CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION

Who This Book Is For ... xvi
Topics Covered .. xvi
Behind the Magic ... xvii

1 ENCRYPTION

The Goal of Encryption .. 2
Transposition: Same Data, Different Order 2
 Cipher Keys .. 4
 Attacking the Encryption 5
Substitution: Replacing Data 6
 Varying the Substitution Pattern 7
 Key Expansion .. 9
The Advanced Encryption Standard 9
 Binary Basics .. 10
 AES Encryption: The Big Picture 12
 Key Expansion in AES 13
 AES Encryption Rounds 14
 Block Chaining ... 15
 Why AES Is Secure 16
 Possible AES Attacks 17
The Limits of Private-Key Encryption 18

2 PASSWORDS

Transforming a Password into a Number 20
 Properties of Good Hash Functions 20
The MD5 Hash Function 21
 Encoding the Password 21
 Bitwise Operations 22
 MD5 Hashing Rounds 24
 Meeting the Criteria of a Good Hash Function 25
Digital Signatures ... 25
 The Problem of Identity 26
 Collision Attacks 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passwords in Authentication Systems</td>
<td>26</td>
</tr>
<tr>
<td>The Dangers of Password Tables</td>
<td>26</td>
</tr>
<tr>
<td>Hashing Passwords</td>
<td>27</td>
</tr>
<tr>
<td>Dictionary Attacks</td>
<td>28</td>
</tr>
<tr>
<td>Hash Tables</td>
<td>29</td>
</tr>
<tr>
<td>Hash Chaining</td>
<td>29</td>
</tr>
<tr>
<td>Iterative Hashing</td>
<td>32</td>
</tr>
<tr>
<td>Salting Passwords</td>
<td>34</td>
</tr>
<tr>
<td>Are Password Tables Safe?</td>
<td>35</td>
</tr>
<tr>
<td>Password Storage Services</td>
<td>35</td>
</tr>
<tr>
<td>A Final Thought</td>
<td>36</td>
</tr>
<tr>
<td>3 WEB SECURITY</td>
<td>37</td>
</tr>
<tr>
<td>How Public-Key Cryptography Solves the Shared Key Problem</td>
<td>38</td>
</tr>
<tr>
<td>Math Tools for Public-Key Cryptography</td>
<td>38</td>
</tr>
<tr>
<td>Invertible Functions</td>
<td>39</td>
</tr>
<tr>
<td>One-Way Functions</td>
<td>39</td>
</tr>
<tr>
<td>Trapdoor Functions</td>
<td>40</td>
</tr>
<tr>
<td>The RSA Encryption Method</td>
<td>42</td>
</tr>
<tr>
<td>Creating the Keys</td>
<td>42</td>
</tr>
<tr>
<td>Encrypting Data with RSA</td>
<td>44</td>
</tr>
<tr>
<td>RSA Effectiveness</td>
<td>45</td>
</tr>
<tr>
<td>RSA Use in the Real World</td>
<td>47</td>
</tr>
<tr>
<td>RSA for Authentication</td>
<td>49</td>
</tr>
<tr>
<td>Security on the Web: HTTPS</td>
<td>52</td>
</tr>
<tr>
<td>Handshaking</td>
<td>52</td>
</tr>
<tr>
<td>Transmitting Data Under HTTPS</td>
<td>54</td>
</tr>
<tr>
<td>The Shared Key Problem Solved?</td>
<td>55</td>
</tr>
<tr>
<td>4 MOVIE CGI</td>
<td>57</td>
</tr>
<tr>
<td>Software for Traditional Animation</td>
<td>59</td>
</tr>
<tr>
<td>How Digital Images Work</td>
<td>59</td>
</tr>
<tr>
<td>How Colors Are Defined</td>
<td>60</td>
</tr>
<tr>
<td>How Software Makes Cel Animations</td>
<td>61</td>
</tr>
<tr>
<td>From Cel Animation Software to Rendered 2D Graphics</td>
<td>69</td>
</tr>
<tr>
<td>Software for 3D CGI</td>
<td>69</td>
</tr>
<tr>
<td>How 3D Scenes Are Described</td>
<td>70</td>
</tr>
<tr>
<td>The Virtual Camera</td>
<td>71</td>
</tr>
<tr>
<td>Direct Lighting</td>
<td>71</td>
</tr>
<tr>
<td>Global Illumination</td>
<td>76</td>
</tr>
<tr>
<td>How Light Is Traced</td>
<td>77</td>
</tr>
<tr>
<td>Full-Scene Anti-Aliasing</td>
<td>80</td>
</tr>
<tr>
<td>Combining the Real and the Fake</td>
<td>81</td>
</tr>
<tr>
<td>The Ideal of Movie-Quality Rendering</td>
<td>82</td>
</tr>
</tbody>
</table>
5 GAME GRAPHICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware for Real-Time Graphics</td>
<td>86</td>
</tr>
<tr>
<td>Why Games Don’t Ray Trace</td>
<td>87</td>
</tr>
<tr>
<td>All Lines and No Curves</td>
<td>87</td>
</tr>
<tr>
<td>Projection Without Ray Tracing</td>
<td>88</td>
</tr>
<tr>
<td>Rendering Triangles</td>
<td>89</td>
</tr>
<tr>
<td>The Painter’s Algorithm</td>
<td>90</td>
</tr>
<tr>
<td>Depth Buffering</td>
<td>91</td>
</tr>
<tr>
<td>Real-Time Lighting</td>
<td>92</td>
</tr>
<tr>
<td>Shadows</td>
<td>94</td>
</tr>
<tr>
<td>Ambient Light and Ambient Occlusion</td>
<td>96</td>
</tr>
<tr>
<td>Texture Mapping</td>
<td>97</td>
</tr>
<tr>
<td>Nearest-Neighbor Sampling</td>
<td>99</td>
</tr>
<tr>
<td>Bilinear Filtering</td>
<td>101</td>
</tr>
<tr>
<td>Mipmaps</td>
<td>102</td>
</tr>
<tr>
<td>Trilinear Filtering</td>
<td>102</td>
</tr>
<tr>
<td>Reflections</td>
<td>103</td>
</tr>
<tr>
<td>Faking Curves</td>
<td>105</td>
</tr>
<tr>
<td>Distant Impostors</td>
<td>105</td>
</tr>
<tr>
<td>Bump Mapping</td>
<td>106</td>
</tr>
<tr>
<td>Tessellation</td>
<td>107</td>
</tr>
<tr>
<td>Anti-Aliasing in Real Time</td>
<td>108</td>
</tr>
<tr>
<td>Supersampling</td>
<td>109</td>
</tr>
<tr>
<td>Multisampling</td>
<td>110</td>
</tr>
<tr>
<td>Post-Process Anti-Aliasing</td>
<td>111</td>
</tr>
<tr>
<td>The Rendering Budget</td>
<td>113</td>
</tr>
<tr>
<td>What’s Next for Game Graphics</td>
<td>113</td>
</tr>
</tbody>
</table>

6 DATA COMPRESSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-Length Encoding</td>
<td>117</td>
</tr>
<tr>
<td>Dictionary Compression</td>
<td>118</td>
</tr>
<tr>
<td>The Basic Method</td>
<td>118</td>
</tr>
<tr>
<td>Huffman Encoding</td>
<td>120</td>
</tr>
<tr>
<td>Reorganizing Data for Better Compression</td>
<td>121</td>
</tr>
<tr>
<td>Predictive Encoding</td>
<td>121</td>
</tr>
<tr>
<td>Quantization</td>
<td>123</td>
</tr>
<tr>
<td>JPEG Images</td>
<td>123</td>
</tr>
<tr>
<td>A Different Way to Store Colors</td>
<td>124</td>
</tr>
<tr>
<td>The Discrete Cosine Transform</td>
<td>125</td>
</tr>
<tr>
<td>The DCT for Two Dimensions</td>
<td>128</td>
</tr>
<tr>
<td>Compressing the Results</td>
<td>132</td>
</tr>
<tr>
<td>JPEG Picture Quality</td>
<td>135</td>
</tr>
<tr>
<td>Compressing High-Definition Video</td>
<td>136</td>
</tr>
<tr>
<td>Temporal Redundancy</td>
<td>138</td>
</tr>
<tr>
<td>MPEG-2 Video Compression</td>
<td>138</td>
</tr>
<tr>
<td>Video Quality with Temporal Compression</td>
<td>142</td>
</tr>
<tr>
<td>The Present and Future of Video Compression</td>
<td>143</td>
</tr>
</tbody>
</table>
Contents in Detail

7

SEARCH

Defining the Search Problem .. 146
Putting Data in Order .. 146
 Selection Sort ... 146
 Quicksort ... 147
Binary Search ... 151
Indexing ... 152
Hashing .. 154
Web Search .. 157
 Ranking Results .. 158
 Using the Index Effectively ... 159
What’s Next for Web Search ... 160

8

CONCURRENCY

Why Concurrency Is Needed .. 162
 Performance ... 162
 Multiuser Environments .. 162
 Multitasking ... 162
How Concurrency Can Fail .. 163
Making Concurrency Safe ... 166
 Read-Only Data ... 166
 Transaction-Based Processing 166
 Semaphores ... 167
The Problem of Indefinite Waits .. 169
 Orderly Queues ... 170
 Starvation from Circular Waits 170
Performance Issues of Semaphores ... 172
What’s Next for Concurrency ... 174

9

MAP ROUTES

What a Map Looks Like to Software .. 176
 Best-First Search ... 178
 Reusing Prior Search Results .. 181
Finding All the Best Routes at Once ... 183
 Floyd’s Algorithm ... 183
 Storing Route Directions ... 186
The Future of Routing .. 189

INDEX .. 191