
7
HIGH-LEVEL FEATURES

This chapter covers the high-level graphics features of
the DMG—the background, the window, and sprites—
and explains how to leverage them. By the end of the
chapter, you’ll have all the knowledge you need to dis-
play custom graphics on the LCD.

You’ll begin by learning about the parameters and functionalities of the
background, including scrolling and wrapping. Building on that knowledge,
you’ll learn about frame pacing, a fundamental technique for producing
smooth animations.

Then, we’ll take a closer look at the window, comparing its parameters
and functionalities to those of the background. Finally, you’ll learn how to
use sprites and gain an understanding of their behavior and limitations.

Background
The background is a large scrollable tilemap that forms the visual backdrop
for a DMG game. You configure the background by specifying the palette,
selecting the tilemap, and setting a few other parameters. There are also a
couple of useful built-in functionalities to be aware of.
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Palette
The first element you need to set up is the background palette, as demon-
strated in the bg sample. The relevant code from sample.rgbasm is shown in
Listing 7-1.

ld a, %11100100

ld [rBGP], a

Listing 7-1: Setting the background palette

The background has only one palette, which is set through the I/O reg-
ister rBGP. In this code snippet, we place white at color index 0 (bits 0 and 1),
light gray at index 1 (bits 2 and 3), dark gray at index 2 (bits 4 and 5), and
black at index 3 (bits 6 and 7). This is just one possible palette setup; you can
put the colors in any order you like (for example, %00011011), or even reuse
the same color multiple times (for example, %00001111). For a refresher on
the available colors, refer back to Table 5-1.

LCD Parameters
Now that we’ve set up the palette, we need to set the LCD control register,
rLCDC, which will enable the background and set both the addressing mode
($8000 or $8800) and the tilemap address ($9800 or $9C00).

In Chapter 6, you learned that the rLCDC register is a collection of flags
that control the behavior of the DMG’s graphics system. The hardware.rgbinc
file defines the possible flag values, as shown in Listing 7-2.

DEF LCDCF_OFF EQU %00000000 ; LCD Control Operation

DEF LCDCF_ON EQU %10000000 ; LCD Control Operation

DEF LCDCF_WIN9800 EQU %00000000 ; Window Tile Map Display Select

DEF LCDCF_WIN9C00 EQU %01000000 ; Window Tile Map Display Select

DEF LCDCF_WINOFF EQU %00000000 ; Window Display

DEF LCDCF_WINON EQU %00100000 ; Window Display

DEF LCDCF_BG8800 EQU %00000000 ; BG & Window Tile Data Select

DEF LCDCF_BG8000 EQU %00010000 ; BG & Window Tile Data Select

DEF LCDCF_BG9800 EQU %00000000 ; BG Tile Map Display Select

DEF LCDCF_BG9C00 EQU %00001000 ; BG Tile Map Display Select

DEF LCDCF_OBJ8 EQU %00000000 ; OBJ Construction

DEF LCDCF_OBJ16 EQU %00000100 ; OBJ Construction

DEF LCDCF_OBJOFF EQU %00000000 ; OBJ Display

DEF LCDCF_OBJON EQU %00000010 ; OBJ Display

DEF LCDCF_BGOFF EQU %00000000 ; BG Display

DEF LCDCF_BGON EQU %00000001 ; BG Display

Listing 7-2: The rLCDC flags

Three flags, or bits, are relevant to the background. Table 7-1 summa-
rizes the possible values of these flags and what they mean.
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Table 7-1: Background Flag Values

Bit Value Meaning
0 LCDCF_BGOFF The background is disabled.

LCDCF_BGON The background is enabled.
3 LCDCF_BG9800 The tilemap is located at $9800.

LCDCF_BG9C00 The tilemap is located at $9C00.
4 LCDCF_BG8000 The $8000 addressing mode is used.

LCDCF_BG8800 The $8800 addressing mode is used.

Listing 7-3 shows how the LCD control register is set in the bg sample.

ld a, LCDCF_ON | LCDCF_BG8800 | LCDCF_BG9800 | LCDCF_BGON

ld [rLCDC], a

Listing 7-3: Background setup

We need to enable the background before we can use it, so we raise bit 0
using LCDCF_BGON. The tilemap is at address $9800 in VRAM and the tileset was
organized for the $8800 addressing mode (see Figure 6-1), so the flags for
bits 3 and 4 are set accordingly. The LCDF_ON flag ensures that the LCD is on.

Listing 7-4 shows the fully updated InitSample function from the
sample.rgbasm file.

InitSample:

; init the palette

ld a, %11100100

ld [rBGP], a

LoadGraphicsDataIntoVRAM

; set the graphics parameters and turn back LCD on

ld a, LCDCF_ON | LCDCF_BG8800 | LCDCF_BG9800 | LCDCF_BGON

ld [rLCDC], a

ret

Listing 7-4: The InitSample function for the background (bg) sample

First, the background palette is set. Then, the graphics data, which con-
sists of tiles and a tilemap, is loaded into VRAM. Finally, the remaining back-
ground parameters are set through the LCD control register so that the
background displays properly on the LCD.

Figure 7-1 shows what you should see when you compile the code for
this sample and run it in BGB.
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Figure 7-1: The background sample

Notice that we see only a part of the tilemap, because the tilemap is
256×256 pixels but the LCD can only display 160×144 pixels. We’ll use
one of the background’s key functionalities in the next section to reveal
the rest of the tilemap.

Scrolling and Wrapping
The background has two key built-in functionalities: scrolling (controlled by
the programmer) and wrapping (automatic).

You can control the scrolling of the background using the rSCX and rSCY

registers. The rSCX register controls the horizontal scrolling and rSCY controls
vertical scrolling.

The rSCX and rSCY registers store the coordinates of the screen relative to
the top-left corner of the tilemap. In this book, I’ll use the term abscissa and
ordinate to refer to the x-coordinate and y-coordinate, respectively. Figure 7-2
shows how background scrolling works.

SCX = 0, SCY = 0 SCX = 48, SCY = 0 SCX = 48, SCY = 56

Figure 7-2: Three background scrolling positions and their corresponding coordinates

The square area represents the screen. The default position on the left
is what we got previously, in Figure 7-1. The image in the center shows the
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background scrolled horizontally, and the right-hand image shows the back-
ground scrolled in both directions.

When you scroll far enough in one direction, the boundary of the back-
ground’s tilemap ends up displayed on the screen. That’s when the wrap-
ping kicks in. Figure 7-3 illustrates how wrapping works.

Figure 7-3: Background wrapping

The background’s tilemap repeats in every direction. I’ve highlighted
the repeat tilemaps to make the wrapping effect stand out, but in real life,
the colors would not change.

To experiment with wrapping in BGB, you can update the UpdateSample

function. In the sample, the scrolling values are zero by default, as shown in
Listing 7-5.

UpdateSample:

ld a, 0

ld [rSCX], a

ld a, 0

ld [rSCY], a

ret

Listing 7-5: The UpdateSample function

Try using values such as 176 and 184 for rSCX and rSCY, respectively.
There’s nothing special about those two values, but they allow you to see
both scrolling and wrapping in effect, as in Figure 7-3.

While the background has only a few configurable parameters and func-
tionalities, it’s an essential part of the DMG graphics system, and most, if
not all, released games make use of it.
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Frame Pacing
In this section, you’ll learn about an issue in the update function that you
must address before configuring the other high-level graphics features. I’ll
illustrate the issue using the scrolling_anim_broken sample, then show you
how to fix it using a technique called frame pacing, which synchronizes the
update function’s call with the DMG’s frame mechanism to produce smooth
animations.

Understanding the Synchronization Issue
For the purpose of this example, we’ll add a simple animation to the back-
ground. Listing 7-6 shows the code for this.

UpdateSample:

ld a, [rSCX]

inc a

ld [rSCX], a

ret

Listing 7-6: A simple background animation

To create this basic animation, the code increments the value of rSCX
each time the UpdateSample function is called. From this, you would expect
that the background will scroll smoothly to the left, one pixel at a time, as
each frame is drawn. But the actual result, shown in Figure 7-4, is quite
different.

Figure 7-4: Broken background animation

The problem is that the animation is not synchronized with the DMG
frame mechanism, described in Chapter 5. Currently, the UpdateSample func-
tion is called from the main loop as many times as the DMG CPU speed
will allow. That’s well over a thousand times per frame, but it should be
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called only once per frame. The result is that each line of the screen scrolls
independently of the other lines, causing the visual mess in Figure 7-4.

Fixing the Pacing
To fix the pacing issue, we’ll wait for the next vblank at the start of the
UpdateSample function. This ensures that UpdateSample executes only
per frame because, by definition, there is only one vblank per frame.

In Listing 6-5, we waited for the vblank when we disabled the LCD in the
main function. To accomplish this, we waited for the current line number
register, rLY, to equal 144, which meant we had entered the vblank period.
That technique is good enough for initialization, but a better way to wait
for the vblank in the main loop is to use halt and the vblank interrupt. The
halt/interrupt method is superior because it has the potential to prolong
the device’s battery life. When using halt, the DMG enters low power mode.
On the other hand, the DMG will be fully working during the loop of the rLY

method.
Before implementing the halt/interrupt method, we need to define

what an interrupt is. For the purposes of this book, an interrupt is a func-
tion that gets called when a particular event occurs. When the event arises,
the CPU will stop, or interrupt, any work it’s currently doing, execute a func-
tion associated with the event (the interrupt function), and then go back to
its previous work. In the sample, the event is the start of the vblank, and the
associated interrupt function address for that event is $0040. There are four
other event types that trigger interrupts, and each has its own fixed function
address; I’ll cover these later in the book.

Now that we know what an interrupt is, let’s use the vblank interrupt in
the sample.

Enabling the Vblank Interrupt
The first step is to enable the vblank interrupt. We do this during the initial-
ization of the scrolling_anim_fixed sample.

Listing 7-7 shows the relevant code from InitSample.

ld a, IEF_VBLANK

ld [rIE], a

ei

Listing 7-7: Enabling the vblank interrupt

We perform two actions here. First, the code sets the rIE (interrupt en-
able) register. This register contains flags to tell the DMG which interrupts
are enabled. For now, only the vblank interrupt is necessary, so we raise a
single flag, IEF_VBLANK. Second, we enable the interrupt functionality. As you
saw in Chapter 4, we disabled the interrupts in the template by using di (dis-
able interrupts) in the entry point so they wouldn’t get in the way during
the sample initialization. Here, we use ei (enable interrupts) to re-enable the
interrupts.
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Defining the Interrupt Function
The second step of using the vblank interrupt is to define the interrupt
function, as shown in Listing 7-8.

section "vblank_interrupt", rom0[$0040]

reti

Listing 7-8: The vblank interrupt function

We define a section at $0040, because this is the address of the func-
tion called when the vblank event occurs. The function contains a single
instruction, reti, which returns from the function (like a regular ret) with
the additional effect of enabling interrupts.

We need to use reti and not ret here because the DMG disables the in-
terrupts (like di would) before executing any interrupt function. This pre-
vents interrupting the interrupt function, which could lead to a bunch of
issues, like CPU hangs. Because we want to detect subsequent vblank events,
we need to use reti to enable interrupts again after the function returns.

Waiting for the Vblank Interrupt
The last step is to wait for the interrupt to occur. This is done with the pre-
viously mentioned halt instruction, which puts the DMG into low power
mode. In this mode, no instructions are executed, and the DMG wakes up
only when an interrupt triggers. In the sample, the only enabled interrupt
is the vblank interrupt. This means that each time the halt instruction com-
pletes, a new vblank period has just started.

We can add halt to the UpdateSample function, as shown in Listing 7-9.

UpdateSample:

halt

ld a, [rSCX]

inc a

ld [rSCX], a

ret

Listing 7-9: Using halt to wait for the vblank

Now, each time the main loop calls UpdateSample, the DMG waits for the
next vblank. The result is that UpdateSample is called only once per frame.

If you compile and run the sample again in BGB, you should now see
that the scrolling animation is fluid because we have properly synchronized
the update function with the DMG display mechanism.

Summing Up the Frame Pacing Mechanics
We now have the proper frame pacing in place, allowing for smooth anima-
tions. Let’s quickly recap the three steps we implemented to fix the problem
and the timing of each step.
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The first step is to wait for the next vblank using the halt instruction.
This step’s duration is whatever time was left of the 16.74 ms of the previous
frame.

The next step is to perform any operation that requires VRAM access
or affects graphics directly before the end of the vblank. This step can take
up to 1.08 ms, which is the duration of the vblank. As discussed in “Copying
Assets to VRAM” on page 87, VRAM access is restricted during the LCD
refresh, so it’s critical to carry out any VRAM updates during the vblank.
For example, the PPU will ignore a tile update, which is a write to VRAM, if
it’s executed outside the vblank. This will likely cause graphical artifacts, as
the intended graphics data will not be in VRAM. Likewise, while operations
such as scrolling are allowed at any time, they might cause visual glitches if
not executed during the vblank (if the rSCX register is updated outside the
vblank, the screen will end up split in two halves that use different scrolling
values).

The final step of the update function is to perform any remaining pro-
gram operations, such as checking input or running the sample logic. This
step can take 15.66 ms (the duration of the LCD refresh) plus whatever time
remains from the vblank’s 1.08 ms.

Window
In this section we’ll look at the window, which can display part of a tilemap
in a rectangular area of the screen superimposed on the main background.
You’ll learn about the window’s similarities and differences compared with
the background as well as its main pitfalls.

Comparing the Window and the Background
The window and background share a few parameters. The first one is the
palette. We set the palette for the background in the InitSample function, as
shown in Listing 7-10.

ld a, %11100100

ld [rBGP], a

Listing 7-10: Setting the background and window palette

This sets the palette for the window too.
The second shared parameter is the tile addressing mode. The address-

ing mode is set in the LCD control register, rLCDC, using either the LCDCF_BG8000

flag or the LCDCF_BG8800 flag. These flag names are a bit misleading, because
it looks like they apply only to the background, but the addressing mode
setting actually applies to both the background and the window.

Earlier, we set the background addressing mode to LCDCF_BG8800, as shown
in Listing 7-11.
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ld a, LCDCF_ON | LCDCF_BG8800 | LCDCF_BG9800 | LCDCF_BGON

ld [rLCDC], a

Listing 7-11: Setting the background and window tile addressing mode

The window will also use the $8800 addressing mode.
There are three differences between the window and the background.

The first difference is that they don’t need to point to the same tilemap.
Remember that there can be up to two tilemaps in VRAM. We can set up
the window and background to point to the same tilemap or use a separate
tilemap for each.

The second difference is that the window does not wrap. The window is
just a square area that moves around over the background (although there
are some limitations and particularities to be aware of, which I’ll explain in
more detail in the next section).

The final difference is that the window has its own enable flag (bit 5) in
the LCD control register. For example, in Listing 7-11 we enabled the back-
ground with the LCDCF_BGON flag, but to enable the window, we would need to
add the LCDCF_WINON flag too.

There’s a catch, though: disabling the background (by clearing bit 0 in
rLCDC) will also disable the window. That means we can enable the window if
and only if we enable the background as well. The possible combinations
are background on/window on, background on/window off, and back-
ground off/window off. There is no way to get a background off/window
on combination.

Table 7-2 summarizes the LCD flags that affect the window.

Table 7-2: Window Flag Values

Bit Value Shared Meaning
0 LCDCF_BGOFF Yes The background and window are disabled.

LCDCF_BGON Yes The background and window are enabled.
4 LCDCF_BG8000 Yes The $8000 addressing mode is used.

LCDCF_BG8800 Yes The $8800 addressing mode is used.
5 LCDCF_WINOFF No The window is disabled.

LCDCF_WINON No The window is enabled.
6 LCDCF_WIN9800 No The window tilemap is located at $9800.

LCDCF_WIN9C00 No The window tilemap is located at $9C00.

These flags are used in the rLCDC register to control the window
parameters, alongside the flags for controlling the other high-level
graphics features.

Moving the Window
Moving the window is similar to scrolling the background. We use the rWX

and rWY registers to set the position of the top-left corner of the window.
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In the rWY register, 0 represents the top line of the LCD. A value of 144
or more will put the window beyond the bottom of the screen, making it
invisible.

The rWX register is a bit peculiar. First, the leftmost column of the LCD
is at abscissa 7, not 0, as one would expect. This means that the coordinate
for the top-left corner of the LCD is (7, 0). Second, there is a hardware bug
that will very likely cause the window to display improperly for certain val-
ues of rWX: namely, anything in the 0–6 range and the value 166. Entering a
value in the 0–6 range would technically bring the window slightly beyond
the left edge of the LCD. A value of 166 would display only a single column
of pixels from the window on the right side of the LCD. The bug will cause
the window to either display at the wrong location, lack some columns of
pixels, or flicker on the LCD. It’s best to stay away from using the buggy
values of rWX altogether.

In practice, you can safely move the window anywhere between coor-
dinates (7, 0) and (165, 143). At (7, 0), the window completely covers the
background. For any abscissa beyond 167 and any ordinate beyond 143,
the window will be outside the bounds of the LCD screen and thus invisi-
ble. For any coordinates between (7, 0) and (165, 143), the window will par-
tially cover the background, moving up and to the left from the bottom-right
corner.

Figure 7-5 shows these three cases, using the background and window
from the simple sample in Figures 5-3 and 5-4.

WX = 7, WY = 0 WX = 7, WY = 120 WX = 192, WY = 120

Figure 7-5: Window location examples

On the left, the window is at the origin and covers the whole back-
ground. In the center, the window is at its actual position in the sample.
It covers only the portion of the background at the bottom of the LCD.
Finally, on the right, the window is positioned beyond the bounds of the
LCD display (to the right) and is not visible at all.

The window uses a tilemap for its graphics, which is 256×256 pixels, but
the window itself has a fixed size of 160×144 pixels (the same dimensions as
the LCD screen). If you consider the tilemap surface in Figure 7-6, the light
area would potentially display on the LCD, while the dark area would never
display.
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Figure 7-6: Unused tilemap parts

Keep the light area in mind when designing tilemaps for use with the
window. The dark area won’t necessarily be wasted, because the background
can use it. This would most likely require using advanced graphics tricks,
though, which I’ll cover later in this book.

Using the Window
To wrap up this section, let’s explore the window sample that displays the
window over the background.

We’ll start by adding the necessary graphics data to the ROM, as shown
in Listing 7-12.

section "graphics_data", rom0[GRAPHICS_DATA_ADDRESS_START]

incbin "tileset.chr"

incbin "background.tlm"

incbin "window.tlm"

Listing 7-12: Adding the window tilemap

The window.tlm tilemap contains graphics for the window and is now at
the end of the "graphics_data" section.

Next, we update the computation of this section’s starting address,
GRAPHICS_DATA_ADDRESS_START, to reflect the fact that two tilemaps are now
used. Listing 7-13 shows the revised calculation.

def TILEMAPS_COUNT equ (2)

def BYTES_PER_TILEMAP equ (1024)

def TILEMAPS_BYTE_SIZE equ (TILEMAPS_COUNT * BYTES_PER_TILEMAP)

def GRAPHICS_DATA_SIZE equ (TILES_BYTE_SIZE + TILEMAPS_BYTE_SIZE)
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def GRAPHICS_DATA_ADDRESS_END equ ($8000)

def GRAPHICS_DATA_ADDRESS_START \

equ (GRAPHICS_DATA_ADDRESS_END - GRAPHICS_DATA_SIZE)

Listing 7-13: Updating the constants to position the graphics assets

Finally, we initialize the window coordinates and set the tilemap address,
as shown in Listing 7-14.

; place the window at the bottom of the LCD

ld a, 7

ld [rWX], a

ld a, 120

ld [rWY], a

; set the graphics parameters and turn the LCD back on

ld a, LCDCF_ON | LCDCF_WINON | LCDCF_WIN9C00 | \

LCDCF_BG8800 | LCDCF_BG9800 | LCDCF_BGON

ld [rLCDC], a

Listing 7-14: Positioning the window and setting the rLCDC flags

We place the window at coordinates (7, 120) by setting rWX and rWY. Then,
we add two flags, LCDCF_WINON and LCDCF_WIN9C00, to the LCD control register.
The first flag enables the window, and the second flag makes the window
point to the second tilemap (at $9C00 in VRAM).

Figure 7-7 shows the results after compiling and running the sample
in BGB.

Figure 7-7: The window sample

If you’re feeling adventurous, try changing the rWX value to one of the
unreliable values discussed earlier. You’ll be able to see the hardware bug in
action.
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Sprites
Sprites are used to represent moving elements, such as characters or pro-
jectiles, which would be difficult, if not impossible, to depict with the back-
ground and window. In this section, we’ll look at how they’re used and what
the limitations are.

Palettes
The first thing you need to set up for sprites are the palettes. Whereas the
background and window have only one palette, sprites come with two palette
options: rOBP0 and rOBP1.

Each sprite can use only one palette at a time, but it’s easy to swap palettes.
Usually, we use the second palette for palette switching effects. For example,
a character taking damage can briefly switch to the second palette to reflect
its weakened status.

For sprites, the color at index 0 in a palette is the transparent color. If a
sprite has pixels of transparent color, the background, window, and even
other sprites will show through the transparent parts. This is a handy fea-
ture, because it lets you use sprites to represent non-square objects. For
example, you could depict a round ball using the transparent color for pix-
els outside the ball graphics. The only downside to this feature is that it
means sprites have only three visible colors. We’ll see the transparent color
in action in the samples in this section.

LCD Parameters
The LCD control register has two flags that affect sprites. The first one is
the enable flag, which turns the sprites on and off. Unlike the window, which
can be enabled only if the background is also enabled, sprites are totally
independent of the background and window.

The second is the size flag, which controls whether sprites are 8×8 pix-
els (one tile) or 8×16 pixels (two tiles, aligned vertically). This parameter
affects all sprites: they are either all 8×8 or all 8×16.

Table 7-3 summarizes the sprite-related flags.

Table 7-3: Sprite Flag Values

Bit Value Meaning
0 LCDCF_OBJOFF The sprites are disabled.

LCDCF_OBJON The sprites are enabled.
3 LCDCF_OBJ8 The sprites are 8×8 (one tile).

LCDCF_OBJ16 The sprites are 8×16 (two tiles).

Note that there is no tile addressing mode flag for sprites; sprites always
use the $8000 tile addressing mode.
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Object Attribute Memory
Each sprite has four attributes: an abscissa, an ordinate, a tile index, and
control flags. Each attribute takes 1 byte in memory, so each sprite takes
4 bytes. The sprite attributes are set in a 160-byte dedicated memory area
called the object attribute memory (OAM). The OAM extends from \$FE00 to
$FE9F.

The PPU accesses the OAM when drawing the sprites to the LCD. Like
the VRAM, the OAM is mostly inaccessible during the LCD refresh, so for
now we’ll set the sprites’ attributes during the vblank. We’ll look at an alter-
native technique for doing this in Chapter 12.

The first two attributes are the abscissa, X, and the ordinate, Y. Both
attributes refer to the coordinates of the top-left corner of the sprite. X is
equal to the horizontal position of the sprite plus 8. Y is equal to the ver-
tical position of the sprite plus 16. That means when it comes to position-
ing sprites, the top-left corner of the LCD is actually at coordinates (8, 16).
This allows the sprites to enter the left and upper sides of the LCD gradu-
ally. When a sprite’s X or Y value is 0, it’s outside the bounds of the LCD
display and thus completely invisible. The same goes when X is above 168
(160 + 8) or Y is above 160 (144 + 16).

The third attribute to configure for sprites is the tile index. As men-
tioned previously, sprites always use the $8000 tile addressing mode. So,
the indices go from 0 to 255 and can refer to any tiles in blocks 0 and 1.
When using 8×16 sprites (two tiles), this attribute is the index of the first
tile, which renders the top of the sprite. We cannot specify the second tile’s
index; it’s always the value of the index attribute plus one. The second tile
renders the bottom of the sprite.

The fourth and last attribute is a byte containing flags to control the
sprite rendering. Table 7-4 summarizes these flags, which use only 4 bits
(bits 0 to 3 are unused).

Table 7-4: OAM Flags

Bit Description
4 Selects the palette number of the sprite
5 Flips the sprite horizontally when the bit is set
6 Flips the sprite vertically when the bit is set
7 Draws the background and window colors 1 to 3

over the sprite when the bit is set

Bit 4 selects one of the two sprite palettes. When the bit is zero, the first
sprite palette is used; otherwise, the second palette is used.

Bit 5 and 6 flip (mirror) the sprite horizontally and vertically, respec-
tively. This is a handy option to save on the number of tiles used for charac-
ters, because it avoids using separate tiles for the character facing left and
right. Figure 7-8 shows an 8×16 sprite flipped in four different ways.
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Figure 7-8: Flipping a sprite in different ways

From left to right, the four orientations are no flip, horizontal flip, ver-
tical flip, and both flips. Combining both flips is equivalent to a 180-degree
rotation.

By default, the sprites display over the background and window. Sprites
are opaque except when pixels use color index 0, which lets the background
and window show through. When bit 7 is set, the background and window
display over the sprites. Figure 7-9 illustrates how this works.

Figure 7-9: The draw priority of a sprite

The house is part of the background and has two windows with color
index 0, so what’s behind shows through them. On the left, no sprites are
visible, just the house. In the middle, a character sprite has bit 7 of its flags
cleared and thus appears in front of the house. On the right, the sprite has
bit 7 of its flags set and thus appears behind the house but is partially visible
through the window.

Limitations
There are three limitations to sprites that you should be aware of. First is
the number of sprites you can store. Because each sprite takes 4 bytes, there
can be only 40 sprites in OAM at any given time. We’ll see how to partially
compensate for this limitation in Chapter 12.

Second, at most 10 sprites can display per LCD line. The PPU identi-
fies the first 10 sprites in OAM that are on each line and ignores any addi-
tional sprites on the line. This limitation affects several commercial games,
resulting in sprites flickering on the screen.

Finally, you can’t make a single sprite invisible through flags. Instead,
you have to move that sprite off the screen. The issue isn’t too difficult to ad-
dress, but it means that when you need to make a sprite invisible temporar-
ily, you must save its position.

Also, keep in mind that it’s better to move the sprite above or below
the screen (using an ordinate equal to 0 or higher than 168) rather than to
the sides (using an abscissa equal to 0 or higher than 168), because sprites
that aren’t visible on the LCD display will still count toward the maximum
number of sprites allowed per line (10).
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A Sprite Sample
Let’s get some practice using sprites. You can follow along using the sprites
sample.

First we’ll set the parameters for all sprites, starting with the two sprite
palettes, as shown in Listing 7-15.

ld a, %11100100

ld [rBGP], a

ld [rOBP0], a

ld a, %00011011

ld [rOBP1], a

Listing 7-15: Configuring the palettes

We set the first palette to the same value as the background palette. The
second palette is set to a different value, but it is not actually referenced by
any sprite in the sample.

Next, we set the rLCDC flags to enable and configure the sprites, as shown
in Listing 7-16.

ld a, LCDCF_ON | LCDCF_WIN9C00 | LCDCF_WINON | LCDCF_BG8800 | \

LCDCF_BG9800 | LCDCF_OBJ16 | LCDCF_OBJON | LCDCF_BGON

Listing 7-16: Setting the flags

The LCDCF_OBJON flag enables the sprites and the LCDCF_OBJ16 flag makes
them 8×16 pixels.

We’ll set the sprite attributes inside the UpdateSample function. Although
it’s not really necessary in this sample (because the sprite attributes won’t
change over time), in a real-world situation you’d update the sprites fre-
quently, and the update function is the right place to do this. Because the
OAM is mostly inaccessible outside the vblank, we need to set the sprite
attributes after halt, within the duration of the vblank (1.08 ms).

We use simple load instructions to set the attributes: one instruction to
load the attribute value in a, and another to load a into an OAM attribute.
These two instructions have been abstracted by a new macro, copy, shown in
Listing 7-17. The macro is defined in utils.rgbinc.

; copy \2 into \1 through (a)

; example: copy [$FF84], 10

macro copy

ld a, \2

ld \1, a

endm

Listing 7-17: The copy macro

This macro covers the cases when two loads are necessary to move a
value from a source to a destination, using a as an intermediary. We use it
to set up two sprites over a few lines of code, as illustrated in Listing 7-18.
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; set up the first sprite

def SPRITE_0_ADDRESS equ (_OAMRAM)

copy [SPRITE_0_ADDRESS + OAMA_X], 16

copy [SPRITE_0_ADDRESS + OAMA_Y], 32

copy [SPRITE_0_ADDRESS + OAMA_TILEID], 16

copy [SPRITE_0_ADDRESS + OAMA_FLAGS], OAMF_PAL0

; set up the second sprite

def SPRITE_1_ADDRESS equ (_OAMRAM + sizeof_OAM_ATTRS)

copy [SPRITE_1_ADDRESS + OAMA_Y], 80

copy [SPRITE_1_ADDRESS + OAMA_X], 80

copy [SPRITE_1_ADDRESS + OAMA_TILEID], 0

copy [SPRITE_1_ADDRESS + OAMA_FLAGS], OAMF_PAL0 | OAMF_XFLIP

Listing 7-18: Defining the sprites

The code defines two constants, SPRITE_0_ADDRESS and SPRITE_1_ADDRESS,
that hold the addresses of the first two sprites in OAM. The attributes are
filled in for each sprite. The first sprite is a front-facing character positioned
in the upper-left corner of the screen. The second sprite is a right-facing
character, but we flip it horizontally to make it face left instead. It is located
close to the center of the screen.

If you compile and run the sample, the two sprites should display as
expected. However, you will likely get some visual corruption, as shown in
Figure 7-10. (If it isn’t visible right away, try running the sample a few more
times.)

Figure 7-10: Visual corruption

Some graphics tiles appear randomly over the background and window.
The issue is that the OAM, the memory that contains the sprite attributes,
is not initialized by default. That means the 38 sprites that we’re not using
have attributes set to random values, causing them to display unexpectedly
all over the screen.
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To fix this visual corruption, we must initialize the OAM to position
all sprites outside the screen by default. We do this with the InitOAM macro
(Listing 7-20), which is included in the sample.rgbasm file in the sprites_fixed
sample.

macro InitOAM

ld c, OAM_COUNT

ld hl, _OAMRAM + OAMA_Y

ld de, sizeof_OAM_ATTRS

.init_oam\@

ld [hl], 0

add hl, de

dec c

jr nz, .init_oam\@

endm

Listing 7-19: The InitOAM macro

This macro is a loop iterating over the OAM, setting the Y attribute of
all 40 sprites to 0. It starts by initializing the registers used in the macro.
First, c is set to OAM_COUNT (40). This acts as the loop index. Next, hl is set to
point to the Y attribute of the first sprite in the OAM. Finally, de is set to
sizeof_OAM_ATTRS, which is the number of bytes for the attributes of a single
sprite (4).

The loop spans the remainder of the macro. For each iteration, the byte
pointed to by hl (the Y attribute of one of the sprites in OAM) is set to zero.
Then, hl is incremented by 4 so that it points to the next sprite’s Y attribute.
The register de holds the value 4, because the only 16-bit add instruction
takes registers as parameters, not literals. Finally, the code jumps back to
the start of the loop until all iterations are done.

Once the loop is completed, all the sprites’ Y attributes are equal to
zero, moving them outside the LCD display area and removing the graphi-
cal artifacts from Figure 7-10. You don’t need to initialize any of the other
attributes (X, tile index, and control flags), because you can initialize them
before the sprites actually get used.

WARN I NG As a rule of thumb, it’s best to assume that memory is not initialized. BGB seems to
do the right thing here by having random values in the OAM, just as the real hard-
ware would, but some emulators might mistakenly zero-clear some of the memory
areas, including the OAM. If you make the wrong assumptions about the state of
the memory, you might find that your program works fine on an emulator but not on
real hardware.

Finally, we use the InitOAM macro in the InitSample function, just before
LoadGraphicsDataIntoVRAM (see Listing 7-20).
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; init graphics data

InitOAM

LoadGraphicsDataIntoVRAM

Listing 7-20: Invoking the InitOAM macro

Now when you compile and run the sample, it should look like
Figure 7-11.

Figure 7-11: A sprite sample

All the visual corruption is gone.

Summary
In this chapter, you learned how to leverage the high-level graphics features
of the DMG. You should now be able to initialize and scroll the background
as well as enable and move the window around the screen. Finally, you learned
how to set up the OAM to display sprites.

Combined with what you learned in Chapter 6, you should now have
a strong understanding of how to display custom graphics on the console.
There is one more topic left with regard to sprites: the DMA transfer, which
is a different method for copying data to the OAM. I’ll cover this in Chap-
ter 12 along with other advanced graphics topics.

Now we’re ready to switch our focus to the input. The next chapter
introduces the joypad, which allows us to interact with the DMG.
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