
The minimum spanning tree of a weighted,
undirected graph is the set of edges with

the smallest total weight that connects all
the nodes. We can use this concept to model

and optimize a variety of real-world problems, from
designing power grids to hypothesizing how chipmunks
should be constructing their burrows.

This chapter introduces two classical algorithms for constructing
minimum spanning trees. Prim’s algorithm is a nodewise agglomerative
algorithm that builds a bigger and bigger set of connected nodes. Kruskal’s
algorithm constructs a minimum spanning tree from a sorted list of edges
by adding one edge at a time.

After discussing how minimum spanning trees can be applied to
several real-world problems, we consider two additional algorithms closely
related to minimum spanning trees: grid-based maze generation and single-
linkage clustering. We show how these tasks can be mapped into graph
problems and solved using variations of the algorithms from this chapter.

10
M I N I M U M S P A N N I N G T R E E S

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

154 Chapter 10

The Structure of Minimum Spanning Trees
A spanning tree of a graph is a set of edges that connects all the nodes in the
graph without forming any cycles. We can visualize spanning trees as the
backbone of a real-world infrastructure network—the minimum connections
needed to make every node reachable from any other node. These might be
power lines, roads, links in a computer network, or the tunnels between holes
in a chipmunk burrow. The minimum spanning tree is the set of edges that con-
nect all the nodes while minimizing the sum of the edge weights.

We can picture these requirements in terms of an especially well-
organized chipmunk’s burrow, as shown in Figure 10-1. The chipmunk con-
structs their domain as a series of holes (nodes) linked by tunnels (edges).
As in a graph, each tunnel directly links exactly two holes in a straight line.
The chipmunk imposes two additional requirements. First, each hole to
the surface needs to be reachable through its tunnels from any other hole.
After all, what good are multiple entrances if they don’t let you vanish into
one and pop out of another? Second, the total distances of tunnels must be
minimized. The chipmunk is lazy and would prefer to expend its energy
randomly popping out of the ground at various points rather than digging
new tunnels.

Figure 10-1: Five chipmunk holes connected as a
minimum spanning tree

Formally we define the problem of finding the minimum spanning tree
in a weighted, undirected graph as follows:

Given a graph with a set of nodes V  and edges E, find the set of
edges E ′ ⊆ E that connects every node in V while minimizing the
sum of edge weights ∑e ∈ E ′ weight(e).

By definition, the minimum spanning tree will have |V    | – 1 edges, the mini-
mum number needed to connect |V    | nodes. Any more edges would add
cycles and unnecessary weight.

Use Cases
This section introduces a few real-world examples of using the minimum
spanning tree concept to design cost-efficient physical networks or optimize
communications in a social network.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 155

Physical Networks
Minimum spanning trees are useful in determining the minimum cost set
of links that we need to build to fully connect a physical network. Imagine
that the Algorithmic Coffee Shop Company is looking to build a state-of-
the-art pneumatic tube system for delivering beans between its locations.
After promising to serve over 10,000 varieties of coffee, the company quickly
realizes that it lacks the storage space in some locations to keep such a vast
variety on hand. Instead, it decides to build a central warehouse and ship
small packets of beans to each store as needed. Every store will now boast an
unparalleled selection.

The planners quickly realize that it is prohibitively expensive to build
pneumatic tubes from every store to the warehouse. The two stores in
Javaville are each located over 10 miles from the distribution center, but
only two blocks from each other. It is much cheaper to build a single tube
from the distribution center to the Main Street location and then a second
tube from Main Street to the Coffee Boulevard location. A request for the
Coffee Boulevard location can be satisfied by first sending the beans to the
Main Street location and then forwarding them to Coffee Boulevard.

This multistep routing turns the design of the pneumatic delivery sys-
tem into a minimum spanning tree problem, as shown in Figure 10-2. Each
of the Algorithmic Coffee Shop Company’s buildings is a node and each
potential tube between any pair is an edge.

Main Street

C
of

fe
e

Bo
ul

ev
ar

d

To distribution center

Figure 10-2: Two coffee shops on a minimum
spanning tree delivery network

In Figure 10-2, the weight of an edge is the cost it would take to build
the pneumatic tube between the two buildings. While often a factor of dis-
tance, the cost can also increase due to environmental factors. For example,
building a tube that cuts through the center of a city is much more expen-
sive than the same length tube under a farm. The planners need to find the
set of edges (tubes to construct) that connects all the buildings while mini-
mizing the cost.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

156 Chapter 10

Aside from pneumatic coffee tubes, more typical applications of
minimum-cost spanning trees to physical networks include the following:

Constructing highways ​  ​Nodes are cities, edges are highways, and
edge weight is the cost to construct a highway between two points.

Power grids ​  ​Nodes are cities, edges are transmission lines, and edge
weight is the cost to construct the transmission lines between two
points.

Bridging an archipelago ​  ​Nodes are islands in the archipelago, edges
are physical bridges between two islands, and edge weight is the cost to
construct a bridge between two islands.

Design of airline networks ​  ​Nodes are airports, edges are flights, and
edge weight is the cost of flying between two airports.

Social Networks
Minimum spanning trees also apply to non-physical networks. For example,
imagine a Society for Personal Communication Between Data Structure
Experts that does not believe in bulk emails. Such announcement methods
are much too impersonal. Instead, the organizers insist that each message
be passed by a personal call from member to member. However, like in any
organization consisting of experts, there exists a range of old friendships
and feuds. Last year, Alice Hash Table had a falling out with Bob Binary
Search Tree, and they no longer talk.

Every year, the organization develops an elaborate phone tree allow-
ing the organization to spread the news of its upcoming conference while
minimizing the discomfort of its members. Each member is represented as
a node with edges to each other member. The cost of an edge is the level
of discomfort two members have with talking to one another. In the best
case, a chat among friends, the weight is minimal to represent the time cost
of the phone call. However, in the worst case, the cost between two feud-
ing members results in days of lost productivity and angry muttering. The
organization needs to find the set of pairwise communications that informs
every member about the conference details while minimizing overall angst.
This requires all nodes to be connected using the minimum number and
cost of edges.

Prim’s Algorithm
Constructing a minimum spanning tree requires an algorithm to select a
minimum cost subset of the edges from the full graph such that the result-
ing graph is fully connected. One method of finding a graph’s minimum
spanning tree is Prim’s algorithm, which was independently proposed by mul-
tiple people including computer scientist R.C. Prim and mathematician
Vojtěch Jarník. The algorithm operates very similarly to Dijkstra’s algorithm

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 157

in Chapter 7, working through an unvisited set and building up a minimum
spanning tree one node at a time.

Prim’s algorithm starts with an unvisited set of all nodes and arbitrarily
chooses one to visit. This visited node forms the start of the minimum span-
ning tree. On each iteration, the algorithm finds the unvisited node with
the minimum edge weight to any of the nodes that it has previously visited,
asking, “Which node is closest to our set’s periphery and thus can be added
with the least cost?” The algorithm removes this new node from the unvis-
ited set and adds the corresponding edge to the minimum-cost spanning
tree. It keeps adding nodes and edges, one per iteration, until it has visited
every node.

Prim’s algorithm will visit each node at most once and consider each
edge at most twice (once from each end). Additionally, for each node, we
may see a cost proportional to the logarithm of |V    | to insert or update a
node in the priority queue implemented as a standard heap. The total cost
of the algorithm therefore scales as (|V    | + |E|) × log (|V    |).

We can picture Prim’s algorithm as a construction company hired to
upgrade bridges between islands in an archipelago. The company plans to
replace the rotting wooden bridges connecting the archipelago with fully
modern versions. Because the old wooden bridges will not support the
weight of the construction equipment, from the company’s point of view,
only islands joined by a new bridge are truly connected. Their contract
specifies that, in the end, any pair of islands must be reachable with a new
modern bridge.

The builders start at a single island and work outward, connecting more
and more islands with new bridges. At each step, they choose to upgrade
the shortest wooden bridge that joins an island in the current connected set
to an island outside that set. By always starting new bridges from an island
in the connected set, the builders can move their equipment to the new
edge’s origin using modern bridges. By always ending bridges on islands
outside the connected set, the builders increase the coverage of the con-
nected set at every stage.

The Code
At each step of Prim’s algorithm, we track the unconnected nodes along
with the best edge weight seen that would connect them. We maintain this
data using a custom PriorityQueue implementation that provides an efficient
mechanism for looking up values in the queue and modifying priorities.
For the purposes of this code, you need to understand only the basics of
inserting items into the priority queue, removing items from the priority
queue, and modifying priorities. However, if you’re curious, you can review
the details in Appendix B.

The code itself loops over the nodes in the priority queue until it is
empty. Every time it removes a new node from the priority queue (the unvis-
ited set), it examines that node’s unvisited neighbors and checks whether
the current node provides better (that is, lower cost) edges to any of its

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

158 Chapter 10

unconnected neighbors. If so, it updates the neighbor’s information with
the new edge and weight:

def prims(g: Graph) -> Union[list, None]:
 pq: PriorityQueue = PriorityQueue(min_heap=True)
 last: list = [-1] * g.num_nodes
 mst_edges: list = []

 1 pq.enqueue(0, 0.0)
 for i in range(1, g.num_nodes):
 pq.enqueue(i, float('inf'))

 2 while not pq.is_empty():
 index: int = pq.dequeue()
 current: Node = g.nodes[index]

 3 if last[index] != -1:
 mst_edges.append(current.get_edge(last[index]))
 elif index != 0:
 return None

 4 for edge in current.get_edge_list():
 neighbor: int = edge.to_node
 if pq​.in​_queue(neighbor):

 if edge.weight < pq.get_priority(neighbor):
 pq.update_priority(neighbor, edge.weight)
 last[neighbor] = index

 return mst_edges

The code starts by creating a trio of helper data structures, includ-
ing a min-heap-based priority queue of unconnected nodes (pq), an array
indicating the last node visited before a given node (last), and the final
set of edges for the minimum spanning tree (mst_edges). The code requires
importing the custom PriorityQueue class defined in Appendix B, as well as
importing Union from Python’s typing library.

All nodes are inserted into the priority queue at the start of the algo-
rithm 1. The starting node (0) is given priority 0.0 and the rest are given
infinite priority. The code then proceeds like Dijkstra’s algorithm, process-
ing the unvisited nodes one at a time. A while loop iterates until the priority
queue of unvisited nodes is empty 2. During each iteration, the node with
the minimum distance to any of the visited nodes is chosen and dequeued
from the priority queue. As we will see, this effectively removes the node from
the unvisited set.

The code next checks whether there exists an edge back to one of the
nodes in the connected set 3. There are two cases in which the node’s last
entry might be -1. The first is node 0, which does not have a predecessor by
virtue of being explored first. The second case is in a disconnected compo-
nent where index is not reachable from node 0. In this latter case, because

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 159

all the nodes cannot be connected, the graph does not have a minimum
spanning tree and the function returns None.

After adding the new node to the visited set (by dequeuing it), a for
loop iterates over each of the node’s neighbors 4, checking whether the
neighbor is unvisited (still in the priority queue). If so, the code checks
whether it has found a better edge to the node by comparing the previous
best edge weight with that of the new edge. The code finishes by returning
the set of edges making up the minimum spanning tree.

Note that if a graph is disconnected, each connected component has
its own minimum spanning tree. An alternative approach to the code pre-
sented here is to return the list of edges that create the minimum spanning
trees for each connected component. We can implement this by removing
the elif check 3 and its corresponding return. The code will then move
on to the next component by selecting a node from the priority queue and
continue selecting edges.

An Example
Figure 10-3 shows an illustration of Prim’s algorithm on a graph with eight
nodes. The table to the right of each subfigure shows the information
tracked for each node, including the node’s ID, the distance to that node
from the connected set of nodes as stored by the node’s priority, and the
closest member of the current connected subset as stored in the last list.
All nodes except the first one start with an infinite distance and a last node
pointer of -1 to indicate that we have yet to find a path that leads to that
node. After removing a node from the priority queue, we gray out its row to
indicate it is no longer under consideration.

The search starts at node 0 in Figure 10-3(a). This corresponds to our
island bridge building company setting up operations at its headquarters
on its home island. The search removes this node from the priority queue,
checks each of node 0’s neighbors, and updates the information accord-
ingly. Node 1 is assigned a distance of 1.0 and node 3 a distance of 0.6. Both
neighbors’ last values now point back to node 0 as the closest node in the
connected subset.

In Figure 10-3(b), the search progresses to the closest node that is
not in the connected subset. This corresponds to building the first bridge
between islands. The algorithm dequeues node 3 with a distance (priority) of
0.6, adds it to the connected subset, and checks its neighbors 4 and 6. These
are both newly reachable via an edge from node 3. The search updates both
nodes’ priorities and last values.

The search next explores node 1 in Figure 10-3(c). While checking the
neighbors of node 1, it finds a shorter edge connecting to node 4. This is
equivalent to the workers noticing the old wooden bridge (1, 4) is shorter
and thus cheaper to upgrade than the other wooden bridge (3, 4) that is
currently slated for an upgrade. The search thus updates the distance from
node 4 to 0.5 and updates its last pointer to node 1 to reflect the origin of
the connecting edge. The search is now scheduled to use the edge from
(1, 4) to join node 4 to our connected set instead of the previous edge (3, 4).

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

node dist last
0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

node dist last

(a) (b)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

node dist last

(c)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

node dist last

(d)

0

3

1 2

4 5

76

0.6 0.5

1.5 1.5

0.40.2

1.4
2.5

1.0

0.3

node dist last

(e)

1.0 1.2
0

3

1 2

4 5

76

0.6 0.5

1.5 1.5

0.40.2

1.4
2.5

1.0

0.3

3
4
5
6

node dist

0.6
0.5
0.2
1.0

last

0
1
1
3

7 1.4 5

(f)

0 0.0
1 1.0 0

1.0 1.2

2 0.4 5

0

3

1 2

4 5

76

0.6 0.5

1.5 1.5

0.40.2

1.4
2.5

1.0

0.3

node dist last

(g)

1.0 1.2
0

3

1 2

4 5

76

0.6 0.5

1.5 1.5

0.40.2

1.4
2.5

1.0

0.3

node dist last

(h)

1.0 1.2

-1

0
1
2
3
4
5
6

0.0
1.0
inf
0.6
inf
inf
inf

0

0

7 inf

-1

-1

-1
-1
-1
-1

1
2
3
4
5
6

1.0
inf
0.6
1.5
inf
1.0

0

0
3

3
7 inf

0 0.0 -1

-1

-1

-1

2
3
4
5
6

0.4
0.6
0.5
0.2
1.0

5
0
1
1
3

7 1.4 5

0 0.0
1 1.0 0

-1

2
3
4
5
6

1.2
0.6
0.5
0.2
1.0

1
0
1
1
3

7 inf

0 0.0
1 1.0 0

-1

-1

3
4
5
6

0.6
0.5
0.2
1.0

0
1
1
3

7 1.4 5

0 0.0
1 1.0 0
2 0.4 5

-1

3
4
5
6

0.6
0.5
0.2
1.0

0
1
1
3

7 0.3 6

0 0.0
1 1.0 0
2 0.4 5

-1

3
4
5
6

0.6
0.5
0.2
1.0

0
1
1
3

7 0.3 6

0 0.0
1 1.0 0
2 0.4 5

-1

Figure 10-3: An illustration of Prim’s algorithm

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 161

In the next five subfigures, the search progresses to node 5, node 2,
node 4, node 6, and node 7, respectively, checking each node’s unvisited
neighbors and updating any for which it finds shorter edges. The size
of the connected subgraph grows by one each step until all nodes are
connected.

Kruskal’s Algorithm
An alternative to the node-by-node approach of Prim’s algorithm is to
take an edge-centric approach to constructing minimum spanning trees.
Kruskal’s algorithm, invented by multidisciplinary scholar Joseph B. Kruskal,
works by looping over a sorted list of edge weights and progressively add-
ing edges to build the minimum spanning tree. Intuitively, we want to
add the graph’s smaller edges, since they are the least expensive connec-
tions between nodes. If we maintain a list of edges sorted by weight, we
can proceed through it, adding the next edge that would help build the
minimum spanning tree. This loop over a sorted list forms the core of
Kruskal’s algorithm.

Kruskal’s algorithm’s cost scales proportional to |E| log (|E|). The algo-
rithm starts by extracting and sorting each edge, requiring time propor-
tional to |E| log (|E|). Using an efficient implementation of the union-find
algorithm, we can combine the sets in |E| log (|V    |) time. As long as |E| ≥ |V    |,
the algorithm will scale as |E| log (|E|).

We can visualize Kruskal’s algorithm in the context of a pet owner
building a complex living space for their beloved hamster. The hamster
already has several large habitats that the owner decides to connect using
clear tubes, giving their pet free range to roam between cages. The habi-
tats’ arrangement within the room is fixed. The owner, looking to minimize
the total tubing needed, measures each pairwise distance between habitats,
sorts the list, and determines which tube to add next. Unlike the island
building example, the pet owner does not need to worry about transporting
construction equipment from node to node. They can easily move between
any pair of nodes to build the connection.

Union-Find
Beyond finding the next lowest-cost edge, we need to answer one additional
question when considering each new edge: does this edge join nodes from
currently disconnected clusters? If not, the edge is redundant. Remember
that the key word here is minimum. If we already have edges (A, B) and (B, C),
the edge (A, C) doesn’t help, as node C was already reachable from node A
through node B.

To efficiently implement Kruskal’s algorithm, we make use of a new
helper data structure, UnionFind. This data structure allows us to represent
a collection of different sets, which we will use to track the connected

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

162 Chapter 10

components of the graph. The data structure facilitates a few efficient, set-
based operations, including the following:

are_disjoint(i, j) ​  ​Determines whether two elements i and j are in dif-
ferent sets. We use this to test whether two nodes are part of the same
connected set.

union_sets(i, j) ​  ​Merges the set with element i and the set with element
j into a single set. We use this to connect two sets of nodes when adding
an edge.

The data structure also tracks a count of the disjoint sets that is
updated with each operation (num_disjoint_sets).

For the purposes of the algorithms in this book, it is not necessary to
dive into the details of UnionFind. It is sufficient to treat it as a module that
facilitates the operations described. Interested readers can find a basic
description and the code sufficient to implement the algorithms in this
book in Appendix C.

The Code
Given the helper data structure, the code for Kruskal’s algorithm consists
of two main steps. First, we create a list of all the graph’s edges and sort it.
Second, we iterate through that list by checking whether the current edge
joins disconnected components and, if so, adding it to our minimum span-
ning tree:

def kruskals(g: Graph) -> Union[list, None]:
 djs: UnionFind = UnionFind(g.num_nodes)
 all_edges: list = []
 mst_edges: list = []

 1 for idx in range(g.num_nodes):
 for edge in g.nodes[idx].get_edge_list():
 2 if edge.to_node > edge.from_node:
 all_edges.append(edge)
 3 all_edges.sort(key=lambda edge: edge.weight)

 for edge in all_edges:
 4 if djs.are_disjoint(edge.to_node, edge.from_node):
 mst_edges.append(edge)
 djs.union_sets(edge.to_node, edge.from_node)

 5 if djs.num_disjoint_sets == 1:
 return mst_edges
 else:
 return None

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 163

The code starts by creating a series of helper data structures, includ-
ing a UnionFind data structure representing the current disjoint sets (djs) to
determine which points already belong to the same cluster, a list (all_edges)
that will store the sorted list of edges, and an empty list (mst_edges) to hold
the resulting edges for the minimum spanning tree. The code then loops
over every node in the graph to fill these helper data structures 1. For each
node, it inserts each of the node’s edges into the list of all edges.

Since our representation of an undirected graph includes the edge (A, B)
in the adjacency lists for both node A and node B, the code uses a simple
check to avoid adding the same edge twice 2. (Note that this check is only
needed to improve the efficiency when using this representation of an undi-
rected graph. The code would still work correctly without the check but
would include twice the number of edges in all_edges.)

After the full list of edges is assembled, the code sorts the edges in
order of increasing weight 3. The code iterates over each edge in the
sorted list with a single for loop, then uses the UnionFind data structure to
check whether the edge connects two currently unconnected components 4.
If so, the edge is useful. The code adds it to the set of edges from the mini-
mum spanning tree (mst_edges) and merges the disjoint sets for the edge’s
nodes.

Finally, the code checks whether it was able to connect all the nodes
into a single connected component 5. If so, it returns the list of edges for
the minimum spanning tree. Otherwise, it returns None. If we remove this
final check, the code will instead return the edges from the individual
minimum spanning trees for graphs that are not a single connected
component.

An Example
Figure 10-4 shows an example of Kruskal’s algorithm running on a graph
with 8 nodes and 12 edges.

The search begins with an empty set of edges and thus a disconnected
set of nodes. In Figure 10-4(a), the search selects the edge with the lowest
weight from our graph. This corresponds to the edge (1, 5) with a weight
of 0.2. The edge in the figure is marked in bold to indicate it is part of the
minimum-cost spanning tree. Nodes 1 and 5 are now part of the same con-
nected subset, and the search has reduced the number of disjoint sets from
eight to seven.

The search continues in Figure 10-4(b) by choosing the edge with the
next lowest weight. This time it connects nodes 6 and 7 through an edge
with weight 0.3. It has reduced the number of disjoint sets to six.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

164 Chapter 10

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(a)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(b)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(c)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(d)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(e)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(f)

0

3

1 2

4 5

76

0.6

1.0

0.5

1.5 1.5

1.2

0.40.2

1.4
2.5

1.0

0.3

(g)

Figure 10-4: An illustration of Kruskal’s algorithm

In the next two subfigures, the search adds nodes 2 and 4 to the first
connected subset {1, 5}, resulting in a connected set consisting of {1, 2, 4, 5}. In
Figure 10-4(e), the algorithm merges another two singleton nodes by join-
ing nodes 0 and 3 via the edge with weight 0.6. It then joins up the remain-
ing three disjoint sets by adding the edges (0, 1) and (3, 6) in the following
two subfigures. At this point, we are down to a single set, which means our
minimum-cost spanning tree edges connect all the nodes in the graph.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 165

Maze Generation
While the graph searches presented in preceding chapters allow us to
algorithmically solve mazes, they cannot help us generate mazes in the
first place. In this section, we take a detour from the more canonical uses
of minimum spanning tree algorithms, such as building transportation
networks, to show how we can extend Kruskal’s algorithm to create random
but always solvable mazes. To make the mazes sufficiently fun, we ensure
that each has exactly one valid solution.

Imagine we are given the task of generating a maze for the children’s
place mat at a local family restaurant. Our design can be simple but must
be solvable, with only one path through the maze. The restaurant owners
wisely do not want to challenge young patrons with impossible mazes, lest
this results in screaming and thrown food.

Representing Grid-Based Mazes
For simplicity of the code in this section, we represent our mazes using a
regular grid of squares like the ones on graph paper. After hours of careful
consideration about how to draw our mazes, we decide to shade individual
edges to represent the maze’s walls. The player can move between any two
adjacent squares that do not have a wall between them. As we draw each
line, we eliminate a potential option for leaving that square and perhaps
chuckle at the difficult task we are creating.

Figure 10-5(a) shows an example grid-based maze. We can equivalently
represent this grid structure using a graph, as shown in Figure 10-5(b).

S

E

(a) (b)

S

E

Figure 10-5: A grid-based maze and its graph representation

In Figure 10-5(b), each square in the maze corresponds to a single graph
node. We add undirected edges between any two adjacent nodes without a
wall so that an edge indicates the ability to travel from one node to another.

Generating Mazes
We construct our maze by starting with a grid-based graph and building a
randomized spanning tree algorithm based on Kruskal’s algorithm to con-
nect all the nodes. The grid-based initial structure gives us connections
based on adjacency. Each node has up to four connections to the nodes

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

166 Chapter 10

above, below, left, and right of it. Generating a spanning tree allows us to
ensure that each node is reachable from any other node and that we can
reach the ending node from the starting one.

We define the valid edges using a connected grid-based graph, as
shown in Figure 10-6. Like the grids we generated in Chapter 5, this graph
represents all the nodes we need to connect and the set of potential edges
we can use to connect them. If our grid has a width of w and a height of h,
it contains h × w nodes and undirected edges (with equal weights of 1) con-
necting neighboring nodes.

Figure 10-6: A grid-based graph

If we used the graph in Figure 10-6 for our final maze, there would
be a huge number of potential paths between any two locations. In other
words, the graph does not make for a particularly fun or challenging maze.
Beginning at the start node, we could traverse directly to the end node by
moving the minimum number of steps in one horizontal and one vertical
direction. Real-world equivalents would be a hedge maze implemented as
an empty lawn or a blank maze on our place mat. To construct an interest-
ing maze, we need to use a minimum subset of these edges.

As in Kruskal’s algorithm, we start with an empty spanning tree where
none of the nodes are connected. In the case of our grid-based place mat,
we start with a grid of boxes. One by one, we add edges to our spanning
tree and erase the lines between adjacent boxes. We can alternatively visual-
ize the connection of two components as a cartoon figure removing a physi-
cal wall between two adjacent rooms by using an oversized sledgehammer
or simply bursting through the wall. As our cartoon character gleefully
opens up passageways (or we carefully erase grid lines), the disparate com-
ponents connect and a path through the maze forms.

The key to generating a random maze is, intuitively, to choose the next
edge randomly. Both Kruskal’s and Prim’s algorithms rely on some method
to break ties among equal-weight edges. In this case, however, all edges
have the same edge weight (1.0), so we can just pick one at random. If the
chosen edge connects two disjoint components, we keep it. This edge opens
a path between two previously unreachable components. Otherwise, in the
case where the chosen edge joins two already connected components, we
discard it, since adding multiple paths between components would result in
loops and break the maze convention of having a single path.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 167

The Code
The following code allows us to randomly create a set of maze edges from a
grid-based graph:

def randomized_kruskals(g: Graph) -> list:
 1 djs: UnionFind = UnionFind(g.num_nodes)
 all_edges: list = []
 maze_edges: list = []

 2 for idx in range(g.num_nodes):
 for edge in g.nodes[idx].get_edge_list():
 if edge.to_node > edge.from_node:
 all_edges.append(edge)

 3 while djs.num_disjoint_sets > 1:
 num_edges: int = len(all_edges)
 4 edge_ind: int = random.randint(0, num_edges - 1)
 new_edge: Edge = all_edges.pop(edge_ind)

 5 if djs.are_disjoint(new_edge.to_node, new_edge.from_node):
 maze_edges.append(new_edge)
 djs.union_sets(new_edge.to_node, new_edge.from_node)

 return maze_edges

The function takes a full grid-based graph (g) to define the list of
edges. The code starts by setting up helper data structures, including a
UnionFind data structure representing the disjoint sets (djs), a list of all edges
(all_edges), and a list of the maze or spanning tree edges (maze_edges) 1. As
in Kruskal’s algorithm, the code extracts the comprehensive list of edges
from the graph 2.

The algorithm iterates through a single while loop until all nodes are
the same set (and thus reachable) 3. During each iteration of the loop,
the algorithm selects an edge randomly 4, using Python’s random library’s
randint() function (which requires us to include import random at the start
of the file). It then removes the selected edge from the list of all edges
and checks whether it joins two previously disjoint sets 5. If so, the edge
is added to the list of maze edges and the corresponding sets are merged.
Otherwise, the edge is ignored. The algorithm completes after all the nodes
are merged into a single set, returning the list of edges that defines the
maze: the minimum spanning tree.

An Example
Figure 10-7 shows an example of the first few steps of this algorithm. The
left diagram of each subfigure shows the current maze as defined by the
walls that have been removed, while the right diagram shows the maze as
defined by edges that have been added to a graph. During each step (each
iteration of the while loop), one edge at most is added.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

168 Chapter 10

(a) (b)

(c) (d)

(e) (f)

Figure 10-7: Six steps of the maze construction algorithm

It is not strictly necessary to construct the full grid-based graph (g)
ahead of time. Instead, we could just programmatically fill the all_edges
list based on computed adjacencies, as we did when constructing grids in
Chapter 5, for example. However, for the purposes of this chapter, starting
with the full grid-based graph makes the code’s connection to Kruskal’s
algorithm more apparent and keeps the function simpler.

The randomized Kruskal’s algorithm is a simplistic approach to gener-
ating mazes that makes no guarantee that the ending node is at the end of
a deep path with a bunch of turns. It may result in quite boring mazes such
as the ones shown in Figures 10-8(a), 10-8(b), and 10-8(c). We can only be
sure that the algorithm will not produce a maze where the end is unreach-
able, such as the one shown in Figure 10-8(d).

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 169

S

E

S

E

S

E

(a) (b) (c) (d)

S

E

Figure 10-8: Three overly simple mazes and one unsolvable maze

Beyond the exciting commercial opportunities involved in designing
children’s place mats, the maze-generation algorithm in this section shows
how we can extend the basic components of minimum spanning trees and
Kruskal’s algorithm. Further, it demonstrates how randomization can be
used within an algorithm to create different spanning trees.

Single-Linkage Hierarchical Clustering
We can also adapt Kruskal’s algorithm to handle the seemingly different
problem of clustering spatial points. Clustering is a common unsupervised
data-mining and machine-learning approach that assigns data points
to clusters such that the points within each cluster are similar (for some
given definition of similar). For example, we might cluster cafés based on
geographic proximity so that all the coffee shops in Anchorage are placed
together in one cluster, while cafés in Honolulu are placed in another. The
resulting clusters provide a partitioning of data points that can help us dis-
cover structure in the data or classify similar data points.

There is a wide range of clustering techniques that vary in how they
define similar points and how points are assigned to clusters. As its name
implies, hierarchical clustering is an approach that creates a hierarchy of
clusters by merging two “nearby” clusters at each level of the hierarchy.
Each data point initially defines its own cluster; these clusters are iteratively
joined until all the points are part of the same cluster. Even within hierar-
chical clustering, there are various approaches to determining which clus-
ters to merge, including the following:

•	 Computing the mean position over each cluster’s points and merging
the clusters with the closest centers

•	 Finding the farthest of any pair of points from two clusters and merg-
ing the clusters whose maximum distance is the smallest

•	 Finding the closest pair of points from two clusters and merging the
clusters whose minimum distance is the smallest

This section focuses on the last approach, called single-linkage clustering,
which joins the two clusters with the closest pair of individual points. We

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

170 Chapter 10

present an algorithm to implement it that is nearly identical to Kruskal’s
algorithm on graphs.

Figure 10-9 shows an example of single-linkage clustering. The left-hand
figure shows the five two-dimensional points (0, 0), (1, 0), (1.2, 1), (1.8, 1),
and (0.5, 1.5). The right-hand figure shows the hierarchical clustering.

0 1 2

0

1

2

0 1

2 3

4

0

1

2

3

4

(a) (b)

Figure 10-9: A set of two-dimensional points (left) and
the corresponding single-linkage clustering (right)

We start with each point in its own cluster and create a merged cluster
from the two individual points with the closest distance (points 2 and 3).
Next, we merge the cluster {2, 3} with {4} because points 2 and 4 have the
smallest distance of any pair of points in different clusters. This process
continues as shown in the right-hand side of Figure 10-9.

The advantage of hierarchical clustering is that it provides an easily
visualized and interpretable structure. We can use this structure to dynami-
cally change the number of clusters (level of partitioning) by walking up
the hierarchy until we hit a given distance threshold. Points that have been
joined together before we hit the threshold are clustered together, while
clusters that have not been merged remain disjoint.

The Code
To simplify the logic of the clustering code, we define two small helper
classes that store information about the points and the resulting clustering
links. First, to represent the two-dimensional points we are clustering, we
define a Point class to store the coordinates and compute pairwise distances:

class Point:
 def __init__(self, x: float, y: float):
 self.x: float = x
 self.y: float = y

 def distance(self, b) -> float:
 diff_x: float = (self.x - b.x)
 diff_y: float = (self.y - b.y)
 dist: float = math.sqrt(diff_x*diff_x + diff_y*diff_y)
 return dist

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 171

The distance() function computes the Euclidean distance in two-
dimensional space and requires us to include import math at the start of the
file in order to use the math library’s square root function. (Appendix A
further discusses creating graphs from spatial points, including the use of
alternative distance functions.)

Second, since we are not using an explicit graph, we also define a Link
data structure to hold the connection between points in the same cluster:

class Link:
 def __init__(self, dist: float, id1: int, id2: int):
 self.dist: float = dist
 self.id1: int = id1
 self.id2: int = id2

This data structure is effectively identical to an undirected graph
edge. It stores a pair of identifiers for the points and the distance (weight)
between them. We define it here as an independent data structure to
highlight the fact that we do not need to explicitly build a graph for single-
linkage clustering.

Using these two helper data structures, we can then implement the
single-linkage hierarchical clustering algorithm using an approach based
on Kruskal’s algorithm:

def single_linkage_clustering(points: list) -> list:
 num_pts: int = len(points)
 djs: UnionFind = UnionFind(num_pts)
 all_links: list = []
 cluster_links: list = []

 1 for id1 in range(num_pts):
 for id2 in range(id1 + 1, num_pts):
 dist = points[id1].distance(points[id2])
 all_links.append(Link(dist, id1, id2))

 2 all_links.sort(key=lambda link: link.dist)

 for x in all_links:
 3 if djs.are_disjoint(x.id1, x.id2):
 cluster_links.append(x)
 djs.union_sets(x.id1, x.id2)

 return cluster_links

The code takes a list of Point objects (points) to cluster. The function
starts by creating a series of helper data structures, including a UnionFind
data structure representing the disjoint sets (djs) to determine which points
already belong to the same cluster, an empty list (all_links) to hold all
pairwise distances, and an empty list (cluster_links) to hold the Link objects
representing each merge. The code then uses a nested pair of for loops
to iterate through all pairs of points 1. For each pair, the code computes
the distance using the points’ distance function and creates a Link data

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

172 Chapter 10

structure to hold this distance information. After all the pairwise distances
are computed, the code sorts the links in order of increasing distance 2.

Next, another for loop iterates over each edge in the sorted list, using
the UnionFind data structure to check whether the next pair of points is
already in the same cluster 3. If not, the program adds the link to cluster
_links, joining the two clusters that contain those points, and merges the
disjoint sets for the points.

Finally, the code returns the list of Link objects representing the cluster-
ing. Each Link represents a connection between two previously disjoint clus-
ters. The links in cluster_links will be ordered by increasing distance, so the
first element represents the first two points merged.

An Example
Figure 10-10 shows the steps of our clustering algorithm on the points from
Figure 10-9. The left column of the figure shows the current clusters as con-
nected graph components of the two-dimensional points. The right column
of the figure shows the same clusters as merged points in the hierarchy with
each cluster represented as a circle.

0 1 2
0

1

2

(a)

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

(b)

(c) (d)

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Figure 10-10: Single-linkage clustering

In Figure 10-10(a), the algorithm has joined the closest two points—
those at (1.2, 1) and (1.8, 1)—into a single cluster. Using the points’ labels
from Figure 10-9, we call these points 2 and 3, respectively.

In the next step, in Figure 10-10(b), the algorithm joins the two clusters
with the closest pair of points. At this stage, the closest points are (1.2, 1)
and (0.5, 1.5) with a distance of approximately 0.86. Since (1.2, 1) is already
part of a cluster, the algorithm merges the entire cluster with the one

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

Minimum Spanning Trees 173

containing the single point (0.5, 1.5). The resulting cluster contains three
points {2, 3, 4}.

The algorithm continues in Figure 10-10(c) by creating a new merged
cluster from the two remaining individual points (0, 0) and (1, 0). The
algorithm has now created two separate clusters with three and two points,
respectively. During the final step, in Figure 10-10(d), these two clusters are
merged by adding a link between the closest pair of points from each clus-
ter (1.2, 1) and (1, 0).

Since single-linkage clustering grows the clusters by linking increas-
ingly distant pairs of points, we can use this distance as a stopping thresh-
old for the algorithm. For example, if we set the maximum distance to 0.95,
we would produce the three distinct clusters shown in Figure 10-10(b).

Why This Matters
The minimum spanning tree problem allows us to solve a range of real-
world optimization problems, from building roads to designing communi-
cation networks. Within the field of computer science, we can use minimum
spanning trees to help solve a range of problems in networking, clustering,
and analysis of biological data. For example, we can represent a communi-
cation network as a graph and find the minimum spanning tree to inform
which links need to be upgraded to ensure that all nodes are reachable
through the new technology.

We can also apply the same basic approach to problems we might not
normally think of as graph based. Using a variation of Kruskal’s algorithm,
we can search for structure in real-valued datasets by building clusters of
similar data points or design solvable mazes by introducing randomization
into the algorithm to create novel solutions. In single-linkage clustering, we
use the distances to determine which points are similar.

The next chapter expands on this discussion, introducing algorithms
that help us identify the nodes and edges that are essential to maintain-
ing connectivity.

Graph Algorithms the Fun Way (Sample Chapter) © 2024 by Jeremy Kubica

