
3
SPELL OF REBIRTH:

TRANSMUT ING GREET INGS INTO
SHELLCODE

In this chapter we’ll extend our ASM and
C knowledge by writing a simple “Hello,

world!” program. Then we’ll modify that
code to create our first hacking-related program:

a simple shellcode for gaining command line access to
a computer system. Yes, we’re already that advanced.
Along the way, we’ll learn to work with pointers, use
the GNU Debugger to inspect a program’s allocated
memory, and explore different addressing modes for
memory access. First, though, we’ll cover a few more
general concepts about how computers handle infor-
mation internally, and we’ll take a closer look at how
memory works.

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

Representing Information

We’re going to start working with values larger than 1 byte in this chapter,
and to fully comprehend what’s happening we must introduce some basic
concepts about how information is represented and stored in memory. This
may not sound as exciting as writing a shellcode, but these fundamentals are
just as important. Bear with me for a while, and in no time we’ll do our very
first hacking thing.

Bits, Bytes, Words, and Beyond
A bit is the smallest unit of information a computer can manage. A bit can
hold one of two values: 0 or 1. These values are sometimes referred as false
and true, especially in the context of logic circuitry.

If you put 8 bits together, you get a byte. Therefore, a byte is a sequence
of eight 0s or 1s. One byte can represent any number up to 8 binary digits
long, or if you’re more comfortable counting in decimal, a byte can store
256 different values, typically from 0 to 255. I’ll talk more about numeric
representation shortly.

Each half of a byte is known as a nibble. A byte has two nibbles, the high
one and the low one, each being 4 bits long. Therefore, each nibble can rep-
resent 16 different values (24 = 16). When working in hexadecimal (that is,
in base 16), we can represent 16 values just with one digit (0 to 9 and then a
to f). This means that a byte can be represented with two hexadecimal digits,
one for each nibble.

Going up from bytes, we start doubling the number of bits:

• A word is composed of 2 bytes, or 16 bits.

• A double word or dword is composed of 2 words, 4 bytes, or 32 bits.

• A quard word or qword is composed of 2 double words, 4 words, 8
bytes, or 64 bits.

We won’t go further than this, but feel free to figure out the names of the
next sizes in the list.

Note that this is how these terms are usually interpreted, and they mostly
derive from the Intel processor definitions. In reality, the definition of a
word can vary by architecture, based on the processor’s native word size, as
we’ll see in the next section.

Processor Native Word Sizes
A processor’s native word size is the number of bits the processor is most
comfortable working with at one time. In a sense, you encounter native
word sizes regularly: Whenever we talk about 32-bit versus 64-bit processors
or programs, we’re referencing word sizes. Those numbers are more than
just the way to choose the right download link for your Linux distribution,
however. They also have some low-level implications:

76 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

• Do you remember the registers within a processor? Sure you do.
The processor’s native word size defines the size of those registers.
A 32-bit processor has 32-bit registers, and a 64-bit processor has
64-bit registers. This isn’t completely accurate, but for now just con-
sider this size to be the size of the processor’s registers.

• The native word size is usually also the width of the CPU’s data bus.

• The native word size is usually the width of the address bus as well.

We’ll talk about what those buses are later in the chapter.
Overall, and without going deep into the electronics within the proces-

sor, what you need to know is that each processor is optimized to work with
its native word size. For example, a 32-bit processor will perform arithmetic
operations or access memory faster when it’s working with 32-bit values than
when it’s working with 16-bit values. I know that sounds a bit counterintu-
itive and may require an act of faith to believe, but it would be very tedious
to go through all the complex details to understand why this is the case. Just
to give you a little taste, here’s a fragment from the “Data Types” section of
the Intel 80386 Programmer’s Reference Manual from 1986:

When used in a configuration with a 32-bit bus, actual transfers of
data between processor and memory take place in units of dou-
blewords beginning at addresses evenly divisible by four; however,
the processor converts requests for misaligned words or double-
words into the appropriate sequences of requests acceptable to the
memory interface. Such misaligned data transfers reduce perfor-
mance by requiring extra memory cycles. For maximum perfor-
mance, data structures (including stacks) should be designed in
such a way that, whenever possible, word operands are aligned at
even addresses and doubleword operands are aligned at addresses
evenly divisible by four. Due to instruction prefetching and queu-
ing within the CPU, there is no requirement for instructions to be
aligned on word or doubleword boundaries. (However, a slight
increase in speed results if the target addresses of control transfers
are evenly divisible by four.)

Summing up, try to program your processor using its native word size. It
may look like you’re wasting some space, but that’s the right way to do it.

Decimal, Binary, Hexadecimal, and More
A number is an abstract entity that represents a quantity. Such a quantity
is universal, but it can be represented in very different ways. The most ob-
vious deviations comes from human languages. A 1 means one thing, but
English speakers say one, Dutch speakers say een, Spanish speakers say uno,
and so on. Each language has a different verbal representation for the same
abstract quantity.

The same happens when we write numbers symbolically: The same ab-
stract quantity can be represented in many different ways. For instance you
can write twenty-four with Western Arabic numerals as 24 or with Roman

Spell of Rebirth: Transmuting Greetings into Shellcode 77

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

https://pdos.csail.mit.edu/6.828/2018/readings/i386.pdf

numerals as XXIV. Setting aside the symbols themselves, the more general
way of representing numbers is using radix-based positional numeral systems,
where the position of each digit is associated with a value.

We normally use radix 10, which means that we use 10 possible symbols
(0 to 9) for each digit or position in a number. If we need to represent more
than 10 values, we add a new digit, which will be in the second position and
will be multiplied by 10. Right? Figure 3-1 shows an example.

1234

^^^^

|||+-------- First position times 1 -> 4 x 1 = 4

||+----------Second position times 10 -> 3 x 10 = 30

|+-----------Third poisition times 100 -> 2 x 100 = 200

+------------Fourth Position times 1000 -> 1 x 1000 = 1000

1234

Figure 3-1: Parsing a base 10 number

We all know this from school, but perhaps we don’t know the terminol-
ogy. The basis of the system, 10 in this case, is called the radix (or base), and
the value of each digit is multiplied by a power of the radix: The first posi-
tion is multiplied by 100 = 1, the second position by 101 = 10, the third posi-
tion by 102 = 100, and so on.

Here’s the interesting thing: We can use any number as the radix, and
furthermore we can represent any integer number using any radix. Taking
into account that computers use digital circuits that can only hold two val-
ues, any radix that’s a multiple of 2 is interesting for us. Actually, there are
three numerical representation systems that are used frequently when work-
ing with computers because they make some things much easier:

Binary A binary representation uses base 2, and therefore each digit
can take values 0 or 1. Each position is multiplied by a power of 2 (1, 2,
4, 8, 16, . . .). Binary numbers are usually represented with a leading 0b.
For example, 0b101 in binary is 5 in decimal: (1 × 22) + (0 × 21) + (1 × 20)
= 5.

Octal This representation uses powers of 8 and symbols from 0 to 7
for each digit. Each octal digit takes 3 bits to be represented. The octal
system was very common in the past, but it’s rarely used nowadays. Unix
filesystem permissions are one of the few cases where you’ll still see it.
Octal numbers are usually prefixed with a 0. For example, 011 in octal is
9 in decimal: (1 × 81) + (1 × 80) = 9.

Hexadecimal This representation uses radix 16, so each digit can have
16 values. We only have 10 symbols in our normal numeral systems (0
to 9), so for the 6 missing symbols we use letters: ameans 10, bmeans
11, and so on up to f for 15. Each hexadecimal digit requires 4 bits (a
nibble), and this is the reason this system is used with computers. A byte

78 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

can be represented with two hex digits, a word with four, a dword with
eight, and so on. Hex values are usually prefixed with 0x. For example,
0x21 is hexadecimal for 33: (2 × 161) + (1 × 160) = 32 + 1 = 33.

Which representation should you use in your code? It doesn’t really
matter, since all of them represent the same values. Using one or another
depends on what you want to achieve and whether a particular system will
make your life easier, but it won’t have any impact on the final machine code
that a program will generate.

Our focus here has been on whole numbers. Computers also have ways
to represent real numbers with fractional components (fixed point and float-
ing point), but we won’t worry about such numbers in this book because you
rarely need this type of data for hacking/systems programming. No kernel
system call expects a real number as a parameter, for example.

We’ve also sort of been assuming that all numbers are positive, but how
does a computer represent negative numbers? It’s not hard, but it isn’t obvi-
ous either.

Negative Numbers
To get a taste for how negative numbers work, let’s think about a single byte
(eight 1s or 0s). We’ve said that 8 bits can represent 256 values, from 0 to
255. That’s perfect for natural numbers, but things change if we need neg-
ative numbers, too. First, we need to store the sign of the number, and that
will take up one of the bits from the byte. That leaves us with 7 bits to rep-
resent the actual number, meaning 128 values. Figure 3-2 shows one way to
represent a few of those numbers.

8 => 0 000 1000 -8 => 1 000 1000

7 => 0 000 0111 -7 => 1 000 0111

... ...

1 => 0 000 0001 -1 => 1 000 0001

0 => 0 000 0000 0 => 1 000 0000

Figure 3-2: A bad way to represent negative numbers

There are a few problems with this representation. The first is that we
have two representations for the number zero. That isn’t convenient as it
can make computations ambiguous, and we’re also losing the opportunity
to represent one extra number. The second problem is that arithmetic be-
comes complicated: multiplication is kind of easy, but addition is kind of
hell.

Fortunately for us, some smart people long ago came up with a better
representation for negative numbers. It also uses the most significant bit to
indicate the sign, but the value of the number is encoded in a smarter way.
Figure 3-3 shows how it works.

Spell of Rebirth: Transmuting Greetings into Shellcode 79

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

8 => 0 000 1000 -8 => 1 111 1000

7 => 0 000 0111 -7 => 1 111 1001

... ...

2 => 0 000 0010 -2 => 1 111 1110

1 => 0 000 0001 -1 => 1 111 1111

0 => 0 000 0000

Figure 3-3: A good way to represent negative numbers

In addition to the sign, the rest of the number is constructed counting
upward as usual for the positive numbers, and counting backward for the
negative numbers. Now there’s one single representation for zero, and it’s
actually zero (a 0 in each bit). This has a consequence: Zero is somehow con-
sidered a positive number because its most significant bit is 0 (that’s our sign
bit). This is why a signed char can take values from –128 to +127 (the zero is
part of the positives).

With this system, you can change a number’s sign—that is, find the posi-
tive equivalent of a negative number or vice versa—with two simple steps:

1. Invert all the bits in the number (this is called the one’s complement).

2. Add 1 to the result.

In all, this sequence of operations is called taking the two’s complement.
Let’s use the number 5 as an example and calculate its two’s complement to
determine the bit representation of –5:

1. The number 5 in binary is 00000101, so inverting the bits gives us
11111010.

2. Adding 1 gives us 11111011, which is indeed –5.

The biggest advantage of this system is that basic arithmetic operations
just work. If you add the representations of 5 and –5 that we just figured
out, it results in 0. Subtraction and multiplication also work out of the box.

We won’t discuss negative number representation further, but the in-
terested reader can see the “Two’s Complement” Wikipedia page for more
information.

Text Strings
We’ve been talking about how to represent integer numbers, but there’s
one more type of data we’ll want to work with: text. A text string is just a se-
quence of characters—that is, any message we write in the screen or any text
we type on a keyboard to provide as input to our programs.

We can only store numbers in computer memory, so how can we repre-
sent the letters in a text string? The answer is to use a code. A code, in it’s
simplest form, is just a map between symbols, so we can assign each letter
and symbol we want to be able to write in the screen a number, and then
write code that will convert those numbers into characters printed in the
screen.

80 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

We have a plethora of options for assigning a number to each charac-
ter, but some people came up with good codes long ago, with ASCII (Amer-
ican Standard Code for Information Interchange) being the best known.
Back in the day, EBCDIC was also popular because early IBM computers
used it, and more recently Unicode has become the de-facto standard. UTF-
8, one of the encodings for Unicode, uses variable-length encoding and is
backward-compatible with ASCII. In other words, 1-byte-long UTF-8 codes
are the same as the ASCII codes.

We’ll use ASCII string encoding throughout this book. ASCII was origi-
nally defined as a 7-bit code in order to be compatible with the teletype ma-
chines back in the day. This is also the reason that the first 32 codes (from
0x00 to 0x1f) are control values that were intended to operate those machines.
For example, a code like 0x0a, also known as LF or line feed, was intended
to move the paper in the teletype machine to the next line. Many of those
codes aren’t used anymore, but a few of them are: Today you’ll find line feed,
carriage return, and tabulation represented as \n, \r and \t, respectively.

In ASCII, the value 0x20 represents a space. Numbers are encoded us-
ing values 0x30 to 0x39. This makes it very convenient to print decimal digits
in ASM programs: Just add 0x30 to the value. Uppercase letter are encoded
using values 0x41 to 0x5a, and lowercase letters are conveniently stored using
values 0x61 to 0x7a. This is especially interesting because we can convert be-
tween uppercase and lowercase just by switching bit 5 of a character on or
off. When sorting strings alphabetically, the sort is actually based on these
underlying numbers, so a word beginning with a capital letters would be
sorted before a word beginning with a lowercase letter.

To use a text string in a program, we need one extra piece of informa-
tion: We need to tell the program when those numbers in memory are no
longer letters. Put another way, we need to define the length of the string.
There are two main options:

• Store a number indicating the size of a string together with the se-
quence of numbers representing the string itself.

• Use a number that would never appear in a text string as a guard
value or delimiter at the end of the string.

Languages like Java use option 1. (Historically, Java also used the UTF-
16 encoding, an encoding for Unicode that has a minimum unit size of 2
bytes). The C language uses option 2, with 0x00 indicating the end of a string.
Figure 3-4 compares how these two languages would store the string "ABC" in
memory.

Spell of Rebirth: Transmuting Greetings into Shellcode 81

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

Java C

Size | 0x00 | | 0x41 | Char 1

Size | 0x00 | | 0x42 | Char 2

Size | 0x00 | | 0x43 | Char 3

Size | 0x04 | | 0x00 | End of String

Char 1 | 0x00 |

Char 1 | 0x41 |

Char 2 | 0x00 |

Char 2 | 0x42 |

Char 3 | 0x00 |

Char 3 | 0x43 |

Figure 3-4: String representation in Java versus C

Java starts with a 32-bit value to store the size of the string, meaning
even an empty string will take up at least 4 bytes in memory. Then it uses
16 bits to encode each character. As with UTF-8, UTF-16 also matches the
ASCII code for each character, but extending its size to 2 bytes. By contrast,
C just uses 1 byte per character, plus an extra byte for the guard value at the
end. Our three-character string therefore takes up 4 bytes. Compare this to
the the 10 bytes required by Java. Note also that in Java a string is usually an
object, which requires even more memory to be stored.

NO T E Since Java 9, Java’s string representation has changed to include what are called
compact strings. Now, unless the string requires a special character that needs to be
encoded using UTF-16, Java uses 1 byte per character. It also adds an extra byte to
indicate which type of string it is (1 or 2 bytes per character). In this newer represen-
tation, the Java string in our example would take up 8 bytes, still bigger than the C
version, but not by as much.

Why would Java code strings this way when it eats up so much more
space? The answer is security. The Java approach is to check the sizes of all
strings and make sure that we never write outside of the allotted bounds.
The C implementation is lighter and more compact, but it leads to all kinds
of security problems when not used properly. We’ll see this in Chapter 4
when we discuss buffer overflow exploits.

A Closer Look at Memory
Let’s use what we’ve just learned about how computers represent information—
in particular, the processor’s native word size—to take a closer look at how
memory works. We’ve said that a 32-bit processor will operate faster on a
32-bit value and will also access a 32-bit value in memory faster than a 16-bit
value. An implication of this is that, even if the smallest addressable value
in memory is 8 bits (remember the size of our memory drawers from Chap-
ter 1?), a 32-bit processor can read 32 bits (4 bytes) from memory at once.

That simple sentence has some important concepts behind it. Let’s go
deeper.

82 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

A Simplified Hardware Memory Model
The memory system in a PC can be quite complicated, and it’s beyond the
scope of this book to go into all of the details, but discussing a simplified
model of the memory system will be beneficial for us. It’ll also make it easier
for curious readers to dive deeper into this topic.

In its simplest form, a memory chip provides the following pins:

• A set of address pins, designated from A0 up to AN, where N is one less
than the system’s native word size.

• A set of data pins designated from D0 up to DN. Again, N is one less
than the native word size.

• Control pins that allow the processor to command the memory. These
include the OE/CS (output enable, or chip select) pin, which essen-
tially activates the memory chip for input or output, and the WR/RD

(write, read) pin, which indicates if we want to write into the mem-
ory or read values from memory.

NO T E In digital electronics, a line over a signal name indicates negation, so WR/RD means
that we want to write when the signal is a 1 and read when the signal is negated—
that is, when it’s a 0.

The CPU has similar pins that are connected to the memory. Whenever
the CPU wants to read a value from the memory, it puts the value of the ad-
dress to access in its address pins, which are connected to the memory chip’s
address pins, usually by a bus (see the “Buses” box for more on what this
means). Then the right control signal is exercised in the memory chip, in
this case enabling the OE/CS pin and setting WR/RD to 0 in order to select a read
operation. This triggers the memory to put the value from the indicated
memory address into its data pins so the CPU can read it.

Remember, this is a simplified model. In reality, a lot more goes on
when accessing memory.

BUSES

A simple bus is just a bunch of wires connecting all the chips in a computer
system together. The only requirement is that the chips have some internal
circuitry on their pins that allows the chip to produce a third state (in addition to
the normal low and high states) in which the pins act as high-impedance gates.
In this state, the pins show a very high resistance (impedance), and therefore
current won’t flow through them. Then you just need somebody to set all pins
for all chips into that third state, except for the ones that will be active. That is,
in essence, a bus.

What makes one bus different from another are the specific control signals and
protocols the bus uses to interchange information. The S-100 bus was one of
the first created for microcomputers. The Versa Module Eurocard (VME) bus
was another popular bus used on more powerful machines. The Industrial
Standard Architecture (ISA) was the selected expansion bus for the first PCs.

Spell of Rebirth: Transmuting Greetings into Shellcode 83

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

Nowadays, most computers use Peripheral Component Interconnect Express
(PCIe) for that purpose.

Figure 3-5 shows a basic diagram of the interface between the CPU and
the memory chip, without including the control signals.

----+ +-----------

+- A0 --------------- A0 -+

+- ... -------------- ... -+

CPU +- A31--------------- A31 -+ Memory

+- ... |

+- D0 ---------------- D0 -+

+- ... -------------- ... -+

+- D31 -------------- D31 -+

----+ +------------

Figure 3-5: The connections between the CPU and memory

The address and data pins on the processor and memory are connected
by tracks in the motherboard. Activating and deactivating those pins is what
makes the computer work. Let’s use some concrete numbers to better un-
derstand this. Imagine that the RIP register (the instruction pointer) is set to
4, meaning the instruction at address 4 is the next one to execute. The CPU
has to read that instruction from memory, so it puts the value 4, which in
binary is 0b100, on the address bus. Figure 3-6 illustrates the process.

----+ +-----------

+- A0 -------- 0 ---------- A0 -+ <--- Set address in data bus

+- A1 -------- 0 ---------- A1 -+

+- A2 -------- 1 ---------- A2 -+

+- A3 -------- 0 ---------- A3 -+

+- ... ------- 0 ---------- ... -+

CPU +- A31 ------- 0 ---------- A31 -+ Memory

+- WR/RD ---- 0 -------- WR/RD -+ <--- Read command

+- D0 -------- 0 ---------- D0 -+

+- D1 -------- 0 ---------- D1 -+

+- ... |

Figure 3-6: Preparing for memory access by setting the address bus and activating the
read signal

Only pin A2 is set, which corresponds to address 4 in binary. When-
ever the RD control signal is activated, the memory chip will access the value
stored at address 4. Activating a pin means setting a given voltage on it. In
this case, we need a 0, which usually means 0 volts. The voltage for a 1 de-
pends on the technology used. It might be 5 V, 3.3 V, or even less.

84 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

Next, the memory chip puts the value from address 4 in its data pins so
the CPU can read it. This is illustrated in Figure 3-7.

----+ +-----------

+- A0 -------- X ---------- A0 -+

+- A1 -------- X ---------- A1 -+

+- A2 -------- X ---------- A2 -+

+- A3 -------- X ---------- A3 -+

+- ... ------- X ---------- ... -+

CPU +- A31-------- X ---------- A31 -+ Memory

+- WR/RD ---- X -------- WR/RD -+

+- D0 -------- 1 ---------- D0 -+ <--- Data is actually read

+- D1 -------- 1 ---------- D1 -+

+- ... |

Figure 3-7: Retrieving the value from memory through the data bus

As each memory position is 8 bits, we only need 8 physical pins to send
the value from address 4 to the CPU. Since there are 32 data pins total, just
reading the one address would be a huge waste. As such, the memory typi-
cally doesn’t put just the 1 byte in the data lines: It puts as much as it can. In
this example, that means it will output 4 bytes, starting from address 4, using
the 32 data signals in the bus.

At this stage, the values of the address pins are no longer needed. Some
processors take advantage of this and use the same pins to set the memory
address and to write or read the values, as the address and values aren’t set
at the same time. We need to give some time to the memory to read the ad-
dress and access the memory position.

Once again, note that this is a simplified example. In reality, there are
a few more lines involved than we’ve discussed here. Also, sometimes the
memory only has a data bus that’s 8 bits long, and multiple memory chips
are used to access 16-, 32-, or 64-bit words. In those cases, there’s a real phys-
ical constraint with regard to memory-aligned accesses. These details can
really make a difference between two systems.

For a more complete picture of how memory access works, you’ll have to
consult the datasheet of the particular processor involved. The memory sys-
tem also has its own datasheet, and you have to check that too when building
your hardware. The datasheets should include chronograms diagramming
the exact timing of different memory transactions; see the “Chronograms”
box for more on what these look like.

CHRONOGRAMS

The bus interactions between chips are usually represented as chronograms in
the chips’ datasheets. These are graphs that show all the processor lines and
how they vary with time. Usually at the top you’ll see the system clock signal,
which orchestrates the activation and deactivation of each of the processor

Spell of Rebirth: Transmuting Greetings into Shellcode 85

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

signals. These chronograms don’t just provide information about the sequence
of signals to activate but also indicate access time or other delays that may
happen. For example, the following chronogram represents the memory read
access described in the previous section:

clk

t=0 t=1 t=2 t=3 t=4 t=5

WR/RD

A0--A31 addr XXX

D0--D31 XXX val XXX

At the top, you can see the system clock. Things happens when this signal
changes, but the signals may be in the bus earlier or longer than the clock
edges. Below the clock you can see the rest of the lines. The data and address
buses are usually represented as a combination of lines, since showing each
line individually wouldn’t help and would make the diagram huge.

This particular chronogram tell us that:

• The processor puts the address value in the bus at t0.
• At t1, it sets the WR/RD signal low. This tells the memory to read the

address internally and start to retrieve the data. The time the lines
need to be set depends on the memory chip.

• After a while (that’s the memory access time), the memory chip outputs
the value to the data bus and the CPU can finally read the value.

Real chronograms show many more signals in order to allow the hardware
designer to properly interconnect the different chips in the computer.

Native Word Size and Memory Alignment
I’ve already hinted that there’s a relationship between a processor’s native
word size and the functionality of the rest of the computer. For example,
a 32-bit processor will interface to a 32-bit memory system. (It’s not that
straightforward, but roughly that’s what happens; when I say system, I may
actually mean several chips.)

Imagine that you want to read just 1 byte. You put your desired address
in the address lines and ask the memory chip to spit out the content of that
address. The memory chip will put the content of the address you request
plus the next three addresses on the data lines. The CPU will then read
those 4 bytes from the bus but just take the lower 8 bits from that value. In
a sense, that requires extra work than just reading the whole 32-bit value into
a 32-bit register; the CPU has to consciously discard 3 out of the 4 bytes.

Long story short, a 32-bit processor will access 32-bit-aligned memory,
meaning chunks of memory starting from addresses that are multiples of 4:
0, 4, 8, 12, 16, and so on. Deviating from this alignment creates more work.
For example, if we need to access a double word that starts at address 2, the

86 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

processor will have to read addresses 0 through 3, then addresses 4 through
7, and then reorder the bytes from those two reads to get the single 32-bit
value from addresses 2 through 5. This is why memory alignment is so im-
portant. Some processors will raise an exception when accessing unaligned
memory. Others will just slow down. Still others may do both depending on
what you’re trying to do. And actually, unless you really try to do otherwise
on purpose, the compiler will ensure that you access memory the right way.

What I just described is a very simplified example to illustrate how a pro-
cessor works in a more efficient way when everything aligns with its native
internal word size. The reality is more complex, but unless you need to de-
sign your own computer (the motherboard, at least), it doesn’t really matter,
especially with today’s large cache memories. The main takeaway from all
this is that it’s always better to use the native processor word size and access
data aligned to that size.

Little vs. Big Endian
We know that we have to always read data from memory using the native
word size of the processor, and we also know that we should access memory
in proper alignment with the processor’s word size to make our programs
efficient. So far, so good, but there’s one more thing to take into account:
How are the bytes of dwords, qwords, and other multi-byte pieces of data
mapped between the memory and a processor’s registers?

Let’s assume the native word size of a given processor is 4 bytes (a 32-bit
processor), and that we have the memory layout shown in Figure 3-8.

| ... | Drawer ...

+--------+

| 0x44 | Drawer p + 3

+--------+

| 0x33 | Drawer p + 2

+--------+

| 0x22 | Drawer p + 1

+--------+

| 0x11 | Drawer p

+--------+

Figure 3-8: A hypothetical memory layout

Let’s assume, too, that we want to read the content of addresses p through
p + 3 into one of our 32-bit registers. Which value do you think we’ll get in
the register?

a) 0x44332211

b) 0x11223344

The answer is: It depends on the processor. If your processor is little
endian, you’ll get the first value. Otherwise, if your processor is big endian,

Spell of Rebirth: Transmuting Greetings into Shellcode 87

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

you’ll get the second value. Most of the processors we’re using in this book
are little endian, but ARM can be configured to work as big endian. MIPS
processors are usually big endian, but you can find little endian hardware
out there too. For the purposes of this book, we’ll consider MIPS to be big
endian and ARM to be little endian.

In general, you don’t have to worry about whether your processor is big
or little endian. You just write and read your values to/from memory and
the processor will do the right thing. Endianness only becomes important
when you have to interchange data between computers, as the sender and re-
ceiver may have a different endianness. This happens very often in network
programming when using open protocols that have to work with any kind of
machine. We’ll see examples later in the book. For now, just keep in mind
that different processors may read data in different ways.

But enough introduction. Let’s see how all these concepts can be put to
practical use by writing a traditional “Hello, world!” program.

“Hello, World!” in ASM
I’m pretty sure you’re familiar with “Hello, world!” programs, which display
the message “Hello, world!” in the console. Let’s create a simple “Hello,
world!” program in ASM. Then we’ll see how the program translates to C.

The way to display a message like “Hello, world!” on Linux is to write it
to the standard output (usually the console) using the SYS_write system call,
which expects three parameters:

File descriptor Indicates where we want to write to. Overall a file de-
scriptor represents a file, and in the Unix world, everything is a file. In
this case, we’ll need file descriptor 1, which is always associated with
stdout. We’ll discuss file descriptors in more detail in Chapter 6. For
now, you just need to know that if you pass 1 as the first parameter to
SYS_write, you’ll be writing to the console.

Buffer The memory address containing the data we want to write to
the file descriptor provided in the first parameter.

Length The number of bytes we want to write, starting at the address
provided as the second parameter.

Remember that you can always check section 2 of the manual to get all the
details about any system call using man 2 syscall. Just remove the SYS_ from
the syscall name.

On the x86_64 architecture, the SYS_write system call is identified with
a 1. Knowing this, and applying everything we learned in Chapter 2 about
invoking system calls, Listing 3-1 shows what our little program looks like.

global _start

_start: mov rax, 1 ; SYS_write = 1

mov rdi, 1 ; fd = 1

mov rsi, msg ; buf = msg

mov rdx, 14 ; count = 14 (the number of bytes to write)

88 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

syscall ; (SYS_write = rax(1), fd = rdi, buf = rsi, count = rdx)

;; Exit program

mov rax, 0x3c ; SYS_exit = 0x3c

mov rdi, 0 ; status = 0

syscall ; (SYS_exit = rax , status = rdi)

msg: db 'Hello, world!',0x0a

Listing 3-1: A “Hello, world!” program in ASM for Intel x86_64

I hope you can identify the two system calls in there. The first one writes
the message, and the second one exits the program with status 0.

Let’s compile the program, following the same steps we used at the start
of Chapter 2, then run it:

$ nasm -f elf64 -o hello.x86.o x86-hello.asm

$ x86_64-linux-gnu-ld -o hello.x86 hello.x86.o

$ qemu-x86_64-static ./hello.x86

Hello, world!

Once you verify that it works, there are some key new elements in our
program that we need to discuss.

Labels and Assembler Commands
The first key element in our program is the msg label. A label is a name used
to reference a part of a program (actually a memory address). In this case,
msg references our “Hello, world!” message. In general, we don’t know where
in memory our program will be loaded, so using symbolic names like msg lets
us write programs without caring about the details. Wherever the data rep-
resenting “Hello, world!” ends up in memory, msg will refer to that location.
In this way, labels can make programs easier to read and modify.

We’ve actually already seen labels at work in the past. Can you remem-
ber the other label we’ve been using so far? That’s right, it’s _start.

The second key thing to highlight is the db instruction paired with the
msg label. This is an assembler directive, an instruction that’s only understood
by the assembler and doesn’t directly translate into an opcode in the pro-
gram. We’ve seen an assembler directive before. Anybody? Correct, it was
global.

The db assembler directive, likely short for define byte or data byte, allows
us to set some memory area with a sequence of bytes. In this case, our db in-
struction has two parts, separated by a comma. The first part is the string
'Hello, world!'. The assembler will output one byte per character in the
string, starting at position msg. The second part is an extra byte, expressed
in hexadecimal: 0x0a. Sure, you could just use the decimal value (10) instead
and everything would stay the same. This is the ASCII code for a line feed,
meaning it will move the cursor to the next line in the console. Try remov-
ing it and see what happens to your output. With db, you could also write

Spell of Rebirth: Transmuting Greetings into Shellcode 89

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

your whole string as a list of the ASCII codes for each character, separated
by commas, but that isn’t very practical.

Exercise Use the SYS_unlink system call (87) to write a program named
ghost that will delete itself every time it’s executed. For this exercise as-
sume the name of the program is always ghost.

Pointers
There’s one more key feature of our “Hello, world!” program that we need
to highlight: a pointer.

Okay, don’t panic. You may have heard that pointers are the trickiest
part of low-level programming, but they’re actually a lot simpler than you
might think. Furthermore, you can’t do much in ASM without using point-
ers. Just repeat to yourself that you have to understand pointers to create
cool things like shellcodes. Take a deep breath, repeat it again, and let’s dive
in.

A pointer is just a position in memory that contains the address of an-
other position in memory. Remember, a memory address is just a number.
The contents of a given memory address is also just a number. It’s therefore
only natural that the number stored at a memory address could itself be in-
terpreted as some other memory address.

One thing you may figure out from this recursive definition is that a
pointer’s size has to be equal to the number of address pins in the processor.
In other words, it has to be the size of the address bus, also known as the
processor’s native word size. A 32-bit processor with a 32-bit address bus (for
example, the Intel 386) will require 32 bits (4 bytes) to store any potential
memory address a program could reference. A pointer on a 32-bit machine
will therefore take up four consecutive positions in memory. (Remember,
each position holds a single byte.) Likewise, for a 64-bit processor with a 64-
bit address bus, a pointer will need 64 bits (8 bytes) to reference any possible
memory address. A pointer on a 64-bit machine will therefore be stored in
eight consecutive memory addresses. The entire range of memory addresses
a processor can reference is known as the addressing space.

Let’s look at an example. Imagine the memory layout shown in Figure 3-
9.

90 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

| ... | p + 4 = 0x400004

+--------+

| 0x40 | p + 3 = 0x400003

+--------+

| 0x00 | p + 2 = 0x400002

+--------+

| 0x00 | p + 1 = 0x400001

+--------+

| 0x04 | p = 0x400000

+--------+

Figure 3-9: A pointer in memory

On a 32-bit little-endian machine, the 4 bytes at memory addresses p
(0x40000000) through p + 3 (0x40000003) can be read together as having the
value 0x40000004. If we interpret this as a pointer—a memory address stor-
ing another memory address—we can say that address 0x40000000 points at
(stores) address 0x40000004.

What does all this have to do with our “Hello, world!” program? Taking
into account that a register can be seen as a special kind of memory, when-
ever we store a memory address in a register, we can consider that register to
be a pointer. With that in mind, have a look at this line from our ASM code:

mov rsi, msg

Here we store the value of msg in the RSI register. As we’ve already dis-
cussed, msg is just a label for the memory address where our message is stored.
In this context, RSI contains a pointer to the message: It’s a memory location
(a register in this case) storing another memory location that we’re inter-
ested in.

In general, whenever we need to pass some information that’s too big
to be stored in a register to a system call, we need to store that information
somewhere else in memory and give the system call a pointer (which can
fit in a register) to the relevant memory address. In our example, the string
"Hello, world!" requires 13 bytes, plus an extra byte for the line feed, and our
registers can only store 8 bytes on a 64-bit platform. In order to make the
system call work for all cases and not just for datablocks of 8 bytes, SYS_write
expects the data to write to be somewhere in memory, and to receive that
location (a pointer) as a parameter via a register.

Strictly speaking, RSI is the pointer here, but it’s more common to re-
fer to the memory address stored in RSI as the pointer. The indirection is
implicit in the pointer definition, and it’s really the target address that we’re
interested in. In other words, even though technically the pointer is the ad-
dress containing an address, in general, people call the address itself the
pointer.

Most of the time, pointers will be true memory addresses and not reg-
isters, but the concept is the same. Some registers are actually named af-

Spell of Rebirth: Transmuting Greetings into Shellcode 91

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

ter this principle. The instruction pointer, the stack pointer, and the frame
pointer are three of the most famous cases.

“Hello, World!” in C
Now let’s see how to write the same “Hello, world!” program in C. We’ll
learn a few more things about the C language and its associated tools in the
process. Listing 3-2 shows the code.

#include <unistd.h>

int main ()

{

register void *p = "Hello, world!\n";

write (1, p, 14);

_exit (0);

}

Listing 3-2: A “Hello, world!” program in C

Again, notice the two system calls in the program, write and _exit. We
already know that the second parameter to write has to be a pointer, a mem-
ory address containing the address, in memory, of the string to print. We
pass the variable p, which we declare with the register keyword. As men-
tioned in Chapter 1, you don’t typically use this keyword in C programs.
Without it, the compiler will simply allocate a regular memory block of 8
bytes (for a 64-bit machine) in which it will store the pointer—the address
where our message is located, in this case.

Let’s take a look at the assembly generated by gcc. We’ll create a non-
position-independent executable, since that makes it easier to spot the pointer:

$ x86_64-linux-gnu-gcc -no-pie -fno-pic -o hello hello.c

$ x86_64-linux-gnu-objdump -d -M intel hello

--snip--

0000000000400544 <main>:

400544: 55 push rbp

400545: 48 89 e5 mov rbp,rsp

400548: 53 push rbx

400549: 48 83 ec 08 sub rsp,0x8

40054d: bb 5c 06 40 00 ¶ mov ebx,0x40065c

400552: ba 0d 00 00 00 mov edx,0xd

400557: 48 89 de · mov rsi,rbx

40055a: bf 01 00 00 00 mov edi,0x1

40055f: e8 dc fe ff ff call 400440 <write@plt>

400564: bf 00 00 00 00 mov edi,0x0

400569: e8 c2 fe ff ff call 400430 <_exit@plt>

--snip--

92 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

Skipping over the first four instructions in the resulting ASM (that’s
stack stuff, which we’ll discuss in Chapter 4), try to find the pointer. Have
you spotted it? Sure, look at how we set EBX (the 32-bit part of RBX) to 0x40065c

¶, then copy RBX into RSI ·. And what do you think 0x40065c is? A memory
address, of course! That once again makes RSI a pointer: a memory location
holding the address of another memory location.

NO T E The exact memory address you see being assigned to EBX in your output may vary,
depending on your system configuration. Take note of that address, as you’ll need it
in a minute.

To find out what our pointer is pointing to, let’s introduce a new best
friend, the GNU Debugger (gdb).

Using the GNU Debugger
A debugger like gdb is a program that allows us to execute other programs and
look inside them. Do you remember in Chapter 2 when I said that the oper-
ating system makes sure that a process can’t see inside the memory assigned
to another process? Well, that’s still correct. A debugger uses a special sys-
tem call to do its work, so technically it’s the OS looking into the other pro-
cess’s memory and then reporting what it finds to the debugger.

A debugger is able to load a binary in memory and process all its meta-
data (the ELF details added during compiling and linking), including the
code itself and any data stored in the program. The debugger is then able
to examine the contents of the memory associated with the program. Later
we’ll learn how to figure out the address where some data actually gets loaded,
but for now we can just use the debugger to inspect the contents of arbitrary
locations.

Technically the debugger launches the program to debug as a new pro-
cess and after that gets attached to it using the SYS_ptrace syscall. With that
syscall, the debugger can control the target process and access its memory,
as well as the values of its registers. However, this only happens once we ac-
tually start debugging the program. Before that, the debugger just reads the
file and uses the metadata stored in it to let us inspect parts of the program.

Let’s use gdb to see what’s at the memory address our pointer is pointing
to (remember that the exact memory address you need to look at may vary):

$ gdb ./hello

(gdb) x/s 0x40065c

0x40065c: "Hello, world!\n"

In gdb, the x command allows us to dump memory content to the con-
sole. Here it shows us that the memory location the pointer is referencing
holds our “Hello, world!” message.

The x command must be followed by the type of data we want to see. In
this case, we pass s for string, but you can, for instance, pass i for processor
instructions, a for addresses, or t for binary. The command is a bit more

Spell of Rebirth: Transmuting Greetings into Shellcode 93

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

powerful than this, but for now we don’t need to know more. See the gdb

manual if you want more details.

NO T E If you aren’t working on an x86_64 machine, you may have a problem using gdb

directly on an x86_64 binary. See Appendix B for information on how to debug pro-
grams for other processors using qemu and gdb-multiarch.

Declaring Pointers in C
As you may have already guessed looking at the code in Listing 3-2, pointers
in C are declared using the * symbol. In our code, *p creates a pointer called
p that references the memory location where the “Hello, world!” message is
stored:

register void *p = "Hello, world!\n";

There’s a little more to pointers than that, since in C we need to specify
data types. In this case, the data type doesn’t really make a difference, so
we’ve used void, but in the general case the pointer type is important and
useful. In all, a C pointer is therefore declared this way:

type *pointer_name;

This declares a pointer called pointer_name to a memory address contain-
ing a value of a certain data type (type). Which types does C know? Table 3-1
provides a list.

Table 3-1: C Data Types
C type Data type Description
char Byte Minimal addressable element (not necessarily 8 bits)
int Integer Default integer type
short Integer Usually half the size of the default integer
long Integer Usually double the size of the default integer
float Floating point Single-precision floating point
double Floating point Double-precision floating point
void Nothing Nothing or anything

C also supports compound types and allows us to define our own new
types, but for the time being, Table 3-1 has all we need to know.

CHAR VS. BYTE

In C, a char is defined as a byte, and a byte is defined by the C standard as
the size required to store a character in the given platform. That may sound
circular, but it opens up the possibility that a byte could be something other
than 8 bits. In fact, it was once common to see 6-bit bytes on machines with

94 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

native word sizes of 12, 18, 24, and so on up to 60, representing 2 to 10 6-bit
bytes.

Nowadays it’s very strange to find any system where the size of the byte type
isn’t 8 bits (an octet). For the rare exceptions, C defines the CHAR_BIT constant,
which indicates how many bits define a character for the given platform. Some
cases where you may find different byte sizes are digital signal processors
(DSPs). For example, the Texas Instruments C54x and TMS320 DSPs define
CHAR_BIT as 16 bits. Also, when you look into old machines like PDP or CDC
machines or even mainframe architectures, you’ll find values like 5, 7, or 9.

For your reference, Listing 3-3 shows a simple program to figure out
the size of each type in your system and better understand the difference
between all those types.

#include <stdio.h>

int main ()

{

¶ printf ("Size of void* : %ld\n", sizeof(void*));

printf ("Size of short : %ld\n", sizeof(short));

printf ("Size of int : %ld\n", sizeof(int));

printf ("Size of long : %ld\n", sizeof(long));

printf ("Size of float : %ld\n", sizeof(float));

printf ("Size of double : %ld\n", sizeof(double));

return 0;

}

Listing 3-3: Showing the sizes of the main C types in bytes

This program uses the sizeof operator, which returns the size, in bytes,
of a given data type or variable. We display the results with the printf func-
tion, short for print formatted (see the “Format Strings and Type Conversion”
box for more on how this works). Notice in particular how we check the size
of void* ¶. This is a pointer to void, meaning a raw pointer, or a pointer to
anything. That’s what we used in our “Hello, world!” program, and it’s the C
equivalent of the pointer we used in our original ASM code. If you compile
and run the test program in Listing 3-3, it will show you that void* has a size
of 4 bytes in a 32-bit platform, or 8 bytes in a 64-bit platform.

FORMAT STRINGS AND TYPE CONVERSION

The printf function used in Listing 3-3 lets us print messages using format
strings to compose complex outputs. In this case, we use the %ld format string to
print the long value returned by sizeof. This basically tells printf, “I have a
number here that I want you to convert into a string. Please do that for me.”

The idea of type conversion may be confusing if you’re used to high-level
programming languages like JavaScript, where many transformations are done
automatically, but it’s a necessary part of low-level programming. Anything

Spell of Rebirth: Transmuting Greetings into Shellcode 95

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

printed to the console, even a number, needs to be provided as a string—that
is, a sequence of characters. Internally, though, numbers and characters are
represented differently, so some conversion needs to take place prior to
printing.

Take the number 123. As an integer, it can be stored in just 1 byte, but to print
it out you need to convert it to individual characters: 1, 2, and 3. For our
purposes, C represents characters using ASCII codes, each of which requires 1
byte. As a string, the number 123 therefore becomes the byte sequence 0x31,
0x32, 0x33, 0x00. That’s 4 bytes: one for each digit, plus the final 0x00 to
indicate the end of the string. Luckily, the %ld format string handles all that for
us.

There are lots of other % format codes you can use with printf. Check the
printf man page for details about the options available. Note also that printf
is defined in stdio.h, which is why we include that file at the start of Listing 3-3.

Writing Your First Shellcode
A shellcode, in its simplest form, is a piece of code that fires up a shell. It’s
usually fed into a vulnerable program using an exploit, effectively enabling
the attacker to acquire a shell with the same privileges as the vulnerable pro-
gram. The attacker typically targets processes running as root to get full ac-
cess to the machine.

We’ll leave exploiting a vulnerable program to Chapter 4, but believe
it or no you’ve already learned all the bits and pieces to write a very basic
shellcode. Just like a “Hello, world!” program, all it takes is a pointer and the
right system call.

Our shellcode won’t be usable in the wild, but it’s still instructive to
learn about. If you’re curious, the problem is that shellcodes usually make
it into memory through a standard C function that copies strings. As we’ve
discussed, C strings are delimited with the value 0x00, but that value will also
appear as part of our shellcode, which will prevent the string copy func-
tion from copying the whole program. Once you understand how the shell-
code works, you can read the classic article “Smashing the Stack for Fun and
Profit” by Aleph One to learn more about this problem and some tricks for
avoiding it.

In the coming sections we’ll look at how to construct a shellcode for
each of our hardware platforms of interest, starting with x86_64.

x86_64
In Linux, you can execute a process (such as starting a command shell) using
the SYS_exec system call, which on the x86_64 platform has a number of 59
(0x3b). This system call takes three parameters, but for now we need only
the first one, a pointer to the name of the program to run. We’ll just set the
other parameters to 0. Listing 3-4 shows our basic shellcode.

section .text

96 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

global _start

_start:

mov rax, 0x3b ; SYS_exec

mov rdi, cmd ; char *cmd

mov rsi, 0 ; No argv

mov rdx, 0 ; No env

syscall

cmd: db '/bin/sh',0

Listing 3-4: A shellcode for Intel x86_64

Notice how similar this is to our “Hello, world!” program. We assign a
label (cmd) to a string, but this time our string is '/bin.sh', the name of the
shell we want to launch, instead of a message to print. Then we create a
pointer to this string in a register (RDI) and invoke a system call—this time
SYS_exec instead of SYS_write. We no longer need the SYS_exit system call,
since SYS_exec is another one of those system calls that doesn’t give control
back to the calling process. See its man page (man 2 exec) for more on this.

HOW PROCESSES ARE EXECUTED

When we run a program from the command line, we usually specify the name
of the binary to run plus a set of arguments. Such a request doesn’t go straight
into the kernel but rather into the command line interpreter, which somehow has
to use the kernel’s services to get a new process running. For that, it does two
things: It creates a process (we’ll see how to do that in Chapter 6), and then it
loads the requested binary. This second step is done with the SYS_exec system
call, which has the following prototype:

int execve(const char *pathname, char *const _Nullable argv[],
char *const _Nullable envp[]);

When the kernel runs the SYS_exec system call, it loads the binary in memory
according to the ELF metadata and sets up a special memory area known as the
stack (which will become your best friend in Chapter 4) with the two last
parameters, which represent the command line arguments and the environment
variables. Both of these parameters are in the command line interpreter’s
process, and the kernel is the only one that can copy those values into the
address space of the new process.

When the new process starts execution on its entry point, the command line
arguments and environment variables, initially only available in the command
line, are now also available to the process via the stack. From this point on, it’s
up to the process what to do with that information. For C programs, the C
runtime code in crt1.o will process this information to be provided to the main
function as three parameters using the proper ABI, so the C program can easily
access the information if needed. With that said, do you remember that I told
you in Chapter 2 that there’s a third way of declaring main? Here you go:

Spell of Rebirth: Transmuting Greetings into Shellcode 97

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

int main (int argc, char *argv[], char *envp[])

This style of declaration gives main access to the environment variables as well
as the command line arguments. And now you also know where that third
parameter comes from. Yep, the SYS_exec system call.

You may be wondering why the shell we launch is called /bin/sh. That
doesn’t match the name of any of the shells you may have heard of, like
bash, dash, zsh, or ksh. And that’s just it: There are so many different shells
out there that just about any Unix system keeps a symbolic link to the pre-
ferred shell, whatever it may be, at /bin/sh.

The system has to run lots of shell scripts all the time. For example,
there are shell scripts that are executed during the boot process, whenever
you start or stop a service, and when you launch some applications. If those
scripts explicitly referenced a particular shell, imagine what would happen
if the user wanted to change their default shell. The system would have to
update all those scripts, to say nothing of the ones you wrote on your own
that the system knows nothing about. That would break your system badly,
as well as force all system users to use the same shell. This is why most Unix
systems have a binary at /bin/sh that runs the user’s preferred shell. Shell
scripts rely on the existence of that file to work, regardless of the particular
shell used.

ARM32
We should be able to port our x86_64 ASM shellcode to ARM32 very easily.
Listing 3-5 shows how it looks.

.text

.globl _start

_start:

mov r7, #11 @ SYS_execve

ldr r0, =cmd @ Command

mov r1, #0 @ No env

mov r2, #0 @ No argv

svc #0

cmd:

.asciz "/system/bin/sh"

Listing 3-5: A shellcode for ARM32

This code is for Android, which deviates from the standard Linux folder
structure in that the default shell is no longer at /bin/sh but rather at /sys-
tem/bin/sh. If you’re going to test the code on another ARM platform such

98 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

as a BeagleBone Black, a BananaPi, or an Olinuxino running a standard
Linux distro (usually Debian), or if you’re going to use qemu in your devel-
opment container, just change the string to the well-known location /bin/sh.
The rest of the code should just work.

We can compile the program like this:

$ arm-linux-gnueabi-as -o arm_sc.o arm_sc.s

$ arm-linux-gnueabi-ld -o arm_sc arm_sc.o

$ arm-linux-gnueabi-readelf -S arm_sc | grep ".text"

[1] .text PROGBITS 00010054 000054 000020 00 AX 0 0 4

This produces a shellcode of 32 bytes (0x20 in hexadecimal).
Let’s take a closer look at the code. First, notice how we use .asciz to

add the shell location to memory instead of db. This is a GNU Assembler
instruction, and it’s available independent of the processor. It’s similar to
NASM’s db instruction, but it automatically adds the requisite zero at the end
of the string so we don’t have to do that explicitly (that’s what the z in asciz

means).
Second, notice that we have to use ldr to load our pointer into register

r0. When receiving a 32-bit immediate value (like the memory address ref-
erenced by msg), ldr is an ARM pseudo-instruction. The bottom line is that
you can’t directly load a 32-bit value into a register in an ARM processor. I
won’t go into the details, but roughly, ARM produces 32-bit machine code
for all instructions (there’s another mode for 16 bits, but we won’t talk about
it for now). This limits the size of the values that can be directly loaded into
a register by one of those 32-bit machine code instructions: We would need
the whole 32 bits for the value, so there wouldn’t be any bits left to indicate
which instruction we want to use the value with.

To get around this, the assembler expands the ldr pseudo-instruction
into the right sequence of actual instructions to load the 32-bit value in a
register. You’ll find a similar workaround in other RISC processors since,
like ARM, they’re designed to use a fixed size for instructions. CISC proces-
sors like Intel allow a variable number of bytes per instruction, so they don’t
have this problem.

NO T E It’s possible to directly load small values (up to 12 bits) using ldr. The assembler
will decide, depending on the value you want to load, whether to use the immediate
value or treat ldr as a pseudo-instruction and expand it.

If you’re curious, you can use objdump to see the actual machine code that
ldr produces:

$ arm-linux-gnueabi-objdump -d arm_sc

arm_sc: file format elf32-littlearm

Disassembly of section .text:

Spell of Rebirth: Transmuting Greetings into Shellcode 99

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

00010074 <_start>:

10074: e3a0700b mov r7, #11

10078: e59f0008 ldr r0, [pc, #8] ; 10088 <_start+0x14>

1007c: e3a01000 mov r1, #0

10080: e3a02000 mov r2, #0

10084: ef000000 svc 0x00000000

10088: 0002008c .word 0x0002008c

The ldr instruction we wrote that loads a label (a 32-bit pointer) directly
in the register is changed into an ldr instruction that uses indirect PC-relative
addressing to get the pointer. The assembler will store the pointer to msg

near the instruction (at address 0x10088 in this example), and then will load
the register r0 by reading the 32-bit value from that nearby address based on
an offset from the current address. Because the address is nearby, the offset
value will be a small number (in our example, it’s 8), much smaller than the
32-bit number we want to load into the register, and small enough to fit as
part of the 32-bit machine code. You’ll see this pattern all over the place in
code for the ARM platform.

Exercise Use gdb to check that the pointer in the ARM code actually
points to the shell path.

A Short Digression on Addressing Modes
Processors provide lots of different methods for accessing values and mem-
ory locations. These are known as addressing modes. So far we’ve mostly been
using immediate addressing, where we just provide literal values in the assem-
bly code. Here are examples for x86_64 and ARM:

mov rax, 0 ; x86_64

mov r1, #0 ; ARM 32 bits

This loads the literal value 0 into register RAX or r1.
Immediate addressing is the most basic addressing mode, but we need

more than that. For now, we’ll introduce three other modes. Others will
come as we need them.

When the second operand to mov is a register rather than a literal value,
this is called direct addressing or register direct. In effect, this copies the value
from one register into another register.

The second most used addressing mode is indirect addressing. This mode
is used when we want to access the content of a memory address. In this
case, the address is provided between parentheses or square brackets (it de-
pends on the assembly syntax used). This addressing mode is the one that
allows us to work with pointers (memory positions that contain an address
to another memory position). Here are some examples:

; (Intel)

mov rax, (0x600200) ; Loads in RAX the content of address 0x600200

; (ARM)

100 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

mov r0, [0x20008c] ; Loads in r0 the content of address 0x2008c

In these examples, we specify the memory address literally, but it’s more
common to reference a register containing the desired memory address (or
pointer), like so:

; (Intel)

mov rdi, 0x600200

mov rax, (rdi) ; Loads in RAX the content of address 0x600200

; (ARM)

ldr r1, =0x2008c

mov r0, [r1] ; Loads in r0 the content of address 0x2008c

Finally (for the time being), certain processors support PC-relative ad-
dressing, where the address we want to access is referenced as an offset from
the address stored in the program counter (PC). This is the mode ARM’s ldr
pseudo-instruction uses to load a 32-bit value into a register using a 32-bit
opcode, as we discussed in the last section. Let’s go back to that example:

10078: e59f0008 ldr r0, [pc, #8] ; 10088 <_start+0x14>

--snip--

10088: 0002008c .word 0x0002008c

Remember that brackets indicate we’re reading the content of a mem-
ory address, so the first line says, “Read the value stored at the address lo-
cated 8 bytes (#8) away from where the program counter is right now.” For
ARM processors, “where the program counter is right now” is always 8 more
than the address of the current instruction. In other words, pc is pointing
two instructions ahead (remember that all ARM32 instructions are 32 bits
or 4 bytes). Most processors just point to the next instruction, but for ARM
it’s different: ARM was originally designed as a three-stage pipeline (fetch-
decode-execute), similar to the one we saw in Chapter 1, and the design-
ers decided that pc should point to the instruction in the fetch stage. That
means that, when executing an instruction, we’ve already fetched the next
two.

In our example, the instruction is at address 0x10078, so pc is at 0x10078 + 8,
or 0x10080. The value we want is 8 bytes ahead of pc, and 0x10080 + 8 is 0x10088.
Therefore, 0x10088 is where the actual pointer we want to load into r0 is stored
(0x0002008c in this case).

In ARM jargon, the list of values used together with the ldr instruction
to load full 32-bit values is known as the literal pool, and it’s generated auto-
matically by the assembler somewhere close to the code that needs access to
those values. You usually won’t have to worry about this, as assemblers and
compilers will take care of it for you, but it’s good to know how it works.

Spell of Rebirth: Transmuting Greetings into Shellcode 101

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

AArch64
The code for AArch64 is basically the same as for ARM32. We just have to
use the correct registers and a different syscall number, as shown in List-
ing 3-6.

.text

.globl _start

_start:

mov w8, #221

mov x1, #0

mov x2, #0

ldr x0, =cmd

svc #0

cmd:

.asciz "/bin/bash"

Listing 3-6: AArch64 shellcode

No surprises here. You can compile the program the usual way:

$ aarch64-linux-gnu-as -o aarch64_sc.o aarch64_sc.s

$ aarch64-linux-gnu-ld -o aarch64_sc aarch64_sc.o

$ aarch64-linux-gnu-readelf -S aarch64_sc | grep -A1 ".text"

[1] .text PROGBITS 0000000000400078 00000078

0000000000000028 0000000000000000 AX 0 0 8

This produces a shellcode of 40 bytes (0x28 in hexadecimal).

MIPS32
The shellcode for MIPS32 is pretty similar to the ARM version. Listing 3-7
shows how it looks.

.text

.globl __start

__start:

li $2, 4011

la $4, cmd

move $5, $0

and $6, $0, $0

syscall

cmd:

.asciz "/bin/bash"

Listing 3-7: A shellcode for MIPS32

102 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

We already know that MIPS uses different register names and syscall
numbers, but there are some other details to highlight. First, as with ARM,
MIPS opcodes are all 32 bits long, and therefore you can’t directly encode an
instruction that loads a 32-bit value. Also like ARM, MIPS provides pseudo-
instructions as a workaround: li and la. They load smaller, more manage-
able parts of the 32-bit value into different registers, then combine those
parts together.

To illustrate, say we have the following li pseudo-instruction:

li $2, 0x11223344

The assembler will convert this to the following two instructions:

lui $1, 0x1122

ori $2, $1, 0x3344

The lui instruction (load upper word immediate) loads the upper word
of register $1 with 0x1122, so $1 will hold 0x11220000. If you look back at Ta-
ble 2-4, you’ll see that register $1 is reserved for pseudo-instructions. Next,
the ori instruction (OR immediate) takes the bitwise OR of register $1 and
the value 0x3344, storing the result in register $2. This operation compares
the two values bit by bit, yielding a 1 for bits where either value (or both) has
a 1. In the end, we get the 32-bit value we want, 0x11223344, in register $2. The
la pseudo-instruction is similar to li, but instead of using ori, it uses addiu.

In our shellcode, we use la to store our pointer in register $4. Then we
have to set the other two syscall parameters to 0. We could just use li, but
instead we zero registers $5 and $6 using MIPS’s special $0 or $zero register,
which is always set to 0. I’ve shown two ways of doing this: First, we simply
use move to copy register $zero into register $5, then we perform an AND of
register $zero and itself, storing the result in register $6. (You could also XOR
register $6 with itself.) Remember that the $zero register exists when you ana-
lyze MIPS code.

Just to get comfortable with the compilation process, here’s a reminder
of the command line instructions to compile the MIPS version:

$ mips-linux-gnu-as -o mips_sc.o mips_sc.s

$ mips-linux-gnu-ld -o mips_sc mips_sc.o

$ mips-linux-gnu-readelf -S mips_sc | grep ".text"

[3] .text PROGBITS 004000d0 0000d0 000020 00 AX 0 0 16

The MIPS shellcode is 32 bytes long (0x20 in hexadecimal).

MIPS64
The shellcode for MIPS64 is almost identical to the MIPS32 version. In List-
ing 3-8, instead of using the register numbers we use the register names,
which greatly improves readability. The syscall number is also different.

.text

.globl __start

Spell of Rebirth: Transmuting Greetings into Shellcode 103

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

__start:

dli $v0, 5057

dla $a0, cmd

dli $a1, 0

dli $a2, 0

syscall

cmd:

.asciz "/bin/sh"

Listing 3-8: A shellcode for MIPS64

We’ve swapped li and la for dli and dla (the d stands for double) because
now our registers can load up to 64 bits. These are also pseudo-instructions
working the same way we just described.

You can compile the program using these commands:

$ mips64-linux-gnuabi64-as -o mips64_sc.o mips64_sc.s

$ mips64-linux-gnuabi64-ld -o mips64_sc mips64_sc.o

$ mips64-linux-gnuabi64-readelf -S mips64_sc | grep -A1 ".text"

[3] .text PROGBITS 00000001200000f0 000000f0

0000000000000030 0000000000000000 AX 0 0 16

This produces a slightly bigger file than the 32-bit version: 48 bytes (0x30
in hexadecimal). Let’s take a look at the resulting machine code:

$ mips64-linux-gnuabi64-objdump -D mips64_sc

--snip--

Disassembly of section .text:

00000001200000f0 <__start>:

1200000f0: 240213c1 li v0,5057

1200000f4: 3c040000 lui a0,0x0

1200000f8: 3c012000 lui at,0x2000

1200000fc: 64840001 daddiu a0,a0,1

120000100: 64210118 daddiu at,at,280

120000104: 0004203c dsll32 a0,a0,0x0

120000108: 0081202d daddu a0,a0,at

12000010c: 24050000 li a1,0

120000110: 24060000 li a2,0

120000114: 0000000c syscall

0000000120000118 <cmd>:

120000118: 2f62696e sltiu v0,k1,26990

12000011c: 2f736800 sltiu s3,k1,26624

In this case, dli is just translated to an li because the value is small enough
to fit in the instruction. The dla pseudo-instruction gets expanded to a few
operations, though. Let’s figure out what’s going on here.

104 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

The cmd string is stored at address 0x120010118, as you can see in the objdump

output. In case you don’t believe it, try the following:

$ xxd -r -p

2f62696e2f736800

/bin/sh

xxd allows us to do hex dumps of data, but it can also do the reverse op-
eration using -r (for reverse). The -p option shows the result immediately.
Just type the hexadecimal sequence you want to convert and press ENTER.
Then press CTRL-C when you’re done.

Here again is everything the dla pseudo-instruction actually does:

lui a0, 0x00 ; a0 = 0x0

lui at, 0x2000 ; at = 0x0000000020000000

daddiu a0,a0,1 ; a0 = 0x0000000000000001

daddiu at,at, 0x280 ; at = 0x0000000020000118

dsll32 a0,a0,0 ; a0 = 0x0000000100000000

daddu a0, a0, at ; a0 = 0x0000000120000118

We’ll break this down step by step:

1. As we already know, lui loads an upper word (16 bits). In the sec-
ond line, it allows us to set bits 31–16 in the lower part of the 64-bit
register at.

2. The daddiu instruction performs an unsigned addition with a given
value (the i is for immediate).

3. The dsll32 instruction is a little tricky. On MIPS32, sll performs a
left shift of a given number of bits, but the 64-bit version performs a
left shift of 32 plus the value of the third operand. In this case, since
the third operand is 0, we shift left by 32 bits, meaning the lower 32
bits of the 64-bit a0 register is moved into the higher 32 bits of the
register.

4. The daadu instruction is similar to daddiu, but it uses only registers
and no immediate values.

After all that, we get the memory address we want, 0x120010118, in reg-
ister a0. Jumping through all these hoops is common for a RISC proces-
sor like MIPS. The number of available instructions is reduced (that’s what
RISC means), so it’s normal to use several instructions to do relatively sim-
ple things. In general, you don’t need to care about everything happening
under the hood when you use a pseudo-instruction. However, if you’re look-
ing to save some bytes here and there, be aware that a single dla instruction
actually takes up six 32-bit words, or 24 bytes.

As an extra step, try compiling the MIPS 32-bit code with the MIPS 64-
bit compiler. You may get some warnings about not using the 64-bit versions
of instructions (daadu, for example), but you’ll get the same result in the end.
MIPS was designed that way: MIP32 code can be used directly for MIPS64
machines. The actual difference between the architectures (leaving aside

Spell of Rebirth: Transmuting Greetings into Shellcode 105

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

coprocessor and supervised mode) is that registers are 64 bits for MIPS64
and 32 bits for MIPS32. Even instructions are 32 bits long for MIPS64. As
such, I won’t include any more code for MIPS64 in this book, as it will be
almost identical to the MIPS32 version. We’ll just talk about MIPS32, which
we’ll refer to simply as MIPS from this point on.

RISC-V
The RISC-V version of our shellcode is quite straightforward now that we’ve
gone through the ARM and MIPS versions. Listing 3-9 shows the code.

.text

.globl _start

_start:

li a7, 221 # SYS_execve

la a0, cmd

li a1, 0

li a2, 0

ecall

cmd:

.asciz "/bin/sh"

Listing 3-9: A shellcode for RISC-V 64 bits

You can compile this program using the following instructions:

$ riscv64-linux-gnu-as -o riscv64_sc.o riscv64_sc.s

$ riscv64-linux-gnu-ld -o riscv64_sc riscv64_sc.o

$ riscv64-linux-gnu-readelf -S riscv64_sc | grep -A1 ".text"

[1] .text PROGBITS 00000000000100b0 000000b0

0000000000000020 0000000000000000 AX 0 0 4

As usual, the code is almost identical to MIPS (it even has the same size
of 32 bytes), and as with the ARM and MIPS versions, la is a pseudo-instruction.
Let’s take a quick look at the generated assembly:

$ riscv64-linux-gnu-objdump -D riscv64_sc

riscv64_sc: file format elf64-littleriscv

Disassembly of section .text:

00000000000100b0 <_start>:

100b0: 0dd00893 li a7,221

100b4: 00000517 auipc a0,0x0

100b8: 01450513 add a0,a0,20 # 100c8 <cmd>

100bc: 00000593 li a1,0

106 Chapter 3

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

100c0: 00000613 li a2,0

100c4: 00000073 ecall

00000000000100c8 <cmd>:

100c8: 6e69622f .word 0x6e69622f

100cc: 0068732f .word 0x0068732f

The li (load immediate) instructions we wrote in the source code comes
through unchanged, but the la pseudo-instruction is substituted with a com-
bination of auipc and addi. The first instruction, auipc (add upper immediate
to program counter), is the way RISC-V implements PC-relative addressing.
It sets the target register to the sum of the current program counter and an
immediate value shifted 12 bits left. In other words, it adds the immediate
value shifted 3 nibbles (3 hexadecimal digits) left:

0x100b4 auipc a0, 0x0 (pc = 0x000100b4)

a0 = pc + (0x0 << 12) = pc = 0x000100b4

0x100b8 add a0, a0,20 a0 = 0x000100b4 + 0x14 (20) = 0x000100c8

Note that when we reference data that’s nearby, auipc will use 0x00 as a
parameter, in which case it just becomes a way to load the value of pc into
a register. Then the small offset (0x14, or 20, in this case) is handled by the
subsequent add instruction.

In general, the program counter points to the next instruction to be ex-
ecuted, but for RISC-V’s auipc, it actually contains the address of the current
instruction. That is, we can assume that the instruction hasn’t been executed
yet when we’re about to execute auipc, so the program counter hasn’t been
incremented yet. Usually we wouldn’t care about these 4 bytes more or less—
the assembler will handle that for us—but it’s good to know that there may
be small differences between platforms when calculating offsets for different
instructions.

Conclusion
In this chapter we had our first encounter with pointers in ASM and C, and
we learned how to use them together with a system call. We also had our
first contact with addressing modes. Using these concepts, we managed to
create a “Hello, world!” program, which coincidentally was almost identical
to a very basic shellcode.

Spell of Rebirth: Transmuting Greetings into Shellcode 107

Heavy Wizardry 101 (Sample Chapter) © 08/14/2025 by David Martinez Oliveira, aka Pico

