
3
S o l v i n g A n A g r A m S

An anagram is a word formed by rearrang-
ing the letters of another word. For example,

Elvis yields the eerie trio evils, lives, and veils.
Does this mean Elvis still lives but veils his evil

existence? In the book Harry Potter and the Chamber of
Secrets, “I am Lord Voldemort” is an anagram of the
evil wizard’s real name, Tom Marvolo Riddle. “Lord
Earldom Vomit” is also an anagram of Tom Marvolo
Riddle, but author J.K. Rowling had the good sense to
pass on that one.

In this chapter, first you’ll find all the anagrams for a given word
or name. Then, you’ll write a program that lets a user interactively build
an anagram phrase from their own name. Finally, you’ll play computer
wizard and see what it takes to extract “I am Lord Voldemort” from
“Tom Marvolo Riddle.”

36 Chapter 3

Project #4: Finding Single-Word Anagrams
You’ll start by analyzing simple single-word anagrams and figuring out how
to identify them programmatically. Having accomplished this, you’ll be
ready to take on anagram phrases in the following section.

T he objec T i v e

Use Python and a dictionary file to find all the single-word anagrams for a given English
word or single name. You can read instructions for finding and loading dictionary files at
the start of Chapter 2.

The Strategy and Pseudocode
More than 600 newspapers and 100 internet sites carry an anagram game
called Jumble. Created in 1954, it’s now the most recognized word-scramble
game in the world. Jumble can be really frustrating, but finding anagrams
is almost as easy as finding palindromes—you just need to know the com-
mon characteristic of all anagrams: they must have the same number of the
same letters.

Identifying an Anagram

Python doesn’t contain a built-in anagram operator, but you can easily
write one. For the projects in this chapter, you’ll load the dictionary file
from Chapter 2 as a list of strings. So the program needs to verify that
two strings are anagrams of each other.

Let’s look at an example. Pots is an anagram of stop, and you can verify
that stop and pots have the same number of letters with the len() function.
But there’s no way for Python to know whether two strings have the same
number of any single character—at least not without converting the strings
to another data structure or using a counting function. So, instead of look-
ing at these two words simply as strings, you can represent them as two lists
containing single-character strings. Create these lists in a shell, like IDLE,
and name them word and anagram, as I’ve done here:

>>> word = list('stop')
>>> word
['s', 't', 'o', 'p']
>>> anagram = list('pots')
>>> anagram
['p', 'o', 't', 's']

These two lists match our description of an anagram pair; that is, they
contain the same number of the same letters. But if you try to equate them
with the comparison operator ==, the result is False.

Solving Anagrams 37

>>> anagram == word
False

The problem is that the operator (==) considers two lists equivalent
only if they have the same number of the same list items and those items
occur in the same order. You can easily solve this problem with the built-
in function sorted(), which can take a list as an argument and reorder its
contents alphabetically. So, if you call sorted() twice—once for each of the
lists—and then compare the sorted lists, they will be equivalent. In other
words, == returns True.

>>> word = sorted(word)
>>> word
['o', 'p', 's', 't']
>>> anagram = sorted(anagram)
>>> anagram
['o', 'p', 's', 't']
>>> anagram == word
True

You can also pass a string to sorted() to create a sorted list like the ones
in the preceding code snippet. This will be useful for converting the words
from the dictionary file into sorted lists of single-character strings.

Now that you know how to verify that you’ve found an anagram, let’s
design the script in its entirety—from loading a dictionary and prompt-
ing the user for a word (or name) to searching for and printing all the
anagrams.

Using Pseudocode

Remember that planning with pseudocode will help you spot potential
issues and spotting those issues early will save you time. The following
pseudocode should help you better understand the script we’ll write in the
next section, anagrams.py.

Load digital dictionary file as a list of words
Accept a word from user
Create an empty list to hold anagrams
Sort the user-word
Loop through each word in the word list:
 Sort the word
 if word sorted is equal to user-word sorted:
 Append word to anagrams list
Print anagrams list

The script will start by loading words from a dictionary file into a list as
strings. Before you loop through the dictionary in search of anagrams, you
need to know which word you want anagrams of, and you need a place to
store anagrams when you find them. So, first ask the user to input a word

38 Chapter 3

and then create an empty list to store the anagrams. Once the program
has looped through every word in the dictionary, it will print that list of
anagrams.

Anagram-Finder Code
Listing 3-1 loads a dictionary file, accepts a word or name specified within
the program, and finds all the anagrams in the dictionary file for that word
or name. You’ll also need the dictionary-loading code from Chapter 2.
You can download these from https://www.nostarch.com/impracticalpython/
as anagrams.py and load_dictionary.py, respectively. Keep both files in the
same folder. You can use the same dictionary file you used in Chapter 2
or download another one (see Table 2-1 on page 20 for suggestions).

 import load_dictionary

 word_list = load_dictionary.load('2of4brif.txt')

 anagram_list = []

input a SINGLE word or SINGLE name below to find its anagram(s):
 name = 'Foster'

print("Input name = {}".format (name))
 name = name.lower()

print("Using name = {}".format(name))

sort name & find anagrams
 name_sorted = sorted(name)
 for word in word_list:

 word = word.lower()
 if word != name:
 if sorted(word) == name_sorted:
 anagram_list.append(word)

print out list of anagrams
print()

 if len(anagram_list) == 0:
 print("You need a larger dictionary or a new name!")
else:

 print("Anagrams =", *anagram_list, sep='\n')

Listing 3-1: Given a word (or name) and a dictionary file, this program searches for and
prints a list of anagrams.

You start by importing the load_dictionary module you created in
Chapter 2 . This module will open a dictionary text file and, with its
load() function, load all the words into a list . The *.txt file you use may
be different, depending on which dictionary file you downloaded (see
“Finding and Opening a Dictionary” on page 20).

Next, create an empty list, called anagram_list, to hold any anagrams
you find . Have the user add a single word, such as their first name . This

anagrams.py

Solving Anagrams 39

doesn’t have to be a proper name, but we’ll refer to it as name in the code
to distinguish it from a dictionary word. Print this name so the user can see
what was entered.

The next line anticipates a problematic user action. People tend to
type their name with an uppercase first letter, but dictionary files may not
include uppercase letters, and that matters to Python. So, first convert all
letters to lowercase with the .lower()string method .

Now sort the name . As mentioned previously, you can pass sorted() a
string as well as a list.

With the input sorted alphabetically in a list, it’s time to find anagrams.
Start a loop through each word in the dictionary word list . To be safe, con-
vert the word to lowercase, as comparison operations are case-sensitive. After
the conversion, compare the word to the unsorted name, because a word
can’t be an anagram of itself. Next, sort the dictionary word and compare it
to the sorted name. If it passes, append that dictionary word to anagram_list.

Now display the results. First, check whether the anagram list is empty.
If it is, print a whimsical reply so you don’t just leave the user hanging . If
the program found at least one anagram, print the list using the splat (*)
operator. Remember from Chapter 2 that splat lets you print each member
of a list on a separate line .

The following is example output for this program, using the input
name Foster:

Input name = Foster
Using name = foster

Anagrams =
forest
fortes
softer

If you’d like to use another input, change the value of the name variable
in the source code. As an exercise, try to adjust the code so that the user
is prompted to input the name (or word); you can do this with the input()
function.

Project #5: Finding Phrase Anagrams
In the previous project, you took a single name or word and rearranged all
the letters to find single-word anagrams. Now you will derive multiple words
from a name. The words in these phrase anagrams form only part of the input
name, and you will need several words to exhaust the available letters.

T he objec T i v e

Write a Python program that lets a user interactively build an anagram phrase from the
letters in their name.

40 Chapter 3

The Strategy and Pseudocode
The very best phrase anagrams are those that describe some well-known
characteristic or action associated with the name bearer. For example, the
letters in Clint Eastwood can be rearranged to form old west action, Alec
Guinness yields genuine class, Madam Curie produces radium came, George
Bush gives he bugs Gore, and Statue of Liberty contains built to stay free. My
own name yields a huge navel, which is not really one of my characteristics.

At this point, you may see a strategic challenge ahead: how does a com-
puter handle contextual content? The folks at IBM who invented Watson
seem to know, but for the rest of us, that boulder is a little hard to lift.

The brute-force method is a common approach used in online anagram
generators. These algorithms take a name and return lots of random ana-
gram phrases (generally, 100s to 10,000+). Most of the returned phrases
are nonsense, and scrolling through hundreds of these can be a chore.

An alternative approach is to acknowledge that humans are best at
 contextual issues and write a program that helps the human work through
the problem. The computer can take the initial name and provide words
that can be made from some (or all) the letters in it; the user can then
choose a word that “makes sense.” The program will then recalculate the
word choices from the remaining letters in the name, repeating the pro-
cess until every letter is used or the possible word choices are exhausted.
This design plays to the strengths of both participants.

You’ll need a simple interface that prompts the user to input the initial
name, displays potential word choices, and displays any remaining letters.
The program will also need to keep track of the growing anagram phrase
and let the user know when every letter has been used. There will likely be
lots of failed attempts, so the interface should allow the user to restart the
process at any time.

Since anagrams have the same number of the same letters, another way
to identify them is to count individual letters. If you think of your name as
a collection of letters, then a word can be built from your name if (1) all
its letters occur in your name and (2) they occur at the same frequency or less.
Obviously, if e occurs three times in a word and twice in your name, the
word can’t be derived from your name. So, if the collection of letters that
make up a word is not a subset of the collection of letters in your name,
then that word cannot be part of your name anagram.

Using Counter to Tally Letters

Fortunately for us, Python ships with a module named collections that
includes several container data types. One of these types, Counter, counts the
occurrences of an item. Python stores the items as dictionary keys and the
counts as dictionary values. For example, the following code snippet counts
how many of each bonsai tree type is in a list.

>>> from collections import Counter
 >>> my_bonsai_trees = ['maple', 'oak', 'elm', 'maple', 'elm', 'elm', 'elm', 'elm']
 >>> count = Counter(my_bonsai_trees)

Solving Anagrams 41

>>> print(count)
 Counter({'elm': 5, 'maple': 2, 'oak': 1})

The my_bonsai_trees list contains multiples of the same type of tree .
Counter tallies up the trees and creates an easy-to-reference dictionary .
Note that the print() function is optional and is used here for clarity.
Entering count, alone, will also display the dictionary contents.

You can use Counter, instead of the sorted() method, to find single-word
anagrams. Rather than two sorted lists, the output will be two dictionaries,
which can also be directly compared with ==. Here’s an example:

>>> name = 'foster'
>>> word = 'forest'
>>> name_count = Counter(name)
>>> print(name_count)

 Counter({'f': 1, 't': 1, 'e': 1, 'o': 1, 'r': 1, 's': 1})
>>> word_count = Counter(word)
>>> print(word_count)

 Counter({'f': 1, 't': 1, 'o': 1, 'e': 1, 'r': 1, 's': 1})

Counter produces a dictionary for each word that maps each letter in the
word to the number of times it occurs . The dictionaries are unsorted,
but despite the lack of sorting, Python correctly identifies each dictionary
as being equal if the dictionaries contain the same letters and the same
counts:

>>> if word_count == name_count:
 print("It's a match!")

It's a match!

A Counter gives you a wonderful way to find words that “fit” in a name. If
the count for each letter in a word is less than or equal to the count for the
same letter in the name, then the word can be derived from the name!

The Pseudocode

We’ve now made two important design decisions: (1) let the user interactively
build their anagram one word at a time and (2) use the Counter method to
find anagrams. This is enough to start thinking about high-level pseudocode:

Load a dictionary file
Accept a name from user
Set limit = length of name
Start empty list to hold anagram phrase
While length of phrase < limit:
 Generate list of dictionary words that fit in name
 Present words to user
 Present remaining letters to user
 Present current phrase to user
 Ask user to input word or start over

42 Chapter 3

 If user input can be made from remaining letters:
 Accept choice of new word or words from user
 Remove letters in choice from letters in name
 Return choice and remaining letters in name
 If choice is not a valid selection:
 Ask user for new choice or let user start over
 Add choice to phrase and show to user
 Generate new list of words and repeat process
When phrase length equals limit value:
 Display final phrase
 Ask user to start over or to exit

Divvying Up the Work

As procedural code becomes more complex, it becomes necessary to encap-
sulate much of it in functions. This makes it easier to manage input and
output, perform recursion, and read the code.

A main function is where a program starts its execution, and enables
high-level organization, such as managing all the bits and pieces of the
code, including dealing with the user. In the phrase anagram program,
the main function will wrap all the “worker bee” functions, take most of the
user input, keep track of the growing anagram phrase, determine when the
phrase is complete, and show the user the result.

Sketching out the tasks and their flow with pencil and paper is a great
way to figure out what you want to do and where (like “graphical pseudo-
code”). Figure 3-1 is a flowchart with function assignments highlighted. In
this case, three functions should be sufficient: main(), find_anagrams(), and
process_choice().

The main() function’s primary task is to set the letter count limit
and manage the while loop responsible for the general phrase anagram
build. The find_anagrams() function will take the current collection of let-
ters remaining in a name and return all possible words that can be made
from those letters. The words are then displayed for the user, along with
the current phrase, which is “owned” and displayed by the main() func-
tion. Then, the process_choice() function prompts the user to start over
or choose a word for the anagram phrase. If the user makes a choice, this
function determines whether the letters in the choice are available. If they
aren’t, the user is prompted to choose again or start over. If the user makes
a valid choice, the letters in the user’s choice are removed from the list of
remaining letters, and both the choice and list of leftovers are returned.
The main() function adds the returned choice to the existing phrase. If the
limit is reached, the completed phrase anagram is displayed, and the user
is asked to start over or exit.

Note that you ask for the initial name in the global scope, rather than
in the main() function. This allows the user to start over fresh at any time
without having to re-enter their name. For now, if the user wants to choose
a brand-new name, they’ll have to exit the program and start over. In
Chapter 9, you’ll use a menu system that lets users completely reset what
they’re doing without exiting.

Solving Anagrams 43

Load
dictionary

Get
name

Phrase length = 0
Name length = n

While
phrase < Limit

Process
choice

Valid
choice?ChoiceName − Choice

False

True

Try again

Start over? Exit

Display
final phrase

False

True

Global

Main function

Get anagrams function

Process choice function

Find all
words in

name

Display
phrase

Display
words

Limit = n

True False

Phrase + Choice

Get
choice

Exit

Figure 3-1: Flowchart for finding phrase anagrams with function assignments highlighted

The Anagram Phrase Code
The code in this section takes a name from a user and helps them build
an anagram phrase of that name. You can download the entire script from
https://www.nostarch.com/impracticalpython/ as phrase_anagrams.py. You’ll also
need to download the load_dictionary.py program. Save both files in the
same folder. You can use the same dictionary file you used in “Project #4:
Finding Single-Word Anagrams” on page 36.

44 Chapter 3

Setting Up and Finding Anagrams

Listing 3-2 imports the modules that phrase_anagrams.py uses, loads a dic-
tionary file, asks the user for an input name, and defines the find_anagrams()
function, which does most of the work related to finding anagrams.

 import sys
from collections import Counter
import load_dictionary

 dict_file = load_dictionary.load('2of4brif.txt')
ensure "a" & "I" (both lowercase) are included
dict_file.append('a')
dict_file.append('i')
dict_file = sorted(dict_file)

 ini_name = input("Enter a name: ")

 def find_anagrams(name, word_list):
 """Read name & dictionary file & display all anagrams IN name."""

 name_letter_map = Counter(name)
 anagrams = []

 for word in word_list:
 test = ''
 word_letter_map = Counter(word.lower())
 for letter in word:

 if word_letter_map[letter] <= name_letter_map[letter]:
 test += letter
 if Counter(test) == word_letter_map:
 anagrams.append(word)

 print(*anagrams, sep='\n')
 print()
 print("Remaining letters = {}".format(name))
 print("Number of remaining letters = {}".format(len(name)))
 print("Number of remaining (real word) anagrams = {}".format(len(anagrams)))

Listing 3-2: Imports modules, loads dictionary, and defines the find_anagrams() function

Start with the import statements , using the recommended order of
Python Standard Library, third-party modules, and then locally developed
modules. You need sys for coloring specific outputs red in the IDLE window
and for letting the user exit the program with a keystroke. You’ll use Counter
to help identify anagrams of the input name.

Next load the dictionary file using the imported module . The file-
name argument should be the filename of the dictionary you’re using.
Because some dictionary files omit a and I, append these (if needed), and
sort the list so that they can be found at the proper alphabetical locations,
rather than at the end of the list.

Now get a name from the user and assign it to the variable ini_name (or
“initial name”) . You’ll derive a name variable from this initial name, and

phrase
_anagrams.py,
part 1

Solving Anagrams 45

name will be progressively changed as the user builds up the name anagram.
Preserving the initial name as a separate variable will let you reset every-
thing if the user wants to start over or try again.

The next block of code is find_anagrams() , the function for finding
anagrams in the name. The parameters for this function consist of a name
and a word list. The function starts by using Counter to count the number of
times a given letter appears in the name and then assigns the count to the
variable name_letter_map ; Counter uses a dictionary structure with the letter
as the key and the count as the value. The function then creates an empty
list to hold the anagrams and starts a for loop through each word in the
dictionary file .

The for loop starts by creating an empty string called test . Use this
variable to accumulate all the letters in the word that “fit” in name. Then
make a Counter for the current word, as you did for name, and call it word_
letter_map . Loop through the letters in word , checking that the count
of each letter is the same as, or less than, the count in name. If the letter
meets this condition, then it is added to the test string. Since some letters
might get rejected, end the loop by running Counter on test and comparing
it to word_letter_map. If they match, append the word to the anagrams list.

The function ends by displaying the list of words, using the splat
 operator with print, along with some statistics for the user . Note that
find_anagrams() doesn’t return anything. This is where the human inter-
action part comes in. The program will continue to run, but nothing will
happen until the user chooses a word from the displayed list.

Processing the User’s Choice

Listing 3-3 defines process_choice(), the function in phrase_anagrams.py that
takes the user’s choice of word (or words), checks it against the remaining
letters in the name variable, and returns acceptable choices—along with any
leftover letters—to the main() function. Like main(), this function gets to talk
directly to the user.

 def process_choice(name):
 """Check user choice for validity, return choice & leftover letters."""
 while True:

 choice = input('\nMake a choice else Enter to start over or # to end: ')
 if choice == '':
 main()
 elif choice == '#':
 sys.exit()
 else:

 candidate = ''.join(choice.lower().split())
 left_over_list = list(name)
 for letter in candidate:

 if letter in left_over_list:
 left_over_list.remove(letter)

 if len(name) - len(left_over_list) == len(candidate):
 break

phrase
_anagrams.py,
part 2

46 Chapter 3

 else:
 print("Won't work! Make another choice!", file=sys.stderr)

 name = ''.join(left_over_list) # makes display more readable
 return choice, name

Listing 3-3: Defines the process_choice() function

Start by defining the function with one parameter called name .
The first time the program is run, this parameter will be the same as the
ini_name variable—the full name entered by the user when the program
starts up. After the user has chosen a word (or words) to use in the ana-
gram phrase, it will represent the remaining letters in the name.

Start the function with a while loop that will run until the user makes
a valid choice and then get input from the user . The user has a choice of
entering one or more words from the current anagram list, pressing enter
to start over, or pressing # to quit. Use #, rather than a word or letter, so
that it can’t be confused for a valid choice.

If the user makes a choice, the string is assigned to the variable candidate,
stripped of whitespace, and converted to all lowercase . This is so it can be
directly compared to the name variable. After that, a list is built from the name
variable to hold any remaining letters .

Now begin a loop to subtract the letters used in candidate . If a chosen
letter is present in the list, it’s removed.

If the user entered a word that isn’t in the displayed list, or entered mul-
tiple words, a letter may not be present in the list. To check for this, subtract
the leftover letters from name and, if the result is the number of letters in
 candidate, determine that the input is valid and break out of the while loop .
Otherwise, display a warning and color it red for those using the IDLE win-
dow. The while loop will keep prompting the user until an acceptable choice
is made.

If all the letters in the user’s choice pass the test, the list of leftovers
is converted back into a string and used to update the name variable .
Converting the list into a string isn’t strictly necessary, but it keeps the
name variable type consistent and lets you display the remaining letters in
a clearly readable format without the need for additional print arguments.

Finish by returning both the user’s choice and the string of remaining
letters (name) to the main() function .

Defining the main() Function

Listing 3-4 defines the main() function in phrase_anagrams.py. This function
wraps the previous functions, runs a while loop, and determines when the
user has successfully created an anagram phrase.

def main():
 """Help user build anagram phrase from their name."""

 name = ''.join(ini_name.lower().split())
 name = name.replace('-', '')

phrase
_anagrams.py,
part 3

Solving Anagrams 47

 limit = len(name)
 phrase = ''
 running = True

 while running:
 temp_phrase = phrase.replace(' ', '')
 if len(temp_phrase) < limit:

 print("Length of anagram phrase = {}".format(len(temp_phrase)))

 find_anagrams(name, dict_file)
 print("Current anagram phrase =", end=" ")
 print(phrase, file=sys.stderr)

 choice, name = process_choice(name)
 phrase += choice + ' '

 elif len(temp_phrase) == limit:
 print("\n*****FINISHED!!!*****\n")
 print("Anagram of name =", end=" ")
 print(phrase, file=sys.stderr)
 print()

 try_again = input('\n\nTry again? (Press Enter else "n" to quit)\n ')
 if try_again.lower() == "n":
 running = False
 sys.exit()
 else:
 main()

 if __name__ == '__main__':
 main()

Listing 3-4: Defines and calls main() function

The first order of business is to turn the ini_name variable into a contin-
uous string of lowercase characters with no whitespace . Remember, case
matters to Python, so convert all strings to lowercase wherever they occur;
that way, comparisons will work as intended. Python also recognizes spaces
as characters, so you need to remove these, as well as hyphens in hyphen-
ated names, before doing any letter counts. By declaring this new name vari-
able, you preserve the initial name in case the user wants to start over. Only
name will be altered in the process_choice() function.

Next, get the length of the name to use as a limit in the while loop.
This will let you know when the anagram phrase has used all the letters in
the name and it’s time to end the loop. Do this outside the while loop to
ensure you are using the full initial name. Then assign a variable to hold the
anagram phrase and set a running variable to True to control the while loop.

Now begins the big loop that lets you iterate over the name and build
an anagram phrase . First, prepare a string to hold the growing phrase
and strip it of whitespace . Spaces will count as letters and throw off the
operator when the length of the phrase is compared to the limit variable.

48 Chapter 3

Next, make the comparison, and if the length of the phrase is less than the
limit, display the current length of the phrase as a prelude to engaging with
the user .

It’s time to put the other functions to work. Call find_anagrams() and
pass it the name and dictionary file to get the list of anagrams in the name.
At the bottom of the displayed list, show the user the current phrase. Use
the print() function’s end parameter to display two print statements on the
same line. This way, you can use a red font on the phrase in the IDLE win-
dow to distinguish it from all the other information in the display.

Next, call the process_choice() function to get the user’s word choice
and add it to the growing anagram phrase. This also gets the updated ver-
sion of the name variable so that the program can use it again in the while
loop in the event that the phrase isn’t complete.

If the length of the phrase is equal to the limit variable , the name
anagram is complete. Let the user know they’re finished and present
the phrase using red font. Note that you don’t have a conditional for the
length of the phrase being greater than the limit variable. That’s because
the process_choice() function is already handling this outcome (choosing
more letters than are available would not pass the validation criterion).

The main() function ends by asking the user whether they want to try
again. If they type n, the program ends; if they press enter, the main()
 function is called again . As stated earlier, the only way for the user to
change the initial name is to exit and relaunch the program.

Outside of the main() function, end with the standard two lines for call-
ing the main() function when the program is not imported as a module .

Running an Example Session

In this section, I’ve included an example interactive session, using phrase_
anagrams.py and the name Bill Bo. Bold font indicates user input, and italic
bold font indicates where red font is used in the display.

Enter a name: Bill Bo
Length of anagram phrase = 0
bib
bill
blob
bob
boil
boll
i
ill
lib
lilo
lo
lob
oi
oil

Solving Anagrams 49

Remaining letters = billbo
Number of remaining letters = 6
Number of remaining (real word)anagrams = 14
Current anagram phrase =

Make a choice else Enter to start over or # to end: ill
Length of anagram phrase = 3
bob

Remaining letters = bbo
Number of remaining letters = 3
Number of remaining (real word)anagrams = 1
Current anagram phrase = ill

Make a choice else Enter to start over or # to end: Bob

***** FINISHED!!! *****

Anagram of name = ill Bob

Try again? (Press Enter else "n" to quit)

The number of anagrams found depends on the dictionary file you use.
If you’re having a hard time building anagram phrases, try using a larger
dictionary.

Project #6: Finding Voldemort: The Gallic Gambit
Did you ever wonder how Tom Riddle came up with the anagram “I am
Lord Voldemort”? Did he put quill to parchment or just wave a wand?
Could the magic of Python have helped?

Let’s pretend for a moment that you’re the professor of computer wiz-
ardry at Hogwarts, and Tom Riddle, school prefect and model student, has
come to you for help. Using your phrase_anagrams.py spell from the previous
section, he could find I am Lord in the very first list of anagrams, much to
his delight. But the remaining letters, tmvoordle, yield only trivial words like
dolt, drool, looter, and lover. Riddle would not be pleased.

In hindsight, the problem is apparent: Voldemort is French and won’t be
found in any English dictionary file. Vol de la mort means “flight of death”
in French, so Voldemort is loosely “death flight.” But Riddle is 100 percent
English, and so far, you have been working with English. Without reverse engi-
neering, you have no more reason to suddenly switch out your English diction-
ary for a French one than you have to use Dutch, German, Italian, or Spanish.

You could try randomly shuffling the remaining letters and seeing
what falls out. Unfortunately, the number of possible combinations is the
factorial of the number of letters divided by the factorial of the number of
repeats (o occurs twice): 9! / 2! = 181,440. If you were to scroll through all

50 Chapter 3

those permutations, taking only one second to review each, it would take
you over two days to complete the list! And if you asked Tom Riddle to do
this, he would probably use you to make a horcrux!

At this point, I would like to explore two logical paths ahead. One I
call the “Gallic Gambit” and the other the “British Brute-Force.” We’ll look
at the first one here and the second one in the next section.

n o T e Marvolo is clearly a fabricated word used to make the Voldemort anagram work.
J.K. Rowling could have gained additional latitude by using Thomas for Tom or by
leaving off the Lord or I am parts. Tricks like these are used when the book is trans-
lated into non-English languages. In some languages, one or both names may need to
be changed. In French, the anagram is “I am Voldemort.” In Norwegian, “Voldemort
the Great.” In Dutch, “My name is Voldemort.” In others, like Chinese, the anagram
can’t be used at all!

Tom Riddle was obsessed with beating death, and if you go looking for
death in tmvoordle, you will find both the old French morte (as in the famous
book Le Morte d’Arthur by Sir Thomas Malory) and the modern French mort.
Removing mort leaves vodle, five letters with a very manageable number of per-
mutations. In fact, you can easily find volde right in the interpreter window:

 >>> from itertools import permutations
>>> name = 'vodle'

 >>> perms = [''.join(i) for i in permutations(name)]
 >>> print(len(perms))

120
 >>> print(perms)

['vodle', 'vodel', 'volde', 'voled', 'voedl', 'voeld', 'vdole', 'vdoel',
'vdloe', 'vdleo', 'vdeol', 'vdelo', 'vlode', 'vloed', 'vldoe', 'vldeo',
'vleod', 'vledo', 'veodl', 'veold', 'vedol', 'vedlo', 'velod', 'veldo',
'ovdle', 'ovdel', 'ovlde', 'ovled', 'ovedl', 'oveld', 'odvle', 'odvel',
'odlve', 'odlev', 'odevl', 'odelv', 'olvde', 'olved', 'oldve', 'oldev',
'olevd', 'oledv', 'oevdl', 'oevld', 'oedvl', 'oedlv', 'oelvd', 'oeldv',
'dvole', 'dvoel', 'dvloe', 'dvleo', 'dveol', 'dvelo', 'dovle', 'dovel',
'dolve', 'dolev', 'doevl', 'doelv', 'dlvoe', 'dlveo', 'dlove', 'dloev',
'dlevo', 'dleov', 'devol', 'devlo', 'deovl', 'deolv', 'delvo', 'delov',
'lvode', 'lvoed', 'lvdoe', 'lvdeo', 'lveod', 'lvedo', 'lovde', 'loved',
'lodve', 'lodev', 'loevd', 'loedv', 'ldvoe', 'ldveo', 'ldove', 'ldoev',
'ldevo', 'ldeov', 'levod', 'levdo', 'leovd', 'leodv', 'ledvo', 'ledov',
'evodl', 'evold', 'evdol', 'evdlo', 'evlod', 'evldo', 'eovdl', 'eovld',
'eodvl', 'eodlv', 'eolvd', 'eoldv', 'edvol', 'edvlo', 'edovl', 'edolv',
'edlvo', 'edlov', 'elvod', 'elvdo', 'elovd', 'elodv', 'eldvo', 'eldov']
>>>

 >>> print(*perms, sep='\n')
vodle
vodel
volde
voled
voedl
--snip--

Solving Anagrams 51

Start by importing permutations from itertools . The itertools module
is a group of functions in the Python Standard Library that create iterators
for efficient looping. You generally think of permutations of numbers, but
the itertools version works on elements in an iterable, which includes letters.

After entering the name or, in this case, the remaining letters in the
name, use list comprehension to create a list of permutations of the name .
Join each element in a permutation so each item in the final list will be a
unique permutation of vodle. Using join yields the new name as an element,
'vodle', versus a hard-to-read tuple of single-character elements,('v', 'o',
'd', 'l', 'e').

Get the length of the permutations as a check; that way, you can con-
firm that it is, indeed, the factorial of 5 . At the end, no matter how you
print it , volde is easy to find.

Project #7: Finding Voldemort: The British Brute-Force
Now let’s assume Tom Riddle is bad at anagrams (or French). He doesn’t
recognize mort or morte, and you’re back to shuffling the remaining nine let-
ters thousands and thousands of times, looking for a combination of letters
that he would find pleasing.

On the bright side, this is a more interesting problem programmatically
than the interactive solution you just saw. You just need to whittle down all
the permutations using some form of filtering.

T he objec T i v e

Reduce the number of anagrams of tmvoordle to a manageable number that will still con-
tain Voldemort.

Strategy
Per the Oxford English Dictionary, 2nd Edition, there are 171,476 English
words currently in use, which is fewer than the total number of permuta-
tions in tmvoordle! Regardless of the language, you can surmise that most of
the anagrams generated by the permutations() function are nonsense.

With cryptography, the science of codes and ciphers, you can safely elimi-
nate many useless, unpronounceable combinations, such as ldtmvroeo, and
you won’t even have to inspect them visually. Cryptographers have long
studied languages and compiled statistics on recurring patterns of words
and letters. We can use many cryptanalytical techniques for this project,
but let’s focus on three: consonant-vowel mapping, trigram frequency, and
digram frequency.

52 Chapter 3

Filtering with Consonant-Vowel Mapping

A consonant-vowel map (c-v map) simply replaces the letters in a word with a
c or a v, as appropriate. Riddle, for example, becomes cvcccv. You can write
a program that goes through a dictionary file and creates c-v maps for each
word. By default, impossible combinations, like ccccccvvv, will be excluded.
You can further exclude membership by removing words with c-v maps that
are possible but that have a low frequency of occurrence.

C-v maps are fairly inclusive, but that’s good. An option for Riddle at
this point is to make up a new proper name, and proper names don’t have
to be words that occur in a dictionary. So you don’t want to be too exclusive
early in the process.

Filtering with Trigrams

Since the initial filter needs a relatively wide aperture, you’ll need to filter
again at a lower level to safely remove more anagrams from the permuta-
tions. Trigrams are triplets comprising three consecutive letters. It should
come as no surprise that the most common trigram in English is the word
the, followed closely by and and ing. At the other end of the scale are tri-
grams like zvq.

You can find statistics on the frequency of occurrence of trigrams online
at sites like http://norvig.com/ngrams/count_3l.txt. For any group of letters,
like tmvoordle, you can generate and use a list of the least common trigrams
to further reduce the number of permutations. For this project, you can use
the least-likely_trigrams.txt file, downloadable from https://www.nostarch.com/
impracticalpython/. This text file contains the trigrams in tmvoordle that occur
in the bottom 10 percent of trigrams in the English language, based on fre-
quency of occurrence.

Filtering with Digrams

Digrams (also called bigrams) are letter pairs. Commonly occurring digrams
in English include an, st, and er. On the other hand, you rarely see pairs
like kg, vl, or oq. You can find statistics on the frequency of occurrence of
digrams at websites such as https://www.math.cornell.edu/~mec/2003-2004/
cryptography/subs/digraphs.html and http://practicalcryptography.com/.

Table 3-1 was built from the tmvoordle collection of letters and a 60,000-
word English dictionary file. The letters along the left side of the chart are
the starting letters for the digrams; those along the top represent the end
letter. For example, to find vo, start with the v on the left and read across
to the column beneath the o. For the digrams found in tmvoordle, vo occurs
only 0.8 percent of the time.

http://norvig.com/ngrams/count_3l.txt
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
https://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
http://practicalcryptography.com/

Solving Anagrams 53

Table 3-1: Relative Frequency of Digrams from the Letters tmvoordle in a
60,000-Word Dictionary (Black Squares Indicate No Occurrences)

d e l m o r t v

d 3.5% 0.5% 0.1% 1.7% 0.5% 0.0% 0.1%

e 6.6% 2.3% 1.4% 0.7% 8.9% 2.0% 0.6%

l 0.4% 4.4% 0.1% 4.2% 0.0% 0.4% 0.1%

m 0.0% 2.2% 0.0% 2.8% 0.0% 0.0% 0.0%

o 1.5% 0.5% 3.7% 3.2% 5.3% 7.1% 2.4% 1.4%

r 0.9% 6.0% 0.4% 0.7% 5.7% 1.3% 0.3%

t 0.0% 6.2% 0.6% 0.1% 3.6% 2.3% 0.0%

v 0.0% 2.5% 0.0% 0.0% 0.8% 0.0% 0.0%

Assuming you’re looking for “English-like” letter combinations, you
can use frequency maps like this to exclude letter pairs that are unlikely
to occur. Think of it as a “digram sieve” that lets only the unshaded
squares pass.

To be safe, just exclude digrams that occur less than 0.1 percent of the
time. I’ve shaded these in black. Notice that it would be very easy to elimi-
nate the required vo pairing in Voldemort, if you cut too close to the bone!

You can design your filter to be even more selective by tagging digrams
that are unlikely to occur at the start of a word. For example, while it’s not
unusual for the digram lm to occur within a word (as in almanac and balmy),
you’ll need a lot of luck finding a word that starts with lm. You don’t need
cryptography to find these digrams; just try to pronounce them! Some
starting-point choices for these are shaded gray in Table 3-2.

Table 3-2: Update of Table 3-1, Where Gray-Shaded Squares Indicate Digrams
Unlikely to Occur at the Start of a Word

d e l m o r t v

d 3.5% 0.5% 0.1% 1.7% 0.5% 0.0% 0.1%

e 6.6% 2.3% 1.4% 0.7% 8.9% 2.0% 0.6%

l 0.4% 4.4% 0.1% 4.2% 0.0% 0.4% 0.1%

m 0.0% 2.2% 0.0% 2.8% 0.0% 0.0% 0.0%

o 1.5% 0.5% 3.7% 3.2% 5.3% 7.1% 2.4% 1.4%

r 0.9% 6.0% 0.4% 0.7% 5.7% 1.3% 0.3%

t 0.0% 6.2% 0.6% 0.1% 3.6% 2.3% 0.0%

v 0.0% 2.5% 0.0% 0.0% 0.8% 0.0% 0.0%

54 Chapter 3

You now have three filters you can use on the 181,440 permutations of
tmvoordle : c-v maps, trigrams, and digrams. As a final filter, you should give
the user the option of viewing only anagrams that start with a given letter.
This will let the user divide the remaining anagrams into more manageable
“chunks,” or focus on the more intimidating-sounding anagrams, like those
that begin with v!

The British Brute-Force Code
The upcoming code generates permutations of tmvoordle and passes them
through the filters just described. It then gives the user the option to view
either all the permutations or only those starting with a given letter.

You can download all the programs you’ll need from https://www .no
starch.com/impracticalpython/. The code in this section is one script named
voldemort_british.py. You’ll also need the load_dictionary.py program in the
same folder, along with the same dictionary file you used for the projects
earlier in this chapter. Finally, you’ll need a new file named least-likely
_trigrams.txt, a text file of trigrams with a low frequency of occurrence in
English. Download all these files into the same folder.

Defining the main() Function

Listing 3-5 imports the modules that voldemort_british.py needs and defines
its main() function. In the phrase_anagrams.py program, you defined the
main() function at the end of the code. Here we put it at the start. The
advantage is that you can see what the function is doing—how it’s running
the program—from the start. The disadvantage is that you don’t know what
any of the helper functions do yet.

 import sys
from itertools import permutations
from collections import Counter
import load_dictionary

 def main():
 """Load files, run filters, allow user to view anagrams by 1st letter."""

 name = 'tmvoordle'
 name = name.lower()

 word_list_ini = load_dictionary.load('2of4brif.txt')
 trigrams_filtered = load_dictionary.load('least-likely_trigrams.txt')

 word_list = prep_words(name, word_list_ini)
 filtered_cv_map = cv_map_words(word_list)
 filter_1 = cv_map_filter(name, filtered_cv_map)
 filter_2 = trigram_filter(filter_1, trigrams_filtered)
 filter_3 = letter_pair_filter(filter_2)
 view_by_letter(name, filter_3)

Listing 3-5: Imports modules and defines the main() function

voldemort
_british.py,
part 1

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

Solving Anagrams 55

Start by importing modules you’ve used in the previous projects .
Now define the main() function . The name variable is a string of the
remaining letters tmvoordle . Set it to lowercase to guard against a user
input error. Next, use the load_dictionary module to load your dictionary
file and the trigrams file as lists . Your dictionary filename may be differ-
ent from that shown.

Finally, call all the various functions in order . I’ll describe each of
these functions momentarily, but basically, you need to prepare the word
list, prepare the c-v maps, apply the three filters, and let the user view all
the anagrams at once or view a subset based on the anagram’s first letter.

Preparing the Word List

Listing 3-6 prepares the word list by including just the words that have as
many letters as in the name variable (in this case, nine). You should also
ensure that all the words are lowercase, to be consistent.

 def prep_words(name, word_list_ini):
 """Prep word list for finding anagrams."""

 print("length initial word_list = {}".format(len(word_list_ini)))
 len_name = len(name)

 word_list = [word.lower() for word in word_list_ini
 if len(word) == len_name]

 print("length of new word_list = {}".format(len(word_list)))
 return word_list

Listing 3-6: Creates lists of words that are equal in length to the name variable

Define the prep_words() function to take a name string and list of dic-
tionary words as arguments . I suggest that you print the lengths of your
various word lists before and after they’ve gone through a filter; that way,
you can track how much impact the filters are having. So print the length of
the dictionary . Assign a variable to hold the length of the name and then
use list comprehension to create a new list by looping through the words
in word_list_ini, keeping those whose length is the same as the number of
letters in name, and converting them to lowercase . Next, print the length
of this new word list , and finally, return this new list for use in the next
function .

Generating the C-V Map

You need to convert the prepared word list to a c-v map. Remember that
you’re no longer interested in actual words in the dictionary; those have
been reviewed and rejected. Your goal is to shuffle the remaining letters
until they form something that resembles a proper noun.

Listing 3-7 defines a function that generates c-v maps for each word in
word_list. The program, voldemort_british.py, will use the c-v map to judge
whether a shuffled letter combination is reasonable based on consonant-
vowel patterns in the English language.

voldemort
_british.py,
part 2

56 Chapter 3

 def cv_map_words(word_list):
 """Map letters in words to consonants & vowels."""

 vowels = 'aeiouy'
 cv_mapped_words = []
 for word in word_list:

 temp = ''
 for letter in word:
 if letter in vowels:
 temp += 'v'
 else:
 temp += 'c'
 cv_mapped_words.append(temp)

 # determine number of UNIQUE c-v patterns
 total = len(set(cv_mapped_words))

 # target fraction to eliminate
 target = 0.05

 # get number of items in target fraction
 n = int(total * target)
 count_pruned = Counter(cv_mapped_words).most_common(total - n)
 filtered_cv_map = set()

 for pattern, count in count_pruned:
 filtered_cv_map.add(pattern)
 print("length filtered_cv_map = {}".format(len(filtered_cv_map)))

 return filtered_cv_map

Listing 3-7: Generates c-v maps from the words in word_list

Define the cv_map_words() function to take the prepped word list as an
argument . Since consonants and vowels form a binary system, you can
define the vowels with a string . Create an empty list to hold the maps .
Then loop through the words and the letters in each word, converting the
letters to either a c or v . Use a variable called temp to accumulate the
map; then append it to the list. Note that temp is reinitialized each time
the loop repeats.

You want to know the frequency of occurrence of a given c-v map pat-
tern (for example, cvcv), so you can remove those with a low likelihood of
occurrence. Before calculating the frequency, you need to collapse your list
down to unique c-v maps—as it is now, cvcv may be repeated many, many
times. So, turn the cv_mapped_words list into a set, to remove duplicates, and
get its length . Now you can define a target percentage to eliminate,
using fractional values . Start with a low number like 0.05—equivalent
to 5 percent—so you’re less likely to eliminate anagrams that can form
usable proper names. Multiply this target value by the total length of the
cv_mapped_words set and assign the result to the variable n . Be sure to con-
vert n to an integer; since it will represent a count value, it can’t be a float.

The Counter module data type has a handy method, most_common(), that
will return the most common items in a list based on a count value that you
provide; in this case, that value will be the length of the c-v map list, total,
minus n. The value you pass most_common() must be an integer. If you pass

voldemort
_british.py,
part 3

Solving Anagrams 57

the most_common() function the length of the list, it will return all the items
in the list. If you subtract the count for the least likely 5 percent, you will
effectively eliminate these c-v maps from the list .

Remember, Counter returns a dictionary, but all you need are the final
c-v maps, not their associated frequency counts. So initialize an empty
set called filtered-cv-map and loop through each key-value pair in count
_pruned(), adding only the key to the new set. Print the length of this set, so
you can see the impact of the filter. Then finish by returning the filtered
c-v map for use in the next function .

Defining the C-V Map Filter

Listing 3-8 applies the c-v map filter: anagrams are generated based on per-
mutations of the letters in the name variable, and then the program converts
them to c-v maps and compares those anagrams to the filtered c-v maps
built with the cv_map_words() function. If an anagram’s c-v map is found in
filtered_cv_map, then the program stores the anagram for the next filter.

 def cv_map_filter(name, filtered_cv_map):
 """Remove permutations of words based on unlikely cons-vowel combos."""

 perms = {''.join(i) for i in permutations(name)}
 print("length of initial permutations set = {}".format(len(perms)))
 vowels = 'aeiouy'

 filter_1 = set()
 for candidate in perms:

 temp = ''
 for letter in candidate:
 if letter in vowels:
 temp += 'v'
 else:
 temp += 'c'

 if temp in filtered_cv_map:
 filter_1.add(candidate)
 print("# choices after filter_1 = {}".format(len(filter_1)))

 return filter_1

Listing 3-8: Defines cv_map_filter() function

Define the function cv_map_filter() to take two arguments: the name,
followed by the set of c-v maps returned by cv_map_words() . Use set compre-
hension and the permutations module to generate the set of permutations .
I described this process in “Project #6: Finding Voldemort: The Gallic
Gambit” on page 49. Use a set here to permit later use of set operations,
like taking the difference between two filter sets. This also removes dupli-
cates, as permutations treats each o as a separate item, and returns 9!, rather
than 9! / 2!. Note that permutations considers tmvoordle and tmvoordle differ-
ent strings.

Now initialize an empty set to hold the contents of the first filter and
begin looping through the permutations . Use the term candidate, as most
of these aren’t words but just strings of random letters. For each candidate,

voldemort
_british.py,
part 4

58 Chapter 3

loop through the letters and map them to a c or a v, as you did with the
cv_words() function. Check each c-v map, temp, for membership in filtered_
cv_map. This is one reason for using sets: membership checks are very fast. If
the candidate meets the condition, add it to filter_1 . Finish by returning
your new anagram set .

Defining the Trigram Filter

Listing 3-9 defines the trigram filter, which removes the permutations with
unlikely three-letter triplets. It uses a text file derived from various cryptog-
raphy websites that has been tailored to the letters in tmvoordle. This func-
tion will return only permutations that include one of these trigrams; the
main() function will pass the new set to the next filter function.

 def trigram_filter(filter_1, trigrams_filtered):
 """Remove unlikely trigrams from permutations."""

 filtered = set()
 for candidate in filter_1:
 for triplet in trigrams_filtered:

 triplet = triplet.lower()
 if triplet in candidate:
 filtered.add(candidate)

 filter_2 = filter_1 - filtered
 print("# of choices after filter_2 = {}".format(len(filter_2)))

 return filter_2

Listing 3-9: Defines the trigram_filter() function

Parameters for the trigram filter include the output from the c-v map
filter and the external list of unlikely trigrams, trigrams_filtered .

Initialize an empty set to hold permutations that contain one of the
forbidden trigrams . Then start another for loop that looks through the
candidates that survived the last filter . A nested for loop looks at each
triplet in the trigrams list . If the triplet is in the candidate, it is added to
the filter.

Now you can use set operations to subtract the new filter from
filter_1 and then return the difference for use with the next filter .

Defining the Digram Filter

Listing 3-10 defines the digram filter, which removes unlikely letter pairs.
Some will trigger the filter if they occur anywhere within the permutation;
others will do so only if they occur at the start of the permutation. The dis-
allowed digrams are based on the shaded cells in Table 3-2. The function
returns the results of this filter for use in the final filter function.

 def letter_pair_filter(filter_2):
 """Remove unlikely letter-pairs from permutations."""

 filtered = set()
 rejects = ['dt', 'lr', 'md', 'ml', 'mr', 'mt', 'mv',
 'td', 'tv', 'vd', 'vl', 'vm', 'vr', 'vt']

voldemort
_british.py,
part 5

voldemort
_british.py,
part 6

Solving Anagrams 59

 first_pair_rejects = ['ld', 'lm', 'lt', 'lv', 'rd',
 'rl', 'rm', 'rt', 'rv', 'tl', 'tm']
 for candidate in filter_2:
 for r in rejects:

 if r in candidate:
 filtered.add(candidate)

 for fp in first_pair_rejects:
 if candidate.startswith(fp):
 filtered.add(candidate)

 filter_3 = filter_2 - filtered
 print("# of choices after filter_3 = {}".format(len(filter_3)))

 if 'voldemort' in filter_3:
 print("Voldemort found!", file=sys.stderr)

 return filter_3

Listing 3-10: Defines the letter_pair_filter() function

This filter accepts the results of the previous filter as an argument .
An empty set is initialized to hold any discarded permutations . Then
two lists of rejected pairs are assigned to the variables rejects and first_
pair_rejects . Both lists were entered manually. The first represents cells
shaded black in Table 3-2; the second references cells shaded gray. Any
permutation that contains a member of the first list—anywhere—will be
discarded; permutations that start with a member of the second list will not
be allowed. You can add or remove digrams to these lists to change how the
filter behaves.

Begin looping through the permutations—continue to refer to these
as “candidates,” as they aren’t necessarily words . A nested for loop goes
through the pairs in rejects, determines whether any are in candidate, and
adds them to the filtered set . A second nested for loop repeats this pro-
cess for the first_pair_rejects . Subtract filtered from the set returned
from the previous function, filter_2 .

For fun and to ensure you haven’t filtered too far, check whether volde-
mort is included in filter_3 and print an announcement to highlight
the discovery, using eye-catching red font for IDLE users. Then finish by
returning the final filtered set .

Letting the User Choose the Starting Letter

You don’t know ahead of time whether your filtering will be successful. You
may still end up with thousands of permutations. Providing the option to
look at only a subset of the output won’t reduce the overall number, but
it will make it psychologically easier to face. Listing 3-11 adds, to voldemort_
british.py, the ability to view a list of anagrams that begin with a certain
input letter.

 def view_by_letter(name, filter_3):
 """Filter to anagrams starting with input letter."""

 print("Remaining letters = {}".format(name))
 first = input("select a starting letter or press Enter to see all: ")
 subset = []

voldemort
_british.py,
part 7

60 Chapter 3

 for candidate in filter_3:
 if candidate.startswith(first):
 subset.append(candidate)

 print(*sorted(subset), sep='\n')
 print("Number of choices starting with {} = {}".format(first, len(subset)))

 try_again = input("Try again? (Press Enter else any other key to Exit):")
 if try_again.lower() == '':

 view_by_letter(name, filter_3)
 else:

 sys.exit()

Listing 3-11: Defines the view_by_letter() function

Define the view_by_letter() function to take both the name variable and
filter_3 as arguments . You need the name so you can show the user the
available letter choices on which to filter . Get the user’s input on whether
they want to see all the remaining permutations or just those beginning
with a certain letter . Then start an empty list to hold the latter subset .

A for loop, with a conditional, checks whether a candidate starts with
the chosen letter and appends those letters that pass to subset . This list is
printed with the splat operator . Then the program asks the user whether
they want to try again or exit . If they press enter, then view_by_letter()
is called, recursively, and runs again from the start . Otherwise, the pro-
gram exits . Note that Python has a default recursion depth limit of 1,000,
which we’ll ignore in this project.

Running the main() Function

Back in the global space, Listing 3-12 completes the code by calling the
main() function if the user runs the program in stand-alone mode versus
importing into another program.

if __name__ == '__main__':
 main()

Listing 3-12: Calls the main() function

Example output from the completed program is shown below. After
the program applies the third filter, there are 248 permutations remaining,
of which a very manageable 73 start with v. I’ve omitted the printout of
the permutations for brevity. As noted in the output, voldemort survives the
filtering.

length initial word_list = 60388
length of new word_list = 8687
length filtered_cv_map = 234
length of initial permutations set = 181440
choices after filter_1 = 123120
of choices after filter_2 = 674

voldemort
_british.py,
part 8

Solving Anagrams 61

of choices after filter_3 = 248
Voldemort found!
Remaining letters = tmvoordle
select a starting letter or Enter to see all: v

Interestingly, another surviving permutation is lovedmort. Given how
many people Voldemort killed—or had killed—this may be the most appro-
priate moniker of all.

Summary
In this chapter, you first wrote code that found the anagrams for a given
word or name. You then expanded on this to find phrasal name anagrams,
working interactively with the user. Finally, you employed cryptanalytical
techniques to tease Voldemort out of almost 200,000 possible anagrams.
Along the way, you applied useful functionality in the collections and
 itertools modules.

Further Reading
The Jumble website is http://www.jumble.com/.

You can find some representative online anagram generators at the fol-
lowing sites:

•	 http://wordsmith.org/anagram/

•	 https://www.dcode.fr/anagram-generator

•	 http://www.wordplays.com/anagrammer/

More anagram programs are found in Think Python, 2nd Edition
(O’Reilly, 2015) by Allen Downey.

Cracking Codes with Python (No Starch Press, 2017) by Al Sweigart pro-
vides more code for computing word patterns, such as those used for filter-
ing in the voldemort_british.py program.

Practice Project: Finding Digrams
You could comb through cryptography websites looking for frequency
statistics, or you could derive them for yourself. Write a Python program
that finds all the digrams in tmvoordle and then counts their frequency
of occurrence in a dictionary file. Be sure to test your code on words like
volvo, so you don’t overlook repeating digrams in the same word. You can
find a solution in the appendix or download count_digrams_practice.py from
https://www.nostarch.com/impracticalpython/.

http://www.jumble.com/
http://wordsmith.org/anagram/
https://www.dcode.fr/anagram-generator
http://www.wordplays.com/anagrammer
https://www.nostarch.com/impracticalpython/

62 Chapter 3

Challenge Project: Automatic Anagram Generator
Look at the online anagram generators I just referenced in “Further
Reading” and write a Python program that mimics one of these. Your pro-
gram should automatically generate phrase anagrams from an input name
and display a subset (for example, the first 500) for the user to review.

