
Impractical Python Projects

Playful Programming Activities to Make You Smarter

by Lee Vaughan

errata updated to print 7

Page Error Correction
Print

corrected

33 dairy raid welsh slew Print 6

68

for i in range(len(list_of_lists)):

 print(list_of_lists[i])

for nested_list in list_of_lists:

 print(nested_list)

Print 5

79 Here’s the output of the program, using the ciphertext from Figure 4-2: Here’s the output of the program, using the ciphertext from Figure 4-3: Print 2

85

 row1 = (message[:row_1_len])

 row2 = (message[row_1_len:])

 row1 = (message[:row_1_len]).lower()

 row2 = (message[row_1_len:]).lower()

Print 3

85

 plaintext.append(r1.lower())

 plaintext.append(r2.lower())

 plaintext.append(r1)

 plaintext.append(r2)

Print 3

100

Panel at east end of chapel slides Panelateastendofchapelslides

Print 3

103 The cold tea didn’t please the old �nicky woman So, the cold tea didn’t please the old �nicky woman Print 3

111 A paragraph object has a variety of properties that specify its placement within a

container—typically a page—and the way it divides its contents into separate lines.

You can access the formatting properties of a paragraph with the ParagraphFormat

object available through the ParagraphFormat property of the paragraph, and you can

set all the paragraph properties using a paragraph style grouping or apply them directly

to a paragraph.

A run is an inline-level object that occurs within paragraphs or other block-level

objects. A run object has a read-only font property providing access to a font object.

A font object provides properties for getting and setting the character formatting for

that run. You’ll need this feature for setting your hidden message’s text color to white.

A paragraph object has a variety of attributes that specify its placement within a

container—typically a page—and the way it divides its contents into separate lines.

You can access the formatting attributes of a paragraph with the ParagraphFormat

object available through the ParagraphFormat attribute of the paragraph, and you can

set all the paragraph attributes using a paragraph style grouping or apply them directly

to a paragraph.

A run is an inline-level object that occurs within paragraphs or other block-level

objects. A run object has a read-only font attribute providing access to a font object.

A font object provides attributes for getting and setting the character formatting for

that run. You’ll need this feature for setting your hidden message’s text color to white.

Print 5

Page Error Correction
Print

corrected

116 De�ne a function that formats the spacing between paragraphs using python-docx’s

paragraph_format property ➊.

De�ne a function that formats the spacing between paragraphs using python-docx’s

paragraph_format attribute ➊.

Print 5

141

 # mutate

 lock_wheel = int(randrange(0, len(combo)))

 ➐ next_try[lock_wheel] = randint(0, len(combo)-1)

 # mutate

 lock_wheel = randrange(0, len(combo))

 ➐ next_try[lock_wheel] = randint(0, 9)

Print 3

156 . . . and adding the key/value pair (at any location, since dictionaries are

unordered).

. . . and adding the key/value pair at any location. Print 5

164 Because of the very short training corpus, the moon is the only word pair with

multiple keys.

Because of the very short training corpus, the moon is the only word pair with

multiple values.

Print 4

171 This is a far better solution than manually �nding and commenting out print()

statements!

This is a far better solution than manually �nding and commenting out calls to

print()!

Print 6

182 Cool stars enter the

Window this hot evening all

Heaven and earth ache

A line �ap-�apping

Across the dark crimson sky

On this winter pond

Print 5

205 The transformation to generate points over a unit disc is: x = √r*cos

The equations yield (x, y) values between 0 and 1.

The transformation to generate points evenly over a unit disc is: x = √r*cosθ
The equations yield (x, y) values between –1 and 1.

Print 3

218

>>> from random import randint

>>> trials = 100000

>>> success = 0

>>> for trial in range(trials):

 faces = set()

 for rolls in range(6):

 roll = randint(1, 6)

 faces.add(roll)

 if len(faces) == 6:

 success += 1

>>> print("probability of success = {}".format(success/trials))

>>> from random import randint

>>> trials = 100000

>>> success = 0

>>> for trial in range(trials):

 faces = set()

 for rolls in range(6):

 roll = randint(1, 6)

 faces.add(roll)

 if len(faces) == 6:

 success += 1

>>> print("probability of success = {}".format(success/trials))

Print 2

250

8 prompt = '{} [{}]: '.format(prompt, default)

9 response = input(prompt)

0 if not response and default:

 8 prompt = '{} [{}]: '.format(prompt, default)

 9 response = input(prompt)

 0 if not response and default:

Print 2

252 Set the default to 'sbc_blend', since this is theoretically the most stable mix of the

four choices.

Set the default to 'bonds', in order to see how this supposedly ‘safe’ choice

performs.

Print 3

Page Error Correction
Print

corrected

259 . . . a 4 percent withdrawal rate (equal to $80,000 per year), a 30-year retirement,

and 50,000 cases.

. . . a 4 percent withdrawal rate (equal to $80,000 per year), a 29-30-31 retirement

range, and 50,000 cases.

Print 3

261

 else:

 withdraw_infl_adj = withdraw_infl_adj_2

 investments -= withdraw_infl_adj

 investments = int(investments * (1 + i))

 else:

 withdraw_infl_adj = withdraw_infl_adj_2

 investments -= withdraw_infl_adj

 investments = int(investments * (1 + i))

Print 3

305 You’ll use the same transform_rotate() method you used to turn the satellite You’ll use the same transform.rotate() method you used to turn the satellite Print 3

329 The shell utilities module, shutil, provides high-level functions for working with �les

and folders, such as copying, moving, renaming, and deleting.

The shell utilities module, shutil, provides high-level functions for working with �les

and folders, such as copying, moving, and deleting.

Print 6

356

 ➎ first_digits[sample[0]] += 1

 ➏ data_count = [v for (k, v) in sorted(first_digits.items())]

 ➎ first_digits[sample[0]] += 1

 # check for missing digits

 keys = [str(digit) for digit in range(1, 10)]

 for key in keys:

 if key not in first_digits:

 first_digits[key] = 0

 ➏ data_count = [v for (k, v) in sorted(first_digits.items())]

Print 3

357 Deletion Like all Python dictionaries, first_digits is unordered. Print 5

360 This will work with no arguments, but set its size property to 15 and turn off the

frame around the legend for an arguably more attractive result.

This will work with no arguments, but set its size attribute to 15 and turn off the

frame around the legend for an arguably more attractive result.

Print 5

Page Error Correction
Print

corrected

368

"""Remove single-letter words from list if not 'a' or 'i'."""

word_list = ['a', 'nurses', 'i', 'stack', 'b', 'cats', 'c']

permissible = ('a', 'i')

for word in word_list:

 if len(word) == 1 and word not in permissible:

 word_list.remove(word)

print("{}".format(word_list_clean))

"""Remove single-letter words from list if not 'a' or 'i'."""

word_list = ['a', 'nurses', 'i', 'stack', 'b', 'c', 'cat']

word_list_clean = []

permissible = ('a', 'i')

for word in word_list:

 if len(word) > 1:

 word_list_clean.append(word)

 elif len(word) == 1 and word in permissible:

 word_list_clean.append(word)

 else:

 continue

print("{}".format(word_list_clean))

Print 3

369

print(*digrams, sep='\n')

--snip--

for k in mapped:

print(*sorted(digrams), sep='\n')

--snip--

for k in sorted(mapped):

Print 5

