
The minimum spanning tree of a weighted, 
undirected graph is the set of edges with 

the smallest total weight that connects all 
the nodes. We can use this concept to model 

and optimize a variety of real-world problems, from 
designing power grids to hypothesizing how chipmunks 
should be constructing their burrows.

This chapter introduces two classical algorithms for constructing 
minimum spanning trees. Prim’s algorithm is a nodewise agglomerative 
algorithm that builds a bigger and bigger set of connected nodes. Kruskal’s 
algorithm constructs a minimum spanning tree from a sorted list of edges 
by adding one edge at a time.

After discussing how minimum spanning trees can be applied to 
several real-world problems, we consider two additional algorithms closely 
related to minimum spanning trees: grid-based maze generation and single- 
linkage clustering. We show how these tasks can be mapped into graph 
problems and solved using variations of the algorithms from this chapter.

10
M I N I M U M  S P A N N I N G  T R E E S
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The Structure of Minimum Spanning Trees
A spanning tree of a graph is a set of edges that connects all the nodes in the 
graph without forming any cycles. We can visualize spanning trees as the 
backbone of a real-world infrastructure network—the minimum connections 
needed to make every node reachable from any other node. These might be 
power lines, roads, links in a computer network, or the tunnels between holes 
in a chipmunk burrow. The minimum spanning tree is the set of edges that con-
nect all the nodes while minimizing the sum of the edge weights.

We can picture these requirements in terms of an especially well-
organized chipmunk’s burrow, as shown in Figure 10-1. The chipmunk con-
structs their domain as a series of holes (nodes) linked by tunnels (edges). 
As in a graph, each tunnel directly links exactly two holes in a straight line. 
The chipmunk imposes two additional requirements. First, each hole to 
the surface needs to be reachable through its tunnels from any other hole. 
After all, what good are multiple entrances if they don’t let you vanish into 
one and pop out of another? Second, the total distances of tunnels must be 
minimized. The chipmunk is lazy and would prefer to expend its energy 
randomly popping out of the ground at various points rather than digging 
new tunnels.

Figure 10-1: Five chipmunk holes connected as a  
minimum spanning tree

Formally we define the problem of finding the minimum spanning tree 
in a weighted, undirected graph as follows:

Given a graph with a set of nodes V  and edges E, find the set of  
edges E ′ ⊆ E that connects every node in V while minimizing the  
sum of edge weights ∑e ∈ E ′ weight(e).

By definition, the minimum spanning tree will have |V    | – 1 edges, the mini-
mum number needed to connect |V    | nodes. Any more edges would add 
cycles and unnecessary weight.

Use Cases
This section introduces a few real-world examples of using the minimum 
spanning tree concept to design cost-efficient physical networks or optimize 
communications in a social network.
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Physical Networks
Minimum spanning trees are useful in determining the minimum cost set 
of links that we need to build to fully connect a physical network. Imagine 
that the Algorithmic Coffee Shop Company is looking to build a state-of-
the-art pneumatic tube system for delivering beans between its locations. 
After promising to serve over 10,000 varieties of coffee, the company quickly 
realizes that it lacks the storage space in some locations to keep such a vast 
variety on hand. Instead, it decides to build a central warehouse and ship 
small packets of beans to each store as needed. Every store will now boast an 
unparalleled selection.

The planners quickly realize that it is prohibitively expensive to build 
pneumatic tubes from every store to the warehouse. The two stores in 
Javaville are each located over 10 miles from the distribution center, but 
only two blocks from each other. It is much cheaper to build a single tube 
from the distribution center to the Main Street location and then a second 
tube from Main Street to the Coffee Boulevard location. A request for the 
Coffee Boulevard location can be satisfied by first sending the beans to the 
Main Street location and then forwarding them to Coffee Boulevard.

This multistep routing turns the design of the pneumatic delivery sys-
tem into a minimum spanning tree problem, as shown in Figure 10-2. Each 
of the Algorithmic Coffee Shop Company’s buildings is a node and each 
potential tube between any pair is an edge.

Main Street

C
of

fe
e 

Bo
ul

ev
ar

d

To distribution center 

Figure 10-2: Two coffee shops on a minimum  
spanning tree delivery network

In Figure 10-2, the weight of an edge is the cost it would take to build 
the pneumatic tube between the two buildings. While often a factor of dis-
tance, the cost can also increase due to environmental factors. For example, 
building a tube that cuts through the center of a city is much more expen-
sive than the same length tube under a farm. The planners need to find the 
set of edges (tubes to construct) that connects all the buildings while mini-
mizing the cost.
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Aside from pneumatic coffee tubes, more typical applications of  
minimum-cost spanning trees to physical networks include the following:

Constructing highways ​   ​Nodes are cities, edges are highways, and 
edge weight is the cost to construct a highway between two points.

Power grids ​   ​Nodes are cities, edges are transmission lines, and edge 
weight is the cost to construct the transmission lines between two 
points.

Bridging an archipelago ​   ​Nodes are islands in the archipelago, edges 
are physical bridges between two islands, and edge weight is the cost to 
construct a bridge between two islands.

Design of airline networks ​   ​Nodes are airports, edges are flights, and 
edge weight is the cost of flying between two airports.

Social Networks
Minimum spanning trees also apply to non-physical networks. For example, 
imagine a Society for Personal Communication Between Data Structure 
Experts that does not believe in bulk emails. Such announcement methods 
are much too impersonal. Instead, the organizers insist that each message 
be passed by a personal call from member to member. However, like in any 
organization consisting of experts, there exists a range of old friendships 
and feuds. Last year, Alice Hash Table had a falling out with Bob Binary 
Search Tree, and they no longer talk.

Every year, the organization develops an elaborate phone tree allow-
ing the organization to spread the news of its upcoming conference while 
minimizing the discomfort of its members. Each member is represented as 
a node with edges to each other member. The cost of an edge is the level 
of discomfort two members have with talking to one another. In the best 
case, a chat among friends, the weight is minimal to represent the time cost 
of the phone call. However, in the worst case, the cost between two feud-
ing members results in days of lost productivity and angry muttering. The 
organization needs to find the set of pairwise communications that informs 
every member about the conference details while minimizing overall angst. 
This requires all nodes to be connected using the minimum number and 
cost of edges.

Prim’s Algorithm
Constructing a minimum spanning tree requires an algorithm to select a 
minimum cost subset of the edges from the full graph such that the result-
ing graph is fully connected. One method of finding a graph’s minimum 
spanning tree is Prim’s algorithm, which was independently proposed by mul-
tiple people including computer scientist R.C. Prim and mathematician  
Vojtěch Jarník. The algorithm operates very similarly to Dijkstra’s algorithm 
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in Chapter 7, working through an unvisited set and building up a minimum 
spanning tree one node at a time.

Prim’s algorithm starts with an unvisited set of all nodes and arbitrarily 
chooses one to visit. This visited node forms the start of the minimum span-
ning tree. On each iteration, the algorithm finds the unvisited node with 
the minimum edge weight to any of the nodes that it has previously visited, 
asking, “Which node is closest to our set’s periphery and thus can be added 
with the least cost?” The algorithm removes this new node from the unvis-
ited set and adds the corresponding edge to the minimum-cost spanning 
tree. It keeps adding nodes and edges, one per iteration, until it has visited 
every node.

Prim’s algorithm will visit each node at most once and consider each 
edge at most twice (once from each end). Additionally, for each node, we 
may see a cost proportional to the logarithm of |V    | to insert or update a 
node in the priority queue implemented as a standard heap. The total cost 
of the algorithm therefore scales as (|V    | + |E|) × log (|V    |).

We can picture Prim’s algorithm as a construction company hired to 
upgrade bridges between islands in an archipelago. The company plans to 
replace the rotting wooden bridges connecting the archipelago with fully 
modern versions. Because the old wooden bridges will not support the 
weight of the construction equipment, from the company’s point of view, 
only islands joined by a new bridge are truly connected. Their contract 
specifies that, in the end, any pair of islands must be reachable with a new 
modern bridge.

The builders start at a single island and work outward, connecting more 
and more islands with new bridges. At each step, they choose to upgrade 
the shortest wooden bridge that joins an island in the current connected set 
to an island outside that set. By always starting new bridges from an island 
in the connected set, the builders can move their equipment to the new 
edge’s origin using modern bridges. By always ending bridges on islands 
outside the connected set, the builders increase the coverage of the con-
nected set at every stage.

The Code
At each step of Prim’s algorithm, we track the unconnected nodes along 
with the best edge weight seen that would connect them. We maintain this 
data using a custom PriorityQueue implementation that provides an efficient 
mechanism for looking up values in the queue and modifying priorities. 
For the purposes of this code, you need to understand only the basics of 
inserting items into the priority queue, removing items from the priority 
queue, and modifying priorities. However, if you’re curious, you can review 
the details in Appendix B.

The code itself loops over the nodes in the priority queue until it is 
empty. Every time it removes a new node from the priority queue (the unvis-
ited set), it examines that node’s unvisited neighbors and checks whether 
the current node provides better (that is, lower cost) edges to any of its 
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unconnected neighbors. If so, it updates the neighbor’s information with 
the new edge and weight:

def prims(g: Graph) -> Union[list, None]:
    pq: PriorityQueue = PriorityQueue(min_heap=True)
    last: list = [-1] * g.num_nodes
    mst_edges: list = []

  1 pq.enqueue(0, 0.0)
    for i in range(1, g.num_nodes):
        pq.enqueue(i, float('inf'))

  2 while not pq.is_empty():
        index: int = pq.dequeue()
        current: Node = g.nodes[index]

      3 if last[index] != -1:
            mst_edges.append(current.get_edge(last[index]))
        elif index != 0:
            return None

      4 for edge in current.get_edge_list():
            neighbor: int = edge.to_node
            if pq​.in​_queue(neighbor):

                if edge.weight < pq.get_priority(neighbor):
                    pq.update_priority(neighbor, edge.weight)
                    last[neighbor] = index

    return mst_edges

The code starts by creating a trio of helper data structures, includ-
ing a min-heap-based priority queue of unconnected nodes (pq), an array 
indicating the last node visited before a given node (last), and the final 
set of edges for the minimum spanning tree (mst_edges). The code requires 
importing the custom PriorityQueue class defined in Appendix B, as well as 
importing Union from Python’s typing library.

All nodes are inserted into the priority queue at the start of the algo-
rithm 1. The starting node (0) is given priority 0.0 and the rest are given 
infinite priority. The code then proceeds like Dijkstra’s algorithm, process-
ing the unvisited nodes one at a time. A while loop iterates until the priority 
queue of unvisited nodes is empty 2. During each iteration, the node with 
the minimum distance to any of the visited nodes is chosen and dequeued 
from the priority queue. As we will see, this effectively removes the node from 
the unvisited set.

The code next checks whether there exists an edge back to one of the 
nodes in the connected set 3. There are two cases in which the node’s last 
entry might be -1. The first is node 0, which does not have a predecessor by 
virtue of being explored first. The second case is in a disconnected compo-
nent where index is not reachable from node 0. In this latter case, because 
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all the nodes cannot be connected, the graph does not have a minimum 
spanning tree and the function returns None.

After adding the new node to the visited set (by dequeuing it), a for 
loop iterates over each of the node’s neighbors 4, checking whether the 
neighbor is unvisited (still in the priority queue). If so, the code checks 
whether it has found a better edge to the node by comparing the previous 
best edge weight with that of the new edge. The code finishes by returning 
the set of edges making up the minimum spanning tree.

Note that if a graph is disconnected, each connected component has 
its own minimum spanning tree. An alternative approach to the code pre-
sented here is to return the list of edges that create the minimum spanning 
trees for each connected component. We can implement this by removing 
the elif check 3 and its corresponding return. The code will then move 
on to the next component by selecting a node from the priority queue and 
continue selecting edges.

An Example
Figure 10-3 shows an illustration of Prim’s algorithm on a graph with eight 
nodes. The table to the right of each subfigure shows the information 
tracked for each node, including the node’s ID, the distance to that node 
from the connected set of nodes as stored by the node’s priority, and the 
closest member of the current connected subset as stored in the last list. 
All nodes except the first one start with an infinite distance and a last node 
pointer of -1 to indicate that we have yet to find a path that leads to that 
node. After removing a node from the priority queue, we gray out its row to 
indicate it is no longer under consideration.

The search starts at node 0 in Figure 10-3(a). This corresponds to our 
island bridge building company setting up operations at its headquarters 
on its home island. The search removes this node from the priority queue, 
checks each of node 0’s neighbors, and updates the information accord-
ingly. Node 1 is assigned a distance of 1.0 and node 3 a distance of 0.6. Both 
neighbors’ last values now point back to node 0 as the closest node in the 
connected subset.

In Figure 10-3(b), the search progresses to the closest node that is 
not in the connected subset. This corresponds to building the first bridge 
between islands. The algorithm dequeues node 3 with a distance (priority) of 
0.6, adds it to the connected subset, and checks its neighbors 4 and 6. These 
are both newly reachable via an edge from node 3. The search updates both 
nodes’ priorities and last values.

The search next explores node 1 in Figure 10-3(c). While checking the 
neighbors of node 1, it finds a shorter edge connecting to node 4. This is 
equivalent to the workers noticing the old wooden bridge (1, 4) is shorter 
and thus cheaper to upgrade than the other wooden bridge (3, 4) that is 
currently slated for an upgrade. The search thus updates the distance from 
node 4 to 0.5 and updates its last pointer to node 1 to reflect the origin of 
the connecting edge. The search is now scheduled to use the edge from  
(1, 4) to join node 4 to our connected set instead of the previous edge (3, 4).
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Figure 10-3: An illustration of Prim’s algorithm
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In the next five subfigures, the search progresses to node 5, node 2, 
node 4, node 6, and node 7, respectively, checking each node’s unvisited 
neighbors and updating any for which it finds shorter edges. The size 
of the connected subgraph grows by one each step until all nodes are 
connected.

Kruskal’s Algorithm
An alternative to the node-by-node approach of Prim’s algorithm is to 
take an edge-centric approach to constructing minimum spanning trees. 
Kruskal’s algorithm, invented by multidisciplinary scholar Joseph B. Kruskal, 
works by looping over a sorted list of edge weights and progressively add-
ing edges to build the minimum spanning tree. Intuitively, we want to 
add the graph’s smaller edges, since they are the least expensive connec-
tions between nodes. If we maintain a list of edges sorted by weight, we 
can proceed through it, adding the next edge that would help build the 
minimum spanning tree. This loop over a sorted list forms the core of 
Kruskal’s algorithm.

Kruskal’s algorithm’s cost scales proportional to |E| log (|E|). The algo-
rithm starts by extracting and sorting each edge, requiring time propor-
tional to |E| log (|E|). Using an efficient implementation of the union-find 
algorithm, we can combine the sets in |E| log (|V    |) time. As long as |E| ≥ |V    |, 
the algorithm will scale as |E| log (|E|).

We can visualize Kruskal’s algorithm in the context of a pet owner 
building a complex living space for their beloved hamster. The hamster 
already has several large habitats that the owner decides to connect using 
clear tubes, giving their pet free range to roam between cages. The habi-
tats’ arrangement within the room is fixed. The owner, looking to minimize 
the total tubing needed, measures each pairwise distance between habitats, 
sorts the list, and determines which tube to add next. Unlike the island 
building example, the pet owner does not need to worry about transporting 
construction equipment from node to node. They can easily move between 
any pair of nodes to build the connection.

Union-Find
Beyond finding the next lowest-cost edge, we need to answer one additional 
question when considering each new edge: does this edge join nodes from 
currently disconnected clusters? If not, the edge is redundant. Remember 
that the key word here is minimum. If we already have edges (A, B) and (B, C), 
the edge (A, C) doesn’t help, as node C was already reachable from node A 
through node B.

To efficiently implement Kruskal’s algorithm, we make use of a new 
helper data structure, UnionFind. This data structure allows us to represent 
a collection of different sets, which we will use to track the connected 
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components of the graph. The data structure facilitates a few efficient, set-
based operations, including the following:

are_disjoint(i, j) ​   ​Determines whether two elements i and j are in dif-
ferent sets. We use this to test whether two nodes are part of the same 
connected set.

union_sets(i, j) ​   ​Merges the set with element i and the set with element 
j into a single set. We use this to connect two sets of nodes when adding 
an edge.

The data structure also tracks a count of the disjoint sets that is 
updated with each operation (num_disjoint_sets).

For the purposes of the algorithms in this book, it is not necessary to 
dive into the details of UnionFind. It is sufficient to treat it as a module that 
facilitates the operations described. Interested readers can find a basic 
description and the code sufficient to implement the algorithms in this 
book in Appendix C.

The Code
Given the helper data structure, the code for Kruskal’s algorithm consists 
of two main steps. First, we create a list of all the graph’s edges and sort it. 
Second, we iterate through that list by checking whether the current edge 
joins disconnected components and, if so, adding it to our minimum span-
ning tree:

def kruskals(g: Graph) -> Union[list, None]:
    djs: UnionFind = UnionFind(g.num_nodes)
    all_edges: list = []
    mst_edges: list = []

  1 for idx in range(g.num_nodes):
        for edge in g.nodes[idx].get_edge_list():
          2 if edge.to_node > edge.from_node:
                all_edges.append(edge)
  3 all_edges.sort(key=lambda edge: edge.weight)

    for edge in all_edges:
      4 if djs.are_disjoint(edge.to_node, edge.from_node):
            mst_edges.append(edge)
            djs.union_sets(edge.to_node, edge.from_node)

  5 if djs.num_disjoint_sets == 1:
        return mst_edges
    else:
        return None
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The code starts by creating a series of helper data structures, includ-
ing a UnionFind data structure representing the current disjoint sets (djs) to 
determine which points already belong to the same cluster, a list (all_edges) 
that will store the sorted list of edges, and an empty list (mst_edges) to hold 
the resulting edges for the minimum spanning tree. The code then loops 
over every node in the graph to fill these helper data structures 1. For each 
node, it inserts each of the node’s edges into the list of all edges.

Since our representation of an undirected graph includes the edge (A, B) 
in the adjacency lists for both node A and node B, the code uses a simple 
check to avoid adding the same edge twice 2. (Note that this check is only 
needed to improve the efficiency when using this representation of an undi-
rected graph. The code would still work correctly without the check but 
would include twice the number of edges in all_edges.)

After the full list of edges is assembled, the code sorts the edges in 
order of increasing weight 3. The code iterates over each edge in the 
sorted list with a single for loop, then uses the UnionFind data structure to 
check whether the edge connects two currently unconnected components 4. 
If so, the edge is useful. The code adds it to the set of edges from the mini-
mum spanning tree (mst_edges) and merges the disjoint sets for the edge’s 
nodes.

Finally, the code checks whether it was able to connect all the nodes 
into a single connected component 5. If so, it returns the list of edges for 
the minimum spanning tree. Otherwise, it returns None. If we remove this 
final check, the code will instead return the edges from the individual 
minimum spanning trees for graphs that are not a single connected 
component.

An Example
Figure 10-4 shows an example of Kruskal’s algorithm running on a graph 
with 8 nodes and 12 edges.

The search begins with an empty set of edges and thus a disconnected 
set of nodes. In Figure 10-4(a), the search selects the edge with the lowest 
weight from our graph. This corresponds to the edge (1, 5) with a weight 
of 0.2. The edge in the figure is marked in bold to indicate it is part of the 
minimum-cost spanning tree. Nodes 1 and 5 are now part of the same con-
nected subset, and the search has reduced the number of disjoint sets from 
eight to seven.

The search continues in Figure 10-4(b) by choosing the edge with the 
next lowest weight. This time it connects nodes 6 and 7 through an edge 
with weight 0.3. It has reduced the number of disjoint sets to six.
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Figure 10-4: An illustration of Kruskal’s algorithm

In the next two subfigures, the search adds nodes 2 and 4 to the first 
connected subset {1, 5}, resulting in a connected set consisting of {1, 2, 4, 5}. In 
Figure 10-4(e), the algorithm merges another two singleton nodes by join-
ing nodes 0 and 3 via the edge with weight 0.6. It then joins up the remain-
ing three disjoint sets by adding the edges (0, 1) and (3, 6) in the following 
two subfigures. At this point, we are down to a single set, which means our 
minimum-cost spanning tree edges connect all the nodes in the graph.
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Maze Generation
While the graph searches presented in preceding chapters allow us to 
algorithmically solve mazes, they cannot help us generate mazes in the 
first place. In this section, we take a detour from the more canonical uses 
of minimum spanning tree algorithms, such as building transportation 
networks, to show how we can extend Kruskal’s algorithm to create random 
but always solvable mazes. To make the mazes sufficiently fun, we ensure 
that each has exactly one valid solution.

Imagine we are given the task of generating a maze for the children’s 
place mat at a local family restaurant. Our design can be simple but must 
be solvable, with only one path through the maze. The restaurant owners 
wisely do not want to challenge young patrons with impossible mazes, lest 
this results in screaming and thrown food.

Representing Grid-Based Mazes
For simplicity of the code in this section, we represent our mazes using a 
regular grid of squares like the ones on graph paper. After hours of careful 
consideration about how to draw our mazes, we decide to shade individual 
edges to represent the maze’s walls. The player can move between any two 
adjacent squares that do not have a wall between them. As we draw each 
line, we eliminate a potential option for leaving that square and perhaps 
chuckle at the difficult task we are creating.

Figure 10-5(a) shows an example grid-based maze. We can equivalently 
represent this grid structure using a graph, as shown in Figure 10-5(b).
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Figure 10-5: A grid-based maze and its graph representation

In Figure 10-5(b), each square in the maze corresponds to a single graph 
node. We add undirected edges between any two adjacent nodes without a 
wall so that an edge indicates the ability to travel from one node to another.

Generating Mazes
We construct our maze by starting with a grid-based graph and building a 
randomized spanning tree algorithm based on Kruskal’s algorithm to con-
nect all the nodes. The grid-based initial structure gives us connections 
based on adjacency. Each node has up to four connections to the nodes 
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above, below, left, and right of it. Generating a spanning tree allows us to 
ensure that each node is reachable from any other node and that we can 
reach the ending node from the starting one.

We define the valid edges using a connected grid-based graph, as 
shown in Figure 10-6. Like the grids we generated in Chapter 5, this graph 
represents all the nodes we need to connect and the set of potential edges 
we can use to connect them. If our grid has a width of w and a height of h, 
it contains h × w nodes and undirected edges (with equal weights of 1) con-
necting neighboring nodes.

Figure 10-6: A grid-based graph

If we used the graph in Figure 10-6 for our final maze, there would 
be a huge number of potential paths between any two locations. In other 
words, the graph does not make for a particularly fun or challenging maze. 
Beginning at the start node, we could traverse directly to the end node by 
moving the minimum number of steps in one horizontal and one vertical 
direction. Real-world equivalents would be a hedge maze implemented as 
an empty lawn or a blank maze on our place mat. To construct an interest-
ing maze, we need to use a minimum subset of these edges.

As in Kruskal’s algorithm, we start with an empty spanning tree where 
none of the nodes are connected. In the case of our grid-based place mat, 
we start with a grid of boxes. One by one, we add edges to our spanning 
tree and erase the lines between adjacent boxes. We can alternatively visual-
ize the connection of two components as a cartoon figure removing a physi-
cal wall between two adjacent rooms by using an oversized sledgehammer 
or simply bursting through the wall. As our cartoon character gleefully 
opens up passageways (or we carefully erase grid lines), the disparate com-
ponents connect and a path through the maze forms.

The key to generating a random maze is, intuitively, to choose the next 
edge randomly. Both Kruskal’s and Prim’s algorithms rely on some method 
to break ties among equal-weight edges. In this case, however, all edges 
have the same edge weight (1.0), so we can just pick one at random. If the 
chosen edge connects two disjoint components, we keep it. This edge opens 
a path between two previously unreachable components. Otherwise, in the 
case where the chosen edge joins two already connected components, we 
discard it, since adding multiple paths between components would result in 
loops and break the maze convention of having a single path.
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The Code
The following code allows us to randomly create a set of maze edges from a 
grid-based graph:

def randomized_kruskals(g: Graph) -> list:
  1 djs: UnionFind = UnionFind(g.num_nodes)
    all_edges: list = []
    maze_edges: list = []

  2 for idx in range(g.num_nodes):
        for edge in g.nodes[idx].get_edge_list():
            if edge.to_node > edge.from_node:
                all_edges.append(edge)

  3 while djs.num_disjoint_sets > 1:
        num_edges: int = len(all_edges)
      4 edge_ind: int = random.randint(0, num_edges - 1)
        new_edge: Edge = all_edges.pop(edge_ind)

      5 if djs.are_disjoint(new_edge.to_node, new_edge.from_node):
            maze_edges.append(new_edge)
            djs.union_sets(new_edge.to_node, new_edge.from_node)

    return maze_edges

The function takes a full grid-based graph (g) to define the list of 
edges. The code starts by setting up helper data structures, including a 
UnionFind data structure representing the disjoint sets (djs), a list of all edges 
(all_edges), and a list of the maze or spanning tree edges (maze_edges) 1. As 
in Kruskal’s algorithm, the code extracts the comprehensive list of edges 
from the graph 2.

The algorithm iterates through a single while loop until all nodes are 
the same set (and thus reachable) 3. During each iteration of the loop, 
the algorithm selects an edge randomly 4, using Python’s random library’s 
randint() function (which requires us to include import random at the start 
of the file). It then removes the selected edge from the list of all edges 
and checks whether it joins two previously disjoint sets 5. If so, the edge 
is added to the list of maze edges and the corresponding sets are merged. 
Otherwise, the edge is ignored. The algorithm completes after all the nodes 
are merged into a single set, returning the list of edges that defines the 
maze: the minimum spanning tree.

An Example
Figure 10-7 shows an example of the first few steps of this algorithm. The 
left diagram of each subfigure shows the current maze as defined by the 
walls that have been removed, while the right diagram shows the maze as 
defined by edges that have been added to a graph. During each step (each 
iteration of the while loop), one edge at most is added.
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(a) (b)

(c) (d)

(e) (f)

Figure 10-7: Six steps of the maze construction algorithm

It is not strictly necessary to construct the full grid-based graph (g) 
ahead of time. Instead, we could just programmatically fill the all_edges 
list based on computed adjacencies, as we did when constructing grids in 
Chapter 5, for example. However, for the purposes of this chapter, starting 
with the full grid-based graph makes the code’s connection to Kruskal’s 
algorithm more apparent and keeps the function simpler.

The randomized Kruskal’s algorithm is a simplistic approach to gener-
ating mazes that makes no guarantee that the ending node is at the end of 
a deep path with a bunch of turns. It may result in quite boring mazes such 
as the ones shown in Figures 10-8(a), 10-8(b), and 10-8(c). We can only be 
sure that the algorithm will not produce a maze where the end is unreach-
able, such as the one shown in Figure 10-8(d).
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Figure 10-8: Three overly simple mazes and one unsolvable maze

Beyond the exciting commercial opportunities involved in designing 
children’s place mats, the maze-generation algorithm in this section shows 
how we can extend the basic components of minimum spanning trees and 
Kruskal’s algorithm. Further, it demonstrates how randomization can be 
used within an algorithm to create different spanning trees.

Single-Linkage Hierarchical Clustering
We can also adapt Kruskal’s algorithm to handle the seemingly different 
problem of clustering spatial points. Clustering is a common unsupervised 
data-mining and machine-learning approach that assigns data points 
to clusters such that the points within each cluster are similar (for some 
given definition of similar). For example, we might cluster cafés based on 
geographic proximity so that all the coffee shops in Anchorage are placed 
together in one cluster, while cafés in Honolulu are placed in another. The 
resulting clusters provide a partitioning of data points that can help us dis-
cover structure in the data or classify similar data points.

There is a wide range of clustering techniques that vary in how they 
define similar points and how points are assigned to clusters. As its name 
implies, hierarchical clustering is an approach that creates a hierarchy of 
clusters by merging two “nearby” clusters at each level of the hierarchy. 
Each data point initially defines its own cluster; these clusters are iteratively 
joined until all the points are part of the same cluster. Even within hierar-
chical clustering, there are various approaches to determining which clus-
ters to merge, including the following:

•	 Computing the mean position over each cluster’s points and merging 
the clusters with the closest centers

•	 Finding the farthest of any pair of points from two clusters and merg-
ing the clusters whose maximum distance is the smallest

•	 Finding the closest pair of points from two clusters and merging the 
clusters whose minimum distance is the smallest

This section focuses on the last approach, called single-linkage clustering, 
which joins the two clusters with the closest pair of individual points. We 
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present an algorithm to implement it that is nearly identical to Kruskal’s 
algorithm on graphs.

Figure 10-9 shows an example of single-linkage clustering. The left-hand 
figure shows the five two-dimensional points (0, 0), (1, 0), (1.2, 1), (1.8, 1), 
and (0.5, 1.5). The right-hand figure shows the hierarchical clustering.
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Figure 10-9: A set of two-dimensional points (left) and  
the corresponding single-linkage clustering (right)

We start with each point in its own cluster and create a merged cluster 
from the two individual points with the closest distance (points 2 and 3). 
Next, we merge the cluster {2, 3} with {4} because points 2 and 4 have the 
smallest distance of any pair of points in different clusters. This process 
continues as shown in the right-hand side of Figure 10-9.

The advantage of hierarchical clustering is that it provides an easily 
visualized and interpretable structure. We can use this structure to dynami-
cally change the number of clusters (level of partitioning) by walking up 
the hierarchy until we hit a given distance threshold. Points that have been 
joined together before we hit the threshold are clustered together, while 
clusters that have not been merged remain disjoint.

The Code
To simplify the logic of the clustering code, we define two small helper 
classes that store information about the points and the resulting clustering 
links. First, to represent the two-dimensional points we are clustering, we 
define a Point class to store the coordinates and compute pairwise distances:

class Point:
    def __init__(self, x: float, y: float):
        self.x: float = x
        self.y: float = y

    def distance(self, b) -> float:
        diff_x: float = (self.x - b.x)
        diff_y: float = (self.y - b.y)
        dist: float = math.sqrt(diff_x*diff_x + diff_y*diff_y)
        return dist
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The distance() function computes the Euclidean distance in two- 
dimensional space and requires us to include import math at the start of the 
file in order to use the math library’s square root function. (Appendix A 
further discusses creating graphs from spatial points, including the use of 
alternative distance functions.)

Second, since we are not using an explicit graph, we also define a Link 
data structure to hold the connection between points in the same cluster:

class Link:
    def __init__(self, dist: float, id1: int, id2: int):
        self.dist: float = dist
        self.id1: int = id1
        self.id2: int = id2

This data structure is effectively identical to an undirected graph 
edge. It stores a pair of identifiers for the points and the distance (weight) 
between them. We define it here as an independent data structure to 
highlight the fact that we do not need to explicitly build a graph for single-
linkage clustering.

Using these two helper data structures, we can then implement the 
single-linkage hierarchical clustering algorithm using an approach based 
on Kruskal’s algorithm:

def single_linkage_clustering(points: list) -> list:
    num_pts: int = len(points)
    djs: UnionFind = UnionFind(num_pts)
    all_links: list = []
    cluster_links: list = []

  1 for id1 in range(num_pts):
        for id2 in range(id1 + 1, num_pts):
            dist = points[id1].distance(points[id2])
            all_links.append(Link(dist, id1, id2))

  2 all_links.sort(key=lambda link: link.dist)

    for x in all_links:
      3 if djs.are_disjoint(x.id1, x.id2):
            cluster_links.append(x)
            djs.union_sets(x.id1, x.id2)

    return cluster_links

The code takes a list of Point objects (points) to cluster. The function 
starts by creating a series of helper data structures, including a UnionFind 
data structure representing the disjoint sets (djs) to determine which points 
already belong to the same cluster, an empty list (all_links) to hold all 
pairwise distances, and an empty list (cluster_links) to hold the Link objects 
representing each merge. The code then uses a nested pair of for loops 
to iterate through all pairs of points 1. For each pair, the code computes 
the distance using the points’ distance function and creates a Link data 
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structure to hold this distance information. After all the pairwise distances 
are computed, the code sorts the links in order of increasing distance 2.

Next, another for loop iterates over each edge in the sorted list, using 
the UnionFind data structure to check whether the next pair of points is 
already in the same cluster 3. If not, the program adds the link to cluster 
_links, joining the two clusters that contain those points, and merges the 
disjoint sets for the points.

Finally, the code returns the list of Link objects representing the cluster-
ing. Each Link represents a connection between two previously disjoint clus-
ters. The links in cluster_links will be ordered by increasing distance, so the 
first element represents the first two points merged.

An Example
Figure 10-10 shows the steps of our clustering algorithm on the points from 
Figure 10-9. The left column of the figure shows the current clusters as con-
nected graph components of the two-dimensional points. The right column 
of the figure shows the same clusters as merged points in the hierarchy with 
each cluster represented as a circle.
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Figure 10-10: Single-linkage clustering

In Figure 10-10(a), the algorithm has joined the closest two points—
those at (1.2, 1) and (1.8, 1)—into a single cluster. Using the points’ labels 
from Figure 10-9, we call these points 2 and 3, respectively.

In the next step, in Figure 10-10(b), the algorithm joins the two clusters 
with the closest pair of points. At this stage, the closest points are (1.2, 1) 
and (0.5, 1.5) with a distance of approximately 0.86. Since (1.2, 1) is already 
part of a cluster, the algorithm merges the entire cluster with the one 
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containing the single point (0.5, 1.5). The resulting cluster contains three 
points {2, 3, 4}.

The algorithm continues in Figure 10-10(c) by creating a new merged 
cluster from the two remaining individual points (0, 0) and (1, 0). The 
algorithm has now created two separate clusters with three and two points, 
respectively. During the final step, in Figure 10-10(d), these two clusters are 
merged by adding a link between the closest pair of points from each clus-
ter (1.2, 1) and (1, 0).

Since single-linkage clustering grows the clusters by linking increas-
ingly distant pairs of points, we can use this distance as a stopping thresh-
old for the algorithm. For example, if we set the maximum distance to 0.95, 
we would produce the three distinct clusters shown in Figure 10-10(b).

Why This Matters
The minimum spanning tree problem allows us to solve a range of real-
world optimization problems, from building roads to designing communi-
cation networks. Within the field of computer science, we can use minimum 
spanning trees to help solve a range of problems in networking, clustering, 
and analysis of biological data. For example, we can represent a communi-
cation network as a graph and find the minimum spanning tree to inform 
which links need to be upgraded to ensure that all nodes are reachable 
through the new technology.

We can also apply the same basic approach to problems we might not 
normally think of as graph based. Using a variation of Kruskal’s algorithm, 
we can search for structure in real-valued datasets by building clusters of 
similar data points or design solvable mazes by introducing randomization 
into the algorithm to create novel solutions. In single-linkage clustering, we 
use the distances to determine which points are similar.

The next chapter expands on this discussion, introducing algorithms 
that help us identify the nodes and edges that are essential to maintain-
ing connectivity.
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