INDEX

Symbols
& (AND, Verilog), 42
= or := (blocking assignment), 22, 214
(delay, Verilog), 76, 128
%f (formatter), 233
<, > (comparison), 122
{} (concatenation, Verilog), 101
& (concatenation, VHDL), 101
<= (non-blocking assignment), 54, 214
| (OR, Verilog), 42
<< (shift left, Verilog), 225
>> (shift right, Verilog), 226
? (ternary operator, Verilog), 93, 178
^ (XOR, Verilog), 42

A
Actel, 3, 5
addition, 215–219, 232
Alchitry Cu, 257
almost empty (AE), 118, 145
almost full (AF), 118, 145
Altera, 3, 16, 69
ALU (arithmetic logic unit), 197
always block, 53, 57
one vs. two, 149–157
AMD, 3, 16, 46, 64, 69, 87, 144, 188–189, 197, 246, 256
analog-to-digital converter (ADC), 5, 191, 195, 240
AND gate, 32, 40–42, 54, 58, 71
and keyword, 42
application-specific integrated circuits (ASICs), 7–8, 89
arbiter, 127, 228
architecture keyword, 22
Arduino, 5, 16, 257
arithmetic logic unit (ALU), 197
artificial intelligence (AI), 4
ASCII, 97–98
assertions, 84
assert keyword, 85–86, 128, 157
assign keyword, 22
assignment operators
 blocking (=, :=), 22, 214
 non-blocking (<=), 54, 214
Atmel. See Microchip Technology

B
bandwidth, 6, 249
bank (pins), 242
bidirectional pin, 240
binary, 33, 162
Binary_To_7Segment module, 161, 169
Bitcoin, 8
black box, 68
block RAM, 115–116, 186, 188, 191–194
creation, 193
error detection and correction, 193
features and limitations, 192
initializing, 128, 193
instantiation template, 186
precalculated table, 227
size, 192
Boolean algebra, 31–32, 36–40
on FPGA, 39
order of operations, 36
symbols, 36
bouncing of switch, 75
BRAM. See block RAM
buffers, 238–239, 246, 253
bugs, 67, 89, 117

C
career tips, 259–267
case statement, 152–153, 164, 172
clock data recovery (CDR), 251–253
clocks, 47
 constraints, 131
counting cycles, 77, 80, 96, 102, 108, 182
creation via PLL, 199–204
crossing domains, 141–146
 reference, 200
 skew, 249–251
$clog2()$ function, 80, 114
coding style, 78. See also naming convention
combinational logic, 57–59, 122
concatenation, 101, 107
constraints, 54–55, 131, 145–146
Coordinate Rotation Digital Computer (CORDIC), 229
cores, 185
core voltage, 32
counter
 LFSR, 102
 signed, 206
 traditional, 107
 traditional vs. LFSR, 110
 wraparound, 208
cyclic redundancy check (CRC), 35

D
datasheets, 63
data types, 206–209
 converting, 210–211
data valid (DV) signal, 112
DC balance, 251–253
debounce filter, 76
debouncing of switch, 75–84, 161, 169
decimals, 33, 230
delay, 50, 61, 73, 96. See also propagation delay
De Morgan’s law, 40
demultiplexer (demux), 92, 94–95, 106
depth, 112, 114
development board, 14, 255–259
device under test (DUT), 70
D flip-flop (DFF), 46, 64
Diamond Programmer, 14–15, 20
 installation, 18
 programming, 26–28
differential signaling, 243–245
Digilent, 16, 257
digital signal processing (DSP), 194.
 See also DSP block
$display()$ function, 128
division, 225–228
done pulse, 103, 105, 107
double-flopping, 141–142
double rate data (DDR), 245
drive strength, 242–243
DSP block, 194, 229
 analog vs. digital signals, 194–196
 arithmetic logic unit (ALU), 197
 creation, 198–199
 features, 197–198
 multiplier, 197
 pre-adder, 197
dual-port RAM, 111
$dumpfile()$ function, 73
duty cycle, 47

E
EDA Playground, 69–70, 72–74, 83, 211
edge detection, 51, 54, 179–180
electromagnetic interference (EMI), 244, 253
endmodule keyword, 22
entity keyword, 22
erenumeration, 152, 171
EPWave, 74
Ethernet, 245, 247
events, state machine, 148–149

F
fab (ASIC foundry), 7, 89
falling edge, 47
fiber optics, 253
file_open() function, 128
files, working with, 128
filter, 196
finance, 4
finite state machine (FSM). See state machine
first in, first out (FIFO), 116–117, 144–145
 AE (almost empty), 118, 145
 AF (almost full), 118, 145
crossing clock domains, 144
 implementation, 119–122
input and output, 117–119
interface, 117
fixed-point numbers, 230–236
flip-flops, 45–46
 behavior of, 48–52, 57
clock enable (EN), 46, 48–49, 61
clock input (>), 46, 48–51
creation in Verilog or VHDL, 54
data input (D), 46, 48–51
data output (Q), 46, 48–51
double-flopping, 141–142
edge detection, 51, 54
instantiation template, 189
JK and T flip-flops, 51
physical component, 63
register, 48, 53
reset, 61–63, 87, 152
 synchronous vs. asynchronous resets, 62
use in RAM, 115
floating-point numbers, 230
floating (isolated) electrical ground, 245
$fopen()$ function, 128
for loops, 128–131
FPGAs (field programmable gate arrays), 1–2
 applications, 4, 89
 vs. ASICs, 7–9
 history, 2–3
 languages, 9–11
 vs. microcontrollers, 5–8
 picking a family and package, 126
full adder, 229
full-duplex communication, 240, 247
fwrite() function, 128
H
half adder, 229
half-duplex communication, 240
hard IP, 3, 185
hard processors, 3
hardware debugging, 67
hardware description language (HDL), 9
hertz (Hz), 47
hexadecimal, 98
high impedance (aka hi-Z or tri-state), 239–240
high-speed data, 247, 251, 253
hold time (t_h), 133–135
I
I2C (inter-integrated circuit), 240
iCE40 (FPGA family), xxii–xxiii, 14–16, 63
iCEcube2, 14–15, 20, 55–56, 190
 building, 25
 creating a project, 22–24
 installation, 16–18
iCEstick, 256–257
ieee library, 22
if statement, 81
inference, 186
infrared (IR) cameras, 4
initial block, 73, 213
input, 239. See also GPIO instantiation, 186–189
integrated circuit (IC), 1
Intel, 3, 16, 64
intellectual property (IP), 3
interview tips, 265–267
input/output (I/O). See GPIO isolated (floating) electrical ground, 245
K
Karnaugh maps, 40
L
latches, 59–61, 124, 155
Lattice Diamond, 16, 190, 198–199

G
gain, applying to a signal, 196
genral purpose input/output. See GPIO
genrics, 78, 109, 114, 169
Go Board, 23, 47, 102, 256
GPIO, 238–239
 differential signaling, 243–245
drive strength, 242–243
operating voltage, 242
output enable (OE), 239
single-ended, 242–243
slew rate, 243, 245

guard condition, 160
GUI approach, 190–191
Lattice Semiconductor, 3, 14, 257
least significant bit, 98
LEDs, 15
 blinking, 51–56
 blinking selectively, 101–111
 lighting with logic gate, 40–42
 memory game, 158–183
 seven-segment display, 161
 showing pattern, 178–179
 wiring to switch, 19
linear feedback shift register (LFSR), 99–101
 applications, 100, 107
 code, 106
 counter, 102
 pseudorandom pattern generation, 171, 177
localparam keyword, 152
logic analyzer, 87–88
logic cell, 64
logic gates, 32–36, 38
logic minimization, 40, 124
look-up table (LUT), 38–40, 54
 physical component, 63
 shortcomings, 45
low-pass filter (LPF), 196
low-power double data rate (LPDDR), 116, 118, 148, 246
LVCMOS25, 242
LVCMOS33, 242, 245
LVDS (low-voltage differential signaling), 244
Manchester code, 250–252
math
 precalculating results, 227
 rules, 236
memory blocks, 192. See also RAM
metastability, 133–134, 141–142, 145, 191, 250
Microchip Technology, 3, 5
 microcontroller, 2, 5–7
 offloading math operations, 229
Microsemi. See Microchip Technology
Microsoft, 20
minimum clock period (\(t_{\text{clk(min)}}\)), 136
ModelSim, 69
module keyword, 21
most significant bit, 98–99, 207, 215–217
multiplexer (mux), 92–94
multiplication, 221–225, 234
multiplier, 197
multiply–accumulate (MAC) operation, 194, 197
naming convention, 22, 62, 78, 96, 121, 158, 213, 232
NAND (not and) gate, 35–36
negotiating a job offer, 267
nonrecurring engineering (NRE) cost, 7
non-synthesizable code, 127
NOR (not or) gate, 36
NOT gate, 34, 103
now keyword, 76, 128
numbers, 206, 208–211
 negative, 206
 representing in FPGA, 208
 signed vs. unsigned, 206–208
numeric_std package, 206
one-time programmable (OTP) FPGAs, 89
open keyword, 105, 182
operating voltage, 242
optimization, 124
OR gate, 33, 42
or keyword, 42
output enable (OE), 239
output keyword, 21–22, 239
overloading functions, 213–214
parallel communication, 248–250
parallel thinking, 2, 54
parameters, 78, 109, 114, 169
path slack, 139
.pcf file, 20, 24
PCI, 249
period (of clock), 47–48, 55, 80, 135
phase-locked loop (PLL), 142, 185, 199–204, 252
 creation, 202
 inputs, 200
 locked signal, 202
 operation, 200
 phase of a signal, 201
physical constraints file, 20, 24
pipelining, 136–140
place and route, 20, 131
 constraints, 24, 55, 131, 145, 183, 245
 mapping, 24
 pin report, 56
 timing errors, 56, 131–141, 145
 timing report, 56, 138
Pmod (peripheral module)
 connector, 16
positive edge, 54
pre-adder, 197
primitives, 144, 185–186, 190–191, 247
printed circuit board (PCB), 14
printing to console, 128
process block, 53, 57–58, 73, 213
 one vs. two, 149–155
Programmable Array Logic (PAL), 39
 projects
 blinking an LED, 51–57
 creating a memory game, 158–183
 debouncing a switch, 75–84
 lighting an LED with logic gates, 40–42
 selectively blinking an LED, 101–111
 wiring switches to LEDs, 19–28
propagation delay (t_p), 135–136, 249
protocol, 240, 245
pulse, 103, 107
 stretching, 144
push-button switch, 15, 101
 debouncing, 75, 161, 169
 edge detection, 180
 selector, 102
 wiring to LED, 19

R
 radar, 4
 radiation, 4, 89
 radix, 230
RAM (random-access memory), 111–116
 depth, 112, 114
 dual-port, 111
 single-port, 111
 width, 112, 114
range keyword, 80
real data type, 233
reg keyword, 53, 213
register, 48
replicated logic, 128
report keyword, 128
resetting a flip-flop. See flip-flops
resize() function, 217, 219
resource utilization. See synthesis
resume tips, 260–265
rising edge, 47–49, 54, 133, 152
routing, 5

S
 sampling (analog to digital), 195
 schematic, 25, 131
 .sdc file, 55
 selector inputs, 92–93
 self-checking testbenches, 84–86
 sensitivity list, 53–54, 58
 sequential logic, 57–58, 61
SerDes (serializer/deserializer), 247–250, 252–253
 8B/10B, 253
 clock data recovery (CDR), 251, 253
 DC balance, 251
 encoding scheme, 250, 253
 self-clocking signals, 250
 speed, 247, 250
 transceiver, 247
serial communication, 248–250
serial thinking, 2
set_io keyword, 24
set/reset pin, 61–63
setup time (t_{su}), 133–136
seven-segment display, 15, 159, 161–165
shift_left() function, 224–226

Q
 Q notation, 231
Quartus, 16, 18
Quine–McCluskey algorithm, 40
shift register, 50, 95–101, 129, 224–225
converting between serial and parallel, 97
creating delay, 96
divide by two, 225
multiply by two, 224
signals, 21–22
address, 114
analog vs. digital, 194–196
asynchronous, 141–146
clock, 47
data valid, 112, 117
declaring, 21
differential vs. single-ended, 243–245
dynamic sizing, 209
gain, applying, 196
initial condition, 86–87
input and output, 117–119
mapping to pin, 24–25
monitoring, 74–75
self-clocking, 250–252
synchronous vs. asynchronous, 248
toggling, 101–111
sign bit, 207
signed data type, 206–207, 210
signed() function, 211, 221
sign extension, 216–219
Simon (game), 158. See also testbench
simulation, 68–75
tools, 69–70
single-ended signaling, 243
single-port RAM, 111
slew rate, 243
state machine, 147–149, 152, 155, 157–160, 184
best practices, 157–158
diagram, 148–149, 158–159
events, 148–149
guard condition, 160
implementation, 149–155
initial state, 149, 152, 160
memory game project, 158–183
states, 148
transitions, 148
turnstile example, 148–152
std_logic_1164 package, 22
std_logic_arith package, 206
std_logic data type, 22
std_logic_vector data type, 206, 210
subtraction, 219–221, 232–234
switches. See push-button switch
synchronous logic, 57
syntax errors, 125
synthesis, 20, 124–127
constraints, 54–55
inference, 186
logic minimization, 40
notes, 124
pruning, 105, 208
report, 42, 55, 60, 84, 124, 183
syntax errors, 125
translate directives, 127
utilization, 42, 84, 110, 183, 194, 204
errors, 125–127
warnings, 124
synthesizable code, 77, 87, 127–130
system on a chip (SoC), 229
SystemVerilog, 70, 86, 89, 152

T

t_{clk(min)} (minimum clock period), 136
telecommunications, 4
ternary operator, 93, 179, 241
testbench, 70–72
creating, 81–83
clock creation, 82
math operations, 211–228
running, 74–75
self-checking, 84–86
speeding up, 83
writing, 71–73
t_h (hold time), 133
$time, 76, 128
time, measuring, 76–77
timing. See place and route
toggle a signal, 101–111
to_integer() function, 210–211
to_signed() function, 211
to_unsigned() function, 211
t_p (propagation delay), 135–136, 249
transition, 148

tri-state, 239
truncation, 233–234
truth tables, 32–39, 41
 AND, 33
 multiple gates, 37
 NAND, 35
 NOT, 34
 OR, 34
 three-input, 37
 XOR, 35
 t_{pu} (setup time), 133–136
TTI (transistor–transistor logic), 242
Turing, Alan, 33
TWI (two-wire interface), 240
two-dimensional (2D) array, 115, 175
two’s complement, 207–208

U
unit under test (UUT), 70–75, 83
universal asynchronous receiver-transmitter (UART), 97–99
unsigned data type, 210
unsigned() function, 211
USB requirements, 15
utilization errors, 125–127. See also synthesis: utilization

V
variable keyword, 213
verification, 8, 88–89
Verilog
 background, 9–11
 enumeration support, 152
 weak typing, 10

VHDL
 2008 version, 109
 attributes, 211, 219
 background, 9–11
 data type conversions, 210–211
 strong typing, 10, 178, 182, 210, 213, 217
 verbosity, 22
Visual Studio Code (VS Code), 20
Vivado, 16, 18
evoltage, 46. See also GPIO

W
wait keyword, 73, 76, 128
waveforms, 74–75, 83–84
when keyword, 61
width, 112, 114
wraparound, 208
write() function, 128

X
Xilinx, 2–3, 16, 69
XNOR (exclusive not or) gate, 36, 99–100, 107
XOR (exclusive or) gate, 35–36, 39, 42, 99, 250–251
xor keyword, 42

Z
Z (high impedance), 239