
values, 172
Vanishing Act project, 344–345
variables, 136
duration variable, 254
eccentricity variable, 308–309, 314, 316
video, 330–331
Vigenère cipher, 106–121
Virtual Muse: Experiments in Computer
Poetry (Hartman), 145, 167, 184
vos Savant, Marilyn, 217–218

W
while loops, 5, 135, 254, 318
While No One Was Looking
project, 366
widget, defined, 203
With a Bullet project, 284
with statement, 21
word association norms (WANs), 184
word lists, 20

Y
Yahoo! Mail, 121

Z
Zatara, Zatanna, 19, 33
Zen of Python, 6
zip() function, 133, 141
zip_longest() function, 85–86
zorder attribute, 360