
4
BINARY TAXONOMY

If you look down on one side, everything seems reassuringly familiar. . . .
On the other side, it seems completely alien territory.

—Mary Beard, SPQR

Like code review and fuzzing, reverse en-
gineering is a topic that could fill a whole

book (and does; several, in fact). Rather than
examining the granular details of each disci-

pline, this book focuses on strategy, marshaling limited
resources effectively to attain a specific and significant
objective. To achieve that goal, you need to under-
stand the lay of the land before getting into the weeds.
This allows you to focus your time and effort on tech-
nical approaches that are more likely to yield new
vulnerabilities.

For reverse engineering, instead of popping your binaries into Ghidra
or IDA Pro and tackling assembly code head-on, you should first learn to
triage and select interesting binaries for further analysis. Not all binaries are
created (or rather, compiled) equal.

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

In this chapter, you’ll learn about three common categories of binaries:
scripts, intermediate representations (IR) such as bytecode, and machine
code. You will then reverse engineer examples from each category. In ad-
dition, you’ll venture deeper into several subcategories of these binaries,
which require different approaches.

Beyond Executable Binaries and Shared Libraries
Understanding the different types of binaries helps you select the right tools
and techniques to reverse engineer them. By breaking them down into a few
broad categories, you’ll be able to quickly triage your target and optimize
your approach.

At a high level, when we think of binaries, we usually think of two kinds:
executable binaries and shared libraries. As the name suggests, executable
binaries can be executed directly from the command line or user interface.
Shared libraries export functions that other binaries can use via static or
dynamic linking. In some cases it’s also possible to execute shared libraries,
such as by calling dynamic-link libraries (DLLs) on Windows with rundll32.

These binaries come in the Portable Executable (PE) file format for
Windows, the Executable and Linkable Format (ELF) for Linux, and the
Mach object (Mach-O) file format for macOS and iOS. These formats are
handled natively by the underlying operating system and contain the instruc-
tions to execute the binaries, as well as additional data like import and ex-
port tables, dynamic linking information, and global variables.

While this is a straightforward way to categorize binaries, it misses a lot
of important details, especially in today’s modern development environ-
ment. Consider some of the most popular communication software out
there, like WhatsApp, Slack, and Zoom. These applications are distributed
as executable binaries, but they actually package together other formats,
such as Node.js scripts, WebAssembly binary code, and Common Interme-
diate Language (CIL) bytecode. Unlike standard executable file formats,
like PE and ELF, these formats are executed in other mediums, such as the
Node.js environment or the Common Language Runtime (CLR) virtual
machine used by the .NET Framework. In turn, these mediums come with
their own sets of security boundaries, default protections, and potential
misconfigurations.

For example, in the early years of the Electron Node.js desktop applica-
tion framework, an attacker could trivially escalate a simple cross-site script-
ing (XSS) bug to code execution. Electron allowed developers to turn on a
nodeIntegration setting that enabled Node.js APIs and modules in the web
renderer process, which effectively disabled the browser sandbox protec-
tions. This happened despite the hard lessons developers had learned by fid-
dling with the browser sandbox since ActiveX and Flash. Creating a bridge
between what happens in the sandbox (executing JavaScript) and on the
desktop (executing operating system APIs) greatly increases the blast radius
of a web vulnerability. What would’ve been a bug limited to a single website
now becomes a full-blown remote code execution on the victim’s computer.

98 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

Unfortunately, we can expect more blurring of lines as web technologies
continue to seep into desktop and server-side execution environments.

From a vulnerability researcher’s perspective, however, this blurring of
lines opens up the range of targets to reverse engineer. Compared to pure
assembly code, it’s relatively easier to decompile intermediate representa-
tions like Java bytecode and CIL. In fact, with the proper metadata, you can
retrieve the near-original source code of these binaries. This does not even
cover scripting languages like Node.js or Python, which can be packaged into
binaries that run the embedded interpreter on stored scripts. Rather than
decompiling machine code, reverse engineering these types of binaries in-
volves unpacking and sometimes deobfuscating these scripts. After that, you
can simply perform code review as usual.

Additionally, there are many cross-interactions between these compo-
nents. For example, a Node.js script could instantiate a WebAssembly binary
module, or CIL bytecode could load unmanaged libraries. To maintain a
bird’s-eye view of the various paths taken by the application logic, you need
to understand the different types of binaries and the most effective ways to
analyze them. Let’s dive in, starting with scripts.

Scripts
Script files are written in a programming language that can be executed
directly by an interpreter without needing to compile a binary. Common
scripting languages include JavaScript, Python, and Ruby. For example, in
the Node.js environment, JavaScript scripts are executed by the V8 JavaScript
engine outside of the browser.

However, this does not necessarily mean that the interpreter does not
compile scripts at all. Many modern interpreters employ some form of just-
in-time or ahead-of-time compilation that occurs at execution time. This
compiles the script into bytecode or machine code, which is more optimized
and runs faster than if the script was interpreted.

Some script-based executables may contain only the compiled bytecode
instead of the original scripts. In other cases, the executables may contain
scripts that are obfuscated or minified (minimized), increasing the difficulty
of analyzing them. In the best-case scenario, the executable simply acts as a
wrapper around the source code files and executes them with an embedded
interpreter. In this section, you’ll explore these scenarios through two open
source projects written in scripting languages and distributed as executa-
bles: DbGate, a Node.js Electron application, and Galaxy Attack, a Python
PyInstaller application.

Reverse Engineering Node.js Electron Applications
These days, you’re likely to encounter at least one Node.js Electron appli-
cation on a desktop environment, so it’s important to understand how to
reverse engineer them. One of the most significant trends in modern ap-
plication development is the growth of hybrid software that blends web

Binary Taxonomy 99

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

and native solutions. Traditionally, native software built for desktops and
servers was written in compiled languages like C++. Compiled languages run
much faster than interpreted languages (like JavaScript and Python) due to
compile-time optimizations and the ability to execute machine code directly
rather than through an interpreter.

However, the emergence of the powerful just-in-time compilation V8
engine in 2008 allowed web developers to run JavaScript with better perfor-
mance. This was followed by the release of Node.js in 2009, which provided
a server-side JavaScript runtime environment built on V8. Instead of run-
ning it only in the browser sandbox to add functionality to web pages, devel-
opers could now write JavaScript code to read and write files, make database
queries, and execute other server-side functions.

The nonblocking, event-driven architecture of Node.js also allowed de-
velopers to easily build scalable real-time applications that could handle
multiple connections simultaneously. This was an essential feature for web
servers, and it was where Node.js found the most initial adoption because
it meant web developers could now write web applications in JavaScript for
both the frontend and the backend.

Next, the Electron framework (originally named Atom Shell, in ref-
erence to the Atom code editor that it was built for) emerged. Electron
focused on creating desktop applications with Node.js and other web tech-
nologies, like HTML and CSS. Instead of struggling with various operating
system–specific APIs and build processes, developers could simply use tried-
and-tested common environments like Node.js and the Chromium browser
engine to create cross-platform desktop applications with JavaScript. This
enabled much faster development, especially as desktop applications began
to rely on more and more web features.

An Electron application consists of the Electron prebuilt binary, which
includes the Node.js and Chromium execution environments, and the ap-
plication source code, which is usually packaged into an Atom Shell Archive
(ASAR) file. You can explore this with the releases of DbGate, an open source
database client built on the Electron framework. For Linux, DbGate is dis-
tributed as both a Debian package and an AppImage. Download the De-
bian package for version 5.2.7 at https://github.com/dbgate/dbgate/releases/
download/v5.2.7/dbgate-5.2.7-linux_amd64.deb and use the dpkg-deb tool to ex-
tract it. You should see the following files:

$ dpkg-deb -x dbgate-5.2.7-linux_amd64.deb dbgate

$ tree --charset ascii dbgate

dbgate

|-- opt

| `-- DbGate

| |-- chrome_100_percent.pak

| |-- chrome_200_percent.pak

| |-- chrome_crashpad_handler

| |-- chrome-sandbox

¶ | |-- dbgate

| |-- icudtl.dat

100 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/dbgate/dbgate/releases/download/v5.2.7/dbgate-5.2.7-linux_amd64.deb
https://github.com/dbgate/dbgate/releases/download/v5.2.7/dbgate-5.2.7-linux_amd64.deb

· | |-- libEGL.so

| |-- libffmpeg.so

| |-- libGLESv2.so

| |-- libvk_swiftshader.so

| |-- libvulkan.so.1

--snip--

| |-- resources

¸ | | |-- app.asar

| | `-- app.asar.unpacked

| | |-- node_modules

| | | |-- better-sqlite3

| | | | `-- build

| | | | `-- Release

| | | | `-- better_sqlite3.node

| | | `-- oracledb

| | | `-- build

| | | `-- Release

| | | |-- oracledb-5.5.0-darwin-x64.node

| | | |-- oracledb-5.5.0-linux-x64.node

| | | `-- oracledb-5.5.0-win32-x64.node

| | `-- packages

| | `-- api

| | `-- dist

| | |-- 45c2d7999105b08d7b98dd8b3c95fda3.node

| | `-- 9bf76138dc2dae138cb17ee46c4a2dd1.node

| |-- resources.pak

| |-- snapshot_blob.bin

| |-- swiftshader

| | |-- libEGL.so

| | `-- libGLESv2.so

| |-- v8_context_snapshot.bin

| `-- vk_swiftshader_icd.json

From the listing, you can see the package contains a dbgate executable
binary ¶. This is simply a prebuilt Electron binary that loads the bundled
ASAR package. You can also find shared libraries for graphics rendering
andmedia parsing ·, which are dependencies used by Chromium andNode.js.
The ASAR file app.asar ¸ is located in the resources directory. Electron auto-
matically loads the application from this directory.

This is a common pattern for not only Electron but also script-based ex-
ecutables. The application package will typically include a common script
interpreter, some additional library files, and a script bundle. As you en-
counter more of these types of executables, you’ll be able to recognize spe-
cific patterns, such as the presence of an ASAR file, that will tell you what
kind of framework is used.

Binary Taxonomy 101

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

If you have Node.js installed, you can unpack the ASAR file with the
asar tool:

$ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.0/install.sh | bash

$ source ~/.zshrc

$ nvm install --lts

$ npm install -g asar

$ npx asar extract dbgate/opt/DbGate/resources/app.asar dbgate-src

$ tree --charset ascii dbgate-src

dbgate-src

--snip--

|-- icon.png

|-- node_modules

| |-- @yarnpkg

| |-- argparse

--snip--

|-- package.json ¶
|-- packages

| |-- api

| | `-- dist

| | |-- 45c2d7999105b08d7b98dd8b3c95fda3.node

| | |-- 9bf76138dc2dae138cb17ee46c4a2dd1.node

| | `-- bundle.js

| |-- plugins

| | |-- dbgate-plugin-csv

| | | |-- dist

| | | | |-- backend.js

| | | | `-- frontend.js

| | | |-- icon.svg

| | | |-- LICENSE

| | | |-- package.json

| | | `-- README.md

--snip--

`-- src

|-- electron.js

|-- mainMenuDefinition.js

|-- nativeModulesContent.js

`-- nativeModules.js

There are many interesting filenames in the unpacked code, but in most
cases the first point of reference should be a manifest file that includes im-
portant metadata about the package, such as the entrypoint file that will be
executed first. Different programming language packages use manifests;
for Node.js, the manifest is package.json ¶, for Java MANIFEST.MF, for Go
go.mod, and so on. Let’s take a look at DbGate’s package.json, shown in
Listing 4-1.

102 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

{

"name": "dbgate",

"version": "5.2.7",

"private": true,

"author": "Jan Prochazka <jenasoft.database@gmail.com>",

"description": "Opensource database administration tool",

"dependencies": {

"electron-log": "^4.4.1",

"electron-updater": "^4.6.1",

"lodash.clonedeepwith": "^4.5.0",

"patch-package": "^6.4.7"

},

¶ "repository": {

"type": "git",

"url": "https://github.com/dbgate/dbgate.git"

},

"homepage": "./",

· "main": "src/electron.js",

"optionalDependencies": {

"better-sqlite3": "7.6.2",

"oracledb": "^5.5.0"

}

}

Listing 4-1: The DbGate manifest file

There are two useful pieces of information here. First, the manifest tells
you where the original source code repository is ¶, which would be invalu-
able if you encountered this binary without knowing it was open source. Sec-
ond, it tells you that the entrypoint denoted by main is src/electron.js ·. This
would be the next file to investigate.

You’re making good progress, but before long you may encounter the
following obstacle in electron.js:

if (!apiLoaded) {

const apiPackage = path.join(

__dirname,

process.env.DEVMODE ? '../../packages/api/src/index' : '../packages/api/dist/

bundle.js' ¶
);

global.API_PACKAGE = apiPackage;

global.NATIVE_MODULES = path.join(__dirname, 'nativeModules');

// console.log('global.API_PACKAGE', global.API_PACKAGE);

const api = require(apiPackage);

Binary Taxonomy 103

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

The code does import a package from packages/api/dist/bundle.js in
production ¶, but if you inspect this file, it’s a mess of tightly packed code
and obscure variable names, making it impossible to manually analyze.

This is because DbGate uses Webpack and Rollup, module bundlers for
JavaScript that combine various source code files into one or more minified
output files that are more optimized for distribution. In the original DbGate
source code, you can find the Webpack configuration files at packages/api/
webpack.config.js and the Rollup configuration file at packages/web/rollup.config
.js. To go any further, you’ll need to somehow reverse the minification.

Unpacking Source Maps
Due to the minified output, it’s usually impossible to recover the original un-
packed version of the code from a Webpack or Rollup output file. However,
in some cases developers may configure these tools (and others, like Babel
and TypeScript) to also output a source map file. JavaScript source maps are
special files that map transformed source code files like minified Webpack
output to the original source code, including the original directory struc-
ture. This enables easier debugging of JavaScript code during development.

In the case of DbGate, the developer has not enabled source maps for
Webpack but has done so for two Rollup output files, query-parser-worker.js
and bundle.js, as shown in Listing 4-2.

rollup.config.js export default [

{

input: 'src/query/QueryParserWorker.js',

output: {

¶ sourcemap: true,

format: 'iife',

· file: 'public/build/query-parser-worker.js',

},

plugins: [

commonjs(),

resolve({

browser: true,

}),

// If we're building for production (npm run build

// instead of npm run dev), minify

production && terser(),

],

},

{

input: 'src/main.ts',

output: {

sourcemap: true,

format: 'iife',

104 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

name: 'app',

file: 'public/build/bundle.js',

},

Listing 4-2: The Rollup configuration that enables source maps

The sourcemap value ¶ tells you that Rollup will include a source map
when generating the output file at the indicated path ·.

In the extracted files for the DbGate package, bundle.js and bundle.js.map
can be found in the same directory, packages/web/public/build. Take a mo-
ment to compare the two files. While bundle.js appears to be JavaScript code,
it’s highly minified and difficult to read. Meanwhile, bundle.js.map appears to
be a JSON file with recognizable filepaths and source code.

Thanks to the source map file, you can convert bundle.js from an incom-
prehensible blob of code into the actual source code files. Use Mozilla’s
source-map library to quickly write a script to do so. Place bundle.js.map and
the unpack.js file, whose code is shown in Listing 4-3, in the same directory
(this file is also available in the book’s code repository, at chapter-04/unpack-
sourcemap).

unpack.js const fs = require('fs');

const path = require('path');

const sourceMap = require('source-map');

const rawSourceMap = JSON.parse(fs.readFileSync('bundle.js.map', 'utf8'));

fs.mkdirSync('output');

sourceMap.SourceMapConsumer.with(rawSourceMap, null, consumer => {

¶ consumer.eachMapping(mapping => {

const sourceFilePath = mapping.source;

const sourceContent = consumer.sourceContentFor(mapping.source);

// Remove path traversal characters

· const normalizedSourceFilePath = path

.normalize(sourceFilePath)

.replace(/^(\.\.(\/|\\|$))+/, '');

const outputFilePath = path.join('output', normalizedSourceFilePath);

const outputDir = path.dirname(outputFilePath);

if (!fs.existsSync(outputDir)) {

fs.mkdirSync(outputDir, { recursive: true });

}

¸ fs.writeFileSync(outputFilePath, sourceContent, 'utf8');

});

});

Listing 4-3: A source map unpacking script

Binary Taxonomy 105

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

The script parses the source map and iterates through each mapping ¶,
extracting the filepath and content of the mapping. However, if you exam-
ine bundle.js.map, you’ll notice that some source filepaths are relative paths.
Unfortunately, this means we lose some information about the actual direc-
tory structure of the source code. Because we’re unable to reconstruct the
relative paths, we must instead treat them as being in the same root direc-
tory by removing any relative paths ·. Nevertheless, the most important
information, the contents of the source code files, is preserved and written
to the output ¸.

Install the source-map library and run the script, which should take a few
minutes:

$ npm install source-map

$ node unpack.js

Compare the output folder with the original source code. As discussed,
the directory structure is not a perfect match, but it closely follows packages/
web/src in the original source code. Additionally, you may notice that Type-
Script files, like packages/filterparser/src/getFilterType.ts, have been converted
into JavaScript files, like filterparser/lib/getFilterType.js. This is because Type-
Script is actually transpiled (meaning compiled to a different programming
language) to JavaScript during the build process, so it can be interpreted by
JavaScript engines. Observe some of the differences between the original
TypeScript in Listing 4-4 and the transpiled JavaScript in Listing 4-5.

¶ import { isTypeNumber, isTypeString, isTypeLogical,

isTypeDateTime } from 'dbgate-tools';

import { FilterType } from './types';

· export function getFilterType(dataType: string): FilterType {

if (!dataType) return 'string';

if (isTypeNumber(dataType)) return 'number';

if (isTypeString(dataType)) return 'string';

if (isTypeLogical(dataType)) return 'logical';

if (isTypeDateTime(dataType)) return 'datetime';

return 'string';

}

Listing 4-4: The original getFilterType code

In the original TypeScript, the source code uses the import keyword
to import dependencies ¶, but this is supported only in newer versions of
JavaScript, such as ECMAScript 6. In addition, it includes type annotations
that specify variable types ·, which are not natively supported in JavaScript.

getFilterType.js "use strict";

Object.defineProperty(exports, "__esModule", { value: true });

exports.getFilterType = void 0;

¶ const dbgate_tools_1 = require("dbgate-tools");

· function getFilterType(dataType) {

106 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

if (!dataType)

return 'string';

if ((0, dbgate_tools_1.isTypeNumber)(dataType))

return 'number';

if ((0, dbgate_tools_1.isTypeString)(dataType))

return 'string';

if ((0, dbgate_tools_1.isTypeLogical)(dataType))

return 'logical';

if ((0, dbgate_tools_1.isTypeDateTime)(dataType))

return 'datetime';

return 'string';

}

exports.getFilterType = getFilterType;

Listing 4-5: The converted getFilterType code

In contrast, the transpiled JavaScript uses a backward-compatible Com-
monJS standard require keyword to import dependencies ¶, and it drops the
type annotations · (these will have been checked at the transpilation stage).
This loses some information that could speed up reverse engineering, since
type declarations add details about the expected inputs. For example, in the
original source code, packages/filterparser/src/types.ts tells you that FilterType
should be one of the following strings:

// import types from 'dbgate-types';

export type FilterType = 'number' | 'string' | 'datetime' | 'logical' |

'eval' | 'mongo';

While there don’t appear to be any other major differences that would
significantly affect your analysis of the code, you must take the increased ver-
bosity of transpiled JavaScript into account as well. As you encounter more
transpiled or transformed (such as minified) code, you’ll learn to map com-
mon patterns in transpiled JavaScript back to their TypeScript equivalents,
such as boilerplate export code or polyfills (code that implements functions
that are natively supported in newer versions of JavaScript but not in older
versions).

In cases where the TypeScript hasn’t been transpiled to JavaScript, you
may still notice some subtle differences. For example, study the original
code from packages/web/src/clientAuth.ts in Listing 4-6.

clientAuth.ts import { apiCall, enableApi } from './utility/api';

import { getConfig } from './utility/metadataLoaders';

--snip--

¶ export async function handleAuthOnStartup(config) {

if (config.oauth) {

console.log('OAUTH callback URL:', location.origin

+ location.pathname);

}

Binary Taxonomy 107

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

if (config.oauth || config.isLoginForm) {

if (localStorage.getItem('accessToken')) {

return;

}

redirectToLogin(config);

}

}

Listing 4-6: The original handleAuthOnStartup code

The code uses the async keyword to define an asynchronous function ¶.
Asynchronous functions return a Promise that allows the program to call the
function but continue executing and responding to other events. In compar-
ison, the code output/src/clientAuth.ts in Listing 4-7 looks somewhat different.

clientAuth.ts import { __awaiter } from "tslib";

--snip--

export function handleAuthOnStartup(config) {

¶ return __awaiter(this, void 0, void 0, function* () {

if (config.oauth) {

console.log('OAUTH callback URL:', location.origin +

location.pathname);

}

if (config.oauth || config.isLoginForm) {

if (localStorage.getItem('accessToken')) {

return;

}

redirectToLogin(config);

}

});

}

Listing 4-7: The converted handleAuthOnStartup code

Instead of async, the converted code uses the TypeScript __awaiter polyfill
function, which provides the same features as an asynchronous function ¶.

Like with the transpiled JavaScript, these differences should not pose
a significant challenge. However, we’re still losing some directory structure
information. For example, the extracted code does not include the packages
or web directories. This can hamper your efforts to analyze the application
code, as you can’t confirm the exact locations of the files in relation to one
another. Keep this in mind if you encounter any source maps that include
directory traversal paths.

We’re also missing information about non-core files, including test and
configuration files. In a typical code review scenario, these files can provide
additional clues about the software, such as how it was compiled.

Overall, the presence of source maps doesn’t automatically mean you
can retrieve the original source code. They usually bundle together only the
relevant components in the codebase and lose information in the process.

108 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

For example, as we’ve just seen, in the case of DbGate the source map in-
cludes only the client-side code covered by the Rollup configuration, and
some useful information is lost during transpilation. Still, they’re handy
tools if you have them. Without a source map, you must instead rely on less
accurate means of reconstructing the original code, such as code beautifiers.

Using Beautifiers on Minified Code
A beautifier is a tool that formats code to be more human-readable, such as
by adding consistent spacing and newlines. This makes it easier to analyze
minified code, which by definition compresses the code as much as possible
(such as by removing unnecessary spaces and newlines that an interpreter
doesn’t need to parse the code).

Returning to the extracted app source code archive files, you can find a
different bundle.js file in packages/api/dist. Unlike the bundle file in packages/
web/public/build, it doesn’t come with a source map file to help you unpack
it further. If you refer to the Webpack configuration for this bundle in the
original source code at packages/api/webpack.config.js, you can see that the
developer commented out an option that would have disabledminimization:

// optimization: {

// minimize: false,

// },

The same goes for the rest of the plug-in distribution files in packages/
plugins. Webpack optimized the output bundles, including shortening vari-
able and function names, removing whitespace, and eliminating dead code,
resulting in a compact but seemingly undecipherable blob. Nevertheless, if
you peer closely at the code, you may be able to make out a few intelligible
strings and function names. This is because Webpack preserves some con-
stant values and exported function names.

You can improve the readability of the code by using a beautifier to re-
format and partially deobfuscate it. While there are several options avail-
able, the js-beautify package should suffice. Install the package and run it
on the main bundle, using the following commands:

$ npm -g install js-beautify

$ npx js-beautify packages/api/dist/bundle.js > bundle.beautified.js

The beautified code reveals a fairly consistent structure of a list of func-
tion definitions. You may even spot code similar to the files you unpacked
using the source map earlier, because the server- and client-side code share
some common imported functions. One of these is compileMacroFunction:

function compileMacroFunction(macro, errors = []) {

if (!macro) return null;

let func;

try {

¶ return func = eval(getMacroFunction[macro.type](macro.code)), func

} catch (e) {

Binary Taxonomy 109

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

return errors.push(`Error compiling macro ${macro.name}:

${e.message}`), null

}

}

Notice the dangerous eval sink ¶, which executes its string argument as
JavaScript. This could become an easy code injection vulnerability if the ar-
gument can be controlled by an attacker. Since Webpack does not obfuscate
standard function names like eval by default, you can run automated code
analysis tools to quickly flag such dangerous sinks in beautified code, espe-
cially when it’s difficult to manually review it yourself.

Analyzing a Dangerous Sink
Since compileMacroFunction appears in both the frontend and backend code
and includes a dangerous sink, it’s worth digging into. Using the techniques
you learned in the previous chapters, you can analyze the unpacked and
beautified code to figure out whether it’s an exploitable vulnerability.

The function first takes a macro argument that is passed to getMacroFunction,
and the result of this is finally passed to eval. Let’s take a look at the code for
getMacroFunction from the unpacked source map:

const getMacroFunction = {

¶ transformValue: code => `

(value, args, modules, rowIndex, row, columnName) => {

${code}

}

`,

· transformRow: code => `

(row, args, modules, rowIndex, columns) => {

¸ ${code}

}

`,

};

From the code, you can see that getMacroFunction is actually an object
literal with only two keys, transformValue ¶ and transformRow ·. The values
of these keys are functions that take a single argument interpolated within
a string that defines another function. Recall that this string is eventually
passed to eval.

As such, it appears that as long as an attacker can control macro.code,
they have a good chance of triggering a code injection. Now you can work
backward using the sink-to-source analysis approach.

In the beautified and the unpacked backend code, compileMacroFunction is
called in the runMacroOnChangeSet function:

function runMacroOnChangeSet(

¶ macro,

macroArgs,

selectedCells,

110 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

changeSet,

display,

useRowIndexInsteaOfCondition

) {

var _a;

const errors = [];

· const compiledMacroFunc = compileMacroFunction(macro, errors);

The function takes a macro argument ¶ that is eventually passed to the
compileMacroFunction function without any modifications ·. However, if you
search for runMacroOnChangeSet in the beautified code, you won’t get any re-
sults, meaning a sink-to-source path doesn’t exist. If you search the unpacked
code, you’ll find that it’s called in a few .svelte files, which are used as part of
the Svelte frontend framework to define frontend components. For exam-
ple, it’s used in TableDataGrid.svelte:

¶ function handleRunMacro(macro, params, cells) {

· const newChangeSet = runMacroOnChangeSet(macro, params, cells,

changeSetState?.value, display, false);

if (newChangeSet) {

dispatchChangeSet({ type: 'set', value: newChangeSet });

}

}

\$: reference = config.reference;

\$: childConfig = config.childConfig;

</script>

<VerticalSplitter isSplitter={!!reference}>

<svelte:fragment slot="1">

<DataGrid

{...\$\$props}

gridCoreComponent={SqlDataGridCore}

formViewComponent={SqlFormView}

{display}

showReferences

showMacros

hasMultiColumnFilter

onRunMacro={handleRunMacro} ¸

Here, the frontend component defines a handleRunMacro function that
takes a macro argument ¶, which is passed directly to runMacroOnChangeSet ·.
This function is triggered by the onRunMacro handler ¸, which is triggered
when the user runs the macro from the frontend by clicking a button.

This appears to be a viable sink-to-source path, but it isn’t a particularly
exciting one. After all, if a user needs to enter the macro payload and click a
button themselves to actually trigger this, then it’s more like a self-inflicted

Binary Taxonomy 111

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

code execution requiring significant user interaction. Nevertheless, this
might be a good place to start digging deeper for similar vulnerable code
patterns.

Reverse Engineering a Python Application
In addition to Node.js Electron applications, applications in other program-
ming languages, such as Python and Ruby, can also be bundled into exe-
cutables. After all, one big advantage of scripting languages is portability;
you need only a compatible interpreter to run most scripts on any platform.
Electron applications are the most common, but it’s still useful to under-
stand how to unpack some of these other types of applications, such as Py-
Installer executables.

PyInstaller allows developers to bundle Python applications into a sin-
gle package, such as a single-file executable. After executing the binary, Py-
Installer starts a bootloader that unpacks compiled Python scripts (.pyc) and
native libraries before running the main script with the bundled Python in-
terpreter. This package is constructed in a fairly standard way, including a
Table of Contents list and archive files.

Generally, the compressed archive data appended to the end of the exe-
cutable contains the following:

• The Python dynamic library, including the interpreter

• The main Python script

• The Python zip application archive (usually named PYZ-00.pyz), con-
taining additional Python scripts

• Library files

• Supporting files such as media assets

Similar to other bundled script-based executables, you can usually iden-
tify a PyInstaller executable by reviewing the strings or headers:

$ strings main.exe | grep pyinstaller

xpyinstaller-4.7.dist-info\COPYING.txt

xpyinstaller-4.7.dist-info\INSTALLER

xpyinstaller-4.7.dist-info\METADATA

xpyinstaller-4.7.dist-info\RECORD

xpyinstaller-4.7.dist-info\REQUESTED

xpyinstaller-4.7.dist-info\WHEEL

xpyinstaller-4.7.dist-info\entry_points.txt

xpyinstaller-4.7.dist-info\top_level.txt

$ strings ~/Downloads/main.exe | grep python

bpython310.dll

6python310.dll

You can confirm whether it’s a PyInstaller executable by using PyInstaller’s
built-in pyi-archive_viewer utility to examine the CArchive of PyInstaller-bundled
executables. For this section, we’ll experiment using AmegmaGalaxy Attack,

112 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

a simple PyInstaller game with a Windows executable. Download main.exe
and the source code from the GitHub release page (https://github.com/Amegma/
Galaxy-Attack/releases/tag/v1.3.0). Next, install PyInstaller and run the archive
viewer utility:

$ pip install pyinstaller

$ pyinstaller -v

6.8.0

$ pyi-archive_viewer main.exe

pos, length, uncompressed, iscompressed, type, name

[(0, 217, 287, 1, 'm', 'struct'),

(217, 1018, 1754, 1, 'm', 'pyimod01_os_path'),

(1235, 4098, 8869, 1, 'm', 'pyimod02_archive'),

(5333, 7116, 16898, 1, 'm', 'pyimod03_importers'),

(12449, 1493, 3105, 1, 'm', 'pyimod04_ctypes'),

(13942, 833, 1372, 1, 's', 'pyiboot01_bootstrap'),

(14775, 466, 696, 1, 's', 'pyi_rth_inspect'),

(15241, 698, 1067, 1, 's', 'pyi_rth_pkgutil'),

(15939, 1187, 2154, 1, 's', 'pyi_rth_multiprocessing'),

(17126, 1999, 4202, 1, 's', 'pyi_rth_pkgres'),

(19125, 2103, 3574, 1, 's', 'main'),

--snip--

¶ (5175013, 1985630, 4471024, 1, 'b', 'python310.dll'),

(7160643, 13440, 25320, 1, 'b', 'select.pyd'),

(7174083, 405123, 1117936, 1, 'b', 'unicodedata.pyd'),

(7579206, 56136, 108544, 1, 'b', 'zlib1.dll'),

--snip--

(38446628, 12, 4, 1, 'x', 'pyinstaller-4.7.dist-info\\INSTALLER'),

(38446640, 2714, 7085, 1, 'x', 'pyinstaller-4.7.dist-info\\METADATA'),

(38449354, 13562, 56668, 1, 'x', 'pyinstaller-4.7.dist-info\\RECORD'),

(38462916, 8, 0, 1, 'x', 'pyinstaller-4.7.dist-info\\REQUESTED'),

(38462924, 104, 98, 1, 'x', 'pyinstaller-4.7.dist-info\\WHEEL'),

(38463028, 141, 361, 1, 'x', 'pyinstaller-4.7.dist-info\\entry_points.txt'),

(38463169, 20, 12, 1, 'x', 'pyinstaller-4.7.dist-info\\top_level.txt'),

· (38463189, 2076778, 2076778, 0, 'z', 'PYZ-00.pyz')]

Partway down the list you’ll find python310.dll ¶, which tells you that
the version of Python used in this release by PyInstaller was version 3.10.
However, other than main and the media assets, there don’t appear to be
any source code files. This is because they’re packed into the PYZ-00.pyz ·
ZlibArchive file, which you can examine in the interactive session:

? O PYZ-00.pyz

Contents of 'PYZ-00.pyz' (PYZ):

is_package, position, length, name

0, 17, 1893, '__future__'

0, 1910, 1651, '_aix_support'

0, 3561, 1388, '_bootsubprocess'

Binary Taxonomy 113

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/Amegma/Galaxy-Attack/releases/tag/v1.3.0
https://github.com/Amegma/Galaxy-Attack/releases/tag/v1.3.0

0, 4949, 2937, '_compat_pickle'

0, 7886, 2213, '_compression'

0, 10099, 5991, '_osx_support'

0, 16090, 2422, '_py_abc'

0, 18512, 51188, '_pydecimal'

0, 69700, 7845, '_strptime'

0, 77545, 2863, '_threading_local'

0, 80408, 25050, 'argparse'

0, 105458, 22331, 'ast'

1, 127789, 453, 'asyncio'

You’ll find that some module names match the original source code
files, while the rest come from imported support modules. Extract models
.button, then exit the pyi-archive_viewer interactive session:

? X models.button

to filename? models.button.pyc

? q

The extracted file is a compiled Python file. If you view the contents of
the file, you’ll encounter mostly gibberish. This is because compiled Python
files consist of bytecode instead of the original source code. This runs faster
because it allows the Python interpreter to skip parsing the plaintext code
and run lower-level instructions with more optimizations.

However, when you extract the compiled bytecode directly, you lose the
starting magic bytes of the ZlibArchive file. These correspond to the release
version of Python (consisting of 2 bytes) followed by the carriage return
and line feed characters (0D0A). The version is important because each new
Python version makes changes to the interpreter that affect the structure of
the compiled bytecode, which affects how it should be decompiled.

These magic bytes are missing because PyInstaller stores a single in-
stance of them near the start of the PYZ-00.pyz ZlibArchive file containing
the compressed .pyc files. For example, the first 16 bytes of PYZ-00.pyz are
50595A00 6F0D0D0A 001F8838 00000000. The first 4 bytes, representing the ASCII
string PYZ, are followed by the magic bytes you need: 6F0D0D0A.

Prepend these bytes followed by 12 null bytes of padding to models
.button.pyc:

$ echo -n -e '\x6F\x0D\x0D\x0A' > fixed.models.button.pyc

$ printf '\x00%.0s' {1..12} >> fixed.models.button.pyc

$ cat models.button.pyc >> fixed.models.button.pyc

After extracting and preparing the compiled Python file, you need to
actually decompile it. Among the various open source decompilers, De-
compyle++ tries to support bytecode from any version of Python, which is
helpful since Galaxy Attack is compiled in a later version. Clone and build
Decompyle++, then run it on the modified compiled Python file:

114 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

$ git clone https://github.com/zrax/pycdc

$ cd pycdc

$ cmake .

$ make

$ make check

$ cd ..

$ pycdc/pycdc fixed.models.button.pyc

If you performed the steps correctly, you should get fairly coherent out-
put, as shown in Listing 4-8.

Source Generated with Decompyle++

File: fixed.models.button.pyc (Python 3.10)

import pygame

from utils.assets import Assets

from config import config

from constants import Font, Colors

class Button:

def __init__(self, color, outline_color, text = ('',)):

self.color = color

self.outline_color = outline_color

self.text = text

self.outline = False

self.rect = pygame.Rect(0, 0, 0, 0)

def draw(self, pos, size):

self.default_outline = pygame.Rect(pos[0] - 5, pos[1] - 5, size[0] + 10, size[1] + 10)

self.on_over_outline = pygame.Rect(pos[0] - 6, pos[1] - 6, size[0] + 12, size[1] + 12)

self.rect = self.default_outline

default_inner_rect = (pos[0], pos[1], size[0], size[1])

onover_inner_rect = (pos[0] + 1, pos[1] + 1, size[0] - 2, size[1] - 2)

inner_rect = onover_inner_rect if self.outline == True else default_inner_rect

pygame.draw.rect(config.CANVAS, self.outline_color, self.on_over_outline \

if self.outline == True else self.default_outline, 0, 7)

pygame.draw.rect(config.CANVAS, self.color, inner_rect, 0, 6)

if self.text != '':

font = pygame.font.Font(Font.neue_font, 40)

Assets.text.draw(self.text, font, Colors.WHITE, \

(pos[0] + size[0] / 2, pos[1] + size[1] / 2), True, True)

return None ¶

Binary Taxonomy 115

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

def isOver(self):

return self.rect.collidepoint(pygame.mouse.get_pos())

Listing 4-8: The decompiled Button class

If you compare the output to the original source code file models/
button.py, you’ll find that there are only minor differences (such as an ad-
ditional return None ¶) in the decompiled code. By repeating this process for
the other compiled Python files extracted from the PyInstaller executable,
you should be able to retrieve near-original source code.

Although actual software distributed as PyInstaller executables is much
rarer than Electron applications, working on this simple example helps il-
lustrate some common patterns in reverse engineering software written in
scripting languages. It’s impossible to completely remove the presence of
source code, even if it’s been compiled, transpiled, or bundled in some way.
However, the degree of lossiness can have a significant impact on the ease of
analysis.

Intermediate Representations
In terms of abstraction, intermediate representations lie between machine
code and the source code. As the name suggests, these are higher-level rep-
resentations of source code that can be interpreted and executed by a
runtime.

There are several advantages to using an intermediate representation.
For example, the runtime can take over many routine tasks, such as memory
management, garbage collection, and exception handling, which can free
developers to focus on simply building the application without needing to
add all of this in their source code. Intermediate representations can also
make it easier for runtimes to perform type checking or debugging, which
makes a program more robust.

Although compiled Python bytecode can be considered a form of in-
termediate representation, it operates differently from the C# and Java
intermediate representations you’ll be analyzing in this section. Python byte-
code is compiled at a higher level of abstraction than C# and Java, which
makes it easier to retrieve the original source code. While reverse engineer-
ing script-based binaries focuses on extraction and retrieval, reverse engi-
neering intermediate representation binaries focuses on decompilation and
reconstruction.

Although Python bytecode is still executed by the Python interpreter,
Java and C# (or rather, .NET) binaries are executed in their respective vir-
tual machine runtime environments. A Java class file should be able to run
in any operating system as long as a compatible Java virtual machine (JVM)
is available. This makes it easier to reverse engineer than machine code com-
piled binaries, which target specific instruction sets and architectures.

Finally, another characteristic of intermediate representation binaries
is that they usually include additional metadata that affects their runtime
environment configuration. For example, the Java Archive (JAR) package

116 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

file format includes a manifest that tells the JVM which class corresponds
to the application entry point, what dependencies are required, and other
important information. Similarly, .NET binaries, also known as assemblies,
include a manifest containing metadata such as version numbers, included
files, and references. Assemblies also include metadata about every type and
member they use, which is extremely useful for decompilation.

Intermediate representations are important to identify because that
will allow you to apply a more straightforward means of reverse engineer-
ing and decompilation that provides more accurate output. The information
preserved in terms of the expected argument types, classes, and variables
is invaluable, and it can save you hours of analysis. However, you may also
encounter a major challenge with obfuscation explicitly meant to prevent re-
verse engineering. This might force you to apply dynamic analysis strategies
(which we will explore in the next chapter).

As in the previous section, we’ll explore reverse engineering of interme-
diate representation binaries through two open source examples. In keeping
with the theme of the last set of examples, they’re also a database client and
a game, respectively. For C#, you’ll work on LiteDB Studio, and for Java,
you’ll tackle Pixel Wheels.

Common Language Runtime Assemblies
.NET is an open source developer platform for building applications writ-
ten in C#, F#, and Visual Basic. The key foundation of .NET is the Common
Language Runtime, which runs Common Intermediate Language intermedi-
ate representation instructions. To actually execute the code, the CLR con-
verts the CIL to processor-specific instructions using just-in-time or ahead-of-
time compilation.

.NET binaries are distributed as assemblies, which can take the form
of either .exe or .dll files. The assembly format is essentially an extension of
the Portable Executable format and is encapsulated within the standard PE
structure. After the PE headers, the binary contains CLR-specific data:

Assembly manifest Assembly metadata

Type metadata Metadata tables that define the types and members
used in the assembly

CIL code The actual intermediate language code that is executed in
the CLR

Resources Assets such as images, configuration, and other data

Strong name signature An optional digital signature to verify the
assembly

You can explore this by analyzing LiteDB Studio, a graphical interface
for viewing and editing LiteDB database files. Since the executable was com-
piled for Windows and the tools used to reverse engineer it are primarily
Windows-based, you should perform the steps described here on Windows if

Binary Taxonomy 117

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

possible. If that’s not an option, it is possible to run the tools on other plat-
forms, with varying degrees of difficulty.

Download the LiteDB Studio binary from https://github.com/mbdavid/
LiteDB.Studio/releases/download/v1.0.3/LiteDB.Studio.exe. You can use the
PE-Bear tool to view some of the properties of the assembly; download the
latest release from https://github.com/hasherezade/pe-bear/releases.

As the name suggests, PE-Bear parses and disassembles PE files, and
it even handles .NET assemblies. As well as the standard PE headers, you
should see a .NET Hdr tab in the main window, which corresponds to the as-
sembly manifest. Within that tab, you can view CLR-specific metadata such
as MajorRuntimeVersion, the virtual addresses, and the sizes of the other meta-
data streams, including Metadata (type metadata), Resources, and StrongName

Signature. The virtual address and size of StrongNameSignature are 0, which
means there is no strong name signature set for this assembly.

It’s important to note the .NET header starting in the .text section of
the PE file after the standard PE headers, which reinforces the fact that
.NET assemblies are actually an extension of the PE file format. If you check
the value of the .text raw address in the Section Hdrs tab, you’ll see that it
matches with the first offset in the .NET Hdr tab. However, you can’t ana-
lyze the .NET headers much further with PE-Bear.

Viewing the hex dumps of the Metadata or Resources streams reveals a few
familiar-looking strings and a lot of non-ASCII bytes. For example, the start
of the metadata table looks like this:

00000000 42 53 4a 42 01 00 01 00 00 00 00 00 0c 00 00 00 |BSJB............|

00000010 76 34 2e 30 2e 33 30 33 31 39 00 00 00 00 05 00 |v4.0.30319......|

00000020 6c 00 00 00 5c ba 02 00 23 53 74 72 69 6e 67 73 |l...\º..#Strings|

00000030 00 00 00 00 c8 ba 02 00 24 2b 02 00 23 55 53 00 |....Èº..$+..#US.|

00000040 ec e5 04 00 d6 3a 02 00 23 42 6c 6f 62 00 00 00 |ìå..Ö:..#Blob...|

00000050 c4 20 07 00 10 00 00 00 23 47 55 49 44 00 00 00 |Ä#GUID...|

00000060 d4 20 07 00 c8 4a 08 00 23 7e 00 00 00 49 6d 6d |Ô ..ÈJ..#~...Imm|

00000070 47 65 74 44 65 66 61 75 6c 74 49 4d 45 57 6e 64 |GetDefaultIMEWnd|

00000080 00 53 65 6e 64 4d 65 73 73 61 67 65 00 43 72 65 |.SendMessage.Cre|

These bytes need to be parsed in a manner specific to the .NET assem-
bly format. Rather than doing this manually, you can turn to tools that do it
for you. As mentioned previously, several different high-level programming
languages can compile to CIL, a bytecode language interpreted by the CLR.
CIL is an object-oriented and stack-based instruction set that is not depen-
dent on a specific processor. You can disassemble any .NET assembly into
CIL using the IL Disassembler tool that comes with Visual Studio.

If you haven’t already installed Visual Studio on Windows, install it with
the .NET Framework tools to access the IL Disassembler. Once installed,
you should be able to run it with ildasm.exe in the Visual Studio Developer
Command Prompt. As a quick test, compile the C# code in Listing 4-9 in
Visual Studio using the Console App (.NET Framework) template.

118 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/mbdavid/LiteDB.Studio/releases/download/v1.0.3/LiteDB.Studio.exe
https://github.com/mbdavid/LiteDB.Studio/releases/download/v1.0.3/LiteDB.Studio.exe
https://github.com/hasherezade/pe-bear/releases

Program.cs using System;

public class Hello

{

public static void Main(String[] args)

{

Console.WriteLine("Hello World!");

}

}

Listing 4-9: A sample .NET Framework program

Check the output pane in Visual Studio to determine the location of the
build output. Next, open the Visual Studio Developer Command Prompt
and disassemble the file with IL Disassembler:

> ildasm.exe /out=disassembled.il C:\repos\ConsoleApp1\ConsoleApp1\bin\Debug\

ConsoleApp1.exe

The disassembled CIL file should look similar to this truncated output:

// Metadata version: v4.0.30319

.assembly extern mscorlib ¶
{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 4:0:0:0

}

.assembly ConsoleApp1 ·
{

--snip--

}

.module ConsoleApp1.exe ¸
// MVID: {796768DC-788B-4A50-85E3-0615D98C7C6D}

.imagebase 0x00400000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS_CUI

.corflags 0x00020003 // ILONLY 32BITPREFERRED

// Image base: 0x00000274A3D40000

// =============== CLASS MEMBERS DECLARATION ===================

.class public auto ansi beforefieldinit Hello ¹
extends [System.Runtime]System.Object

{

.method public hidebysig static void Main(string[] args) cil managed º
{

Binary Taxonomy 119

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

.entrypoint

.custom instance void System.Runtime.CompilerServices.

NullableContextAttribute::.ctor(uint8) = (01 00 01 00 00)

// Code size 11 (0xb)

.maxstack 8

IL_0000: ldstr "Hello World!"

IL_0005: call void [System.Console]System.Console::

WriteLine(string)

IL_000a: ret

} // end of method Hello::Main

.method public hidebysig specialname rtspecialname »
instance void .ctor() cil managed

{

// Code size 7 (0x7)

.maxstack 8

IL_0000: ldarg.0

IL_0001: call instance void [System.Runtime]System.Object::.ctor()

IL_0006: ret

} // end of method Hello::.ctor

} // end of class Hello

The CIL starts with external assembly declarations ¶. Notice the use
of the .publickeytoken directive to uniquely identify imported assemblies by
their strong name and ensure the correct version is used. Next, the actual
assembly is declared ·. This is followed by the module declaration ¸, which
includes important attributes like the image base address and the applica-
tion environment.

The actual class declaration ¹ includes the method declaration for the
Main function you defined º and the implicit constructor method ». The
actual CIL instructions seem fairly straightforward, with operations such as
ldstr and call. However, as you progress to more complex applications, like
LiteDB Studio, it won’t be as easy to read this by yourself.

If you run ildasm.exe without the /out parameter, you’ll open a graphical
user interface that represents the assembly in a tree. This is too rudimentary
for extended reverse engineering. Instead, you can switch to ILSpy, an open
source .NET assembly decompiler. Download the latest installer at https://
github.com/icsharpcode/ILSpy/releases and open the LiteDB Studio .exe file
with it.

ILSpy automatically parses the .NET headers and outputs the informa-
tion in the initial screen when you load the assembly:

// C:\Users\Default\Downloads\LiteDB.Studio.exe

// LiteDB.Studio, Version=1.0.3.0, Culture=neutral, PublicKeyToken=null

// Global type: <Module>

// Entry point: LiteDB.Studio.Program.Main ¶
// Architecture: AnyCPU (32-bit preferred)

120 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/icsharpcode/ILSpy/releases
https://github.com/icsharpcode/ILSpy/releases

// Runtime: v4.0.30319

// Hash algorithm: SHA1

using System.Diagnostics;

using System.Reflection;

using System.Runtime.CompilerServices;

using System.Runtime.InteropServices;

using System.Runtime.Versioning;

[assembly: CompilationRelaxations(8)]

[assembly: RuntimeCompatibility(WrapNonExceptionThrows = true)]

[assembly: Debuggable(DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints)]

[assembly: AssemblyTitle("LiteDB.Studio")]

[assembly: AssemblyDescription("A GUI tool for LiteDB v5")]

[assembly: AssemblyConfiguration("")]

[assembly: AssemblyCompany("LiteDB")]

[assembly: AssemblyProduct("LiteDB.Studio")]

[assembly: AssemblyCopyright("MIT")]

[assembly: AssemblyTrademark("")]

[assembly: Guid("0002e0ff-c91f-4b8b-b29b-2a477e184408")]

[assembly: AssemblyFileVersion("1.0.3.0")]

[assembly: TargetFramework(".NETFramework,Version=v4.7.2", FrameworkDisplayName = ".NET

Framework 4.7.2")]

[assembly: ComVisible(false)]

[assembly: AssemblyVersion("1.0.3.0")]

A key piece of information here is the entry point ¶, which you can click
in ILSpy to bring you to the decompiled method.

One of the most useful features of ILSpy is the Analyze function, which
you can access by right-clicking any member name. This brings up a tree
containing the other members that use or are used by it, which is especially
useful for sink-to-source analysis. For example, if you identify LiteDB.Studio

.MainForm.ExecuteSql as a potential vulnerable sink, you can use the Analyze
feature to find out that it’s used by five other methods. You can then follow
the nested Used By tree until you reach a suitable ancestor.

Of course, you aren’t restricted to ILSpy’s user interface. You can also
right-click the assembly in the left sidebar and select Save Code to export
the decompiled source code. From there, you can run automated code analy-
sis tools or perform manual code review. You can also open the source code
in an IDE that will provide similar analysis tools to ILSpy. Other decompil-
ers, like JetBrains, dotPeek, and dnSpyEx, also come with debuggers to per-
form dynamic analysis of .NET assemblies.

Java Bytecode
Similar to the .NET Framework’s CIL, Java also uses an intermediate rep-
resentation that gets executed by a common runtime—in this case, the JVM
platform. Like CIL, Java bytecode uses a higher-level instruction set than

Binary Taxonomy 121

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

machine code, but unlike CIL, Java bytecode also uses registers in the form
of a local variable array. In practice, you’ll most often encounter Java bina-
ries distributed as Java Archive files with the .jar extension.

Like .NET assemblies, JAR files bundle together bytecode (Java class
files), resources, and metadata into a single file. However, while the PE for-
mat encapsulates the .NET assemblies, JAR files are simply ZIP files that can
be unpacked with any archive extraction program. This can make execut-
ing them a little less intuitive, as they must be run with the Java executable
instead of executing them directly.

You can observe some of the differences between CIL and Java bytecode
by adapting the “Hello World” sample program to Java, as in Listing 4-10.

Hello.java class Hello {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

Listing 4-10: A sample Java program

Install the Java Development Kit (JDK) and compile the program into a
Java class file before running it:

$ sudo apt install default-jdk

$ javac Hello.java

$ java Hello

Hello World!

Next, run Java’s built-in disassembler with flags to show all classes and
members along with some additional stack information:

$ javap -p -v Hello.class

Classfile Hello.class

Last modified 30 May 2023; size 416 bytes

SHA-256 checksum 4f0ee00df8e3ff6d3cdf8cac7ad765819369ee1602b15e9a2a2b67076fb36e44

Compiled from "Hello.java"

class Hello ¶
minor version: 0

major version: 63

flags: (0x0020) ACC_SUPER

this_class: #21 // Hello

super_class: #2 // java/lang/Object

interfaces: 0, fields: 0, methods: 2, attributes: 1

Constant pool: ·
#1 = Methodref #2.#3 // java/lang/Object."<init>":()V

#2 = Class #4 // java/lang/Object

#3 = NameAndType #5:#6 // "<init>":()V

#4 = Utf8 java/lang/Object

#5 = Utf8 <init>

#6 = Utf8 ()V

122 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

#7 = Fieldref #8.#9 // java/lang/System.out:Ljava/io/PrintStream;

#8 = Class #10 // java/lang/System

#9 = NameAndType #11:#12 // out:Ljava/io/PrintStream;

#10 = Utf8 java/lang/System

#11 = Utf8 out

#12 = Utf8 Ljava/io/PrintStream;

#13 = String #14 // Hello World!

#14 = Utf8 Hello World!

#15 = Methodref #16.#17 // java/io/PrintStream.println:(Ljava/lang/String;)V

#16 = Class #18 // java/io/PrintStream

#17 = NameAndType #19:#20 // println:(Ljava/lang/String;)V

#18 = Utf8 java/io/PrintStream

#19 = Utf8 println

#20 = Utf8 (Ljava/lang/String;)V

#21 = Class #22 // Hello

#22 = Utf8 Hello

#23 = Utf8 Code

#24 = Utf8 LineNumberTable

#25 = Utf8 main

#26 = Utf8 ([Ljava/lang/String;)V

#27 = Utf8 SourceFile

#28 = Utf8 Hello.java

{

Hello();

descriptor: ()V

flags: (0x0000)

Code:

stack=1, locals=1, args_size=1

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: return

LineNumberTable:

line 1: 0

public static void main(java.lang.String[]); ¸
descriptor: ([Ljava/lang/String;)V

flags: (0x0009) ACC_PUBLIC, ACC_STATIC

Code:

stack=2, locals=1, args_size=1

0: getstatic #7

3: ldc #13

5: invokevirtual #15

8: return

LineNumberTable:

line 3: 0

line 4: 8

Binary Taxonomy 123

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

}

SourceFile: "Hello.java"

Along with the actual bytecode instructions, the class file contains ad-
ditional information, including class metadata ¶, the constants pool ·, and
methods ¸.

By analyzing the metadata and the instructions, decompilers can ap-
proximate the original source code. Some information gets lost when com-
piling from source code to the intermediate representation, so decompiling
from the intermediate representation back to source code may not be an ex-
act match. For example, rather than importing variables from other classes,
an intermediate representation may include the resolved value of the vari-
able directly.

You can confirm this by reverse engineering Pixel Wheels, a top-down
racing game written in Java and distributed for Linux, macOS, Windows,
and Android. Download pixelwheels-0.24.2-linux64.zip from https://github
.com/agateau/pixelwheels/releases/tag/0.24.2. After unzipping it, you will find
the pixelwheels binary along with a pixelwheels.jar file. As in the PyInstaller
example we looked at earlier, simply running strings on the binary will give
you some big hints:

$ strings pixelwheels

--snip--

/lib/server/libjvm.so ¶
/lib/amd64/server/libjvm.so

/lib/i386/server/libjvm.so

JNI_GetDefaultJavaVMInitArgs

JNI_CreateJavaVM

/proc/self/exe

*Z4mainEUlSt8functionIFPvS0_EERK14JavaVMInitArgsE_

void sajson::value::assert_type(sajson::type) const

/storage/gitlab-runner/builds/HVzmC8hq/0/NimblyGames/packr/PackrLauncher/src/main/headers/

sajson.h ·
Error: failed to create Java VM!

There are several Java-related strings here that strongly suggest this bi-
nary may just be a wrapper around the JAR file ¶. In addition, there’s an
interesting reference to “PackrLauncher” ·, which a quick search reveals to
be a native executable packager for JAR files (https://github.com/libgdx/packr),
confirming that you should focus your efforts on the JAR file instead.

First, select a decompiler for the Java binary. There are several free or
open source options available, such as IntelliJ IDEA’s Fernflower, Procyon,
and JD-GUI. While Fernflower is more up to date than JD-GUI, the latter (as
the name suggests) comes with a user interface that allows you to quickly
explore relationships between the various classes and members, similar
to ILSpy. Fernflower and Procyon are command line tools, so you’ll need
to explore the output in a separate Java IDE (like IntelliJ IDEA) to get this
functionality.

124 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/agateau/pixelwheels/releases/tag/0.24.2
https://github.com/agateau/pixelwheels/releases/tag/0.24.2
https://github.com/libgdx/packr

For now, as you’re comparing only the output of the decompilers with
the original source code, you can use Fernflower. Get it by going to https://
mvnrepository.com/artifact/com.jetbrains.intellij.java/java-decompiler-engine, se-
lecting the latest release, then downloading the associated JAR file.

Place the decompiler JAR file (rename it to java-decompiler-engine.jar)
and pixelwheels.jar in the same directory, then perform the decompilation
with the following commands:

$ mkdir output

$ java -jar java-decompiler-engine.jar pixelwheels.jar output/

After a few seconds, a new pixelwheels.jar file will be created in the out-
put directory. Unzip it to get the decompiled source code.

It may be difficult to know where to start. There are multiple resource
files and directories, like musics, while Java files appear in different directo-
ries, such as com and javazoom.

A good place to begin is by checking the manifest file atMETA-INF/
MANIFEST.MF, which tells you that the main class is com.agateau.pixelwheels
.desktop.DesktopLauncher. This leads you to the matching Java source code file
at com/agateau/pixelwheels/desktop/DesktopLauncher.java. You now have a con-
venient entry point for your analysis of the decompiled source code.

The decompiled output matches quite closely with the original source
code, which you can retrieve from the release page. For example, other than
comments and extra whitespace, the only significant difference between the
two in DesktopLauncher.java is the use of imported constant values.

To observe how much information is lost when compiling to an inter-
mediate representation and subsequently decompiling it, take a look at the
original source code for DesktopLauncher.java. In particular, look at the code
for the setupLogging function, shown in Listing 4-11.

private static void setupLogging(PwGame game) {

String cacheDir = FileUtils.getDesktopCacheDir();

File file = new File(cacheDir);

if (!file.isDirectory() && !file.mkdirs()) {

System.err.println(

StringUtils.format(

"Can't create cache dir %s, won't be able to log to a file", cacheDir));

return;

}

String logFilePath = cacheDir + File.separator + Constants.LOG_FILENAME; ¶
LogFilePrinter printer = new LogFilePrinter(logFilePath, Constants.LOG_MAX_SIZE);

NLog.addPrinter(printer);

NLog.addPrinter(new SystemErrPrinter());

game.setLogExporter(new DesktopLogExporter(printer));

}

Listing 4-11: The original setupLogging code

Binary Taxonomy 125

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://mvnrepository.com/artifact/com.jetbrains.intellij.java/java-decompiler-engine
https://mvnrepository.com/artifact/com.jetbrains.intellij.java/java-decompiler-engine

In this original source code, Constants.LOG_FILENAME is imported and used
when constructing the logFilePath string ¶. Now take a look at the decom-
piled source code in Listing 4-12.

private static void setupLogging(PwGame game) {

String cacheDir = FileUtils.getDesktopCacheDir();

File file = new File(cacheDir);

if (!file.isDirectory() && !file.mkdirs()) {

System.err.println(StringUtils.format(

"Can't create cache dir %s, won't be able to log to a file", cacheDir));

} else {

String logFilePath = cacheDir + File.separator + "pixelwheels.log"; ¶
LogFilePrinter printer = new LogFilePrinter(logFilePath, 1048576L);

NLog.addPrinter(printer);

NLog.addPrinter(new SystemErrPrinter());

game.setLogExporter(new DesktopLogExporter(printer));

}

}

Listing 4-12: The decompiled setupLogging code

Instead of importing a variable from Constants, the code uses a string
literal, "pixelwheels.log" ¶. As part of the optimization process during com-
pilation to Java bytecode, it appears that the imported variable was resolved
and placed in the local constant pool. You can confirm this fact by decom-
piling com/agateau/pixelwheels/desktop/DesktopLauncher.class using javap:

private static void setupLogging(com.agateau.pixelwheels.PwGame);

descriptor: (Lcom/agateau/pixelwheels/PwGame;)V

flags: (0x000a) ACC_PRIVATE, ACC_STATIC

Code:

stack=6, locals=5, args_size=1

0: invokestatic #23

3: astore_1

4: new #24 // Class java/io/File

7: dup

8: aload_1

9: invokespecial #25 // Method java/io/File."<init>":

(Ljava/lang/String;)V

12: astore_2

13: aload_2

14: invokevirtual #26 // Method java/io/File.isDirectory:()Z

17: ifne 47

20: aload_2

21: invokevirtual #27 // Method java/io/File.mkdirs:()Z ¶
24: ifne 47

--snip--

126 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

64: ldc #38 // String pixelwheels.log ·
66: invokevirtual #35 // Method java/lang/StringBuilder.append:

(Ljava/lang/String;)Ljava/lang/

StringBuilder;

Without particular expertise in reading Java bytecode, you can still match
up the output to the original source code. For example, the File.mkdirs method
is invoked followed by an ifne condition jump instruction ¶, which corre-
sponds to the if-else conditional in the source code. Eventually, the constant

.log string is loaded onto the stack from the constant pool with ldc #38 ·,
meaning the string has index 38 in the pool, and called with the StringBuilder

.append method.
After decompiling the source code, you can analyze it by applying the

code review strategies you learned in the previous chapters, with the caveat
that you shouldn’t always take the decompiled output at face value. For ex-
ample, if you perform attack surface analysis on the code, you may notice
an interesting RemoteInput class in com/badlogic/gdx/input/RemoteInput.java
that opens the default port 8190. However, this code is not actually used
elsewhere in the application, possibly because the developer decided not to
enable the remote play feature.

Machine Code
Machine code is the lowest-level abstraction among the three binary cate-
gories explored in this chapter. Like binaries in general, even machine code
binaries are not created or compiled equally. Programming languages such
as C++, Golang, and Rust compile tomachine code in different ways, and
these differences can significantly affect the ease of reverse engineering them.

For now, instead of working with actual software written by other devel-
opers, you can explore these differences up close by tweaking various com-
piler settings yourself.

I’ve mentionedmachine code a few times, but what exactly is it?Machine
code consists of binary instructions that can be executed directly by the CPU
and are dependent on the CPU’s instruction set. An important point to re-
member is that machine code is not the same as assembly code. Assembly
code is a human-readable, or plaintext, representation of machine code.
Given the close relationship between machine code and assembly, you’ll of-
ten rely on assembly language to reverse engineer binaries that have been
compiled to machine code, since it’s no longer possible to decompile them
to the original source code files.

By matching common patterns in machine and assembly code, it’s pos-
sible to convert them to pseudocode, which is a higher-level approximation of
what the actual source code could have looked like. While pseudocode is a
best-guess estimate that can be very unreliable, for simple routines, it suf-
fices to guide your analysis.

Binary Taxonomy 127

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

To quickly compare machine code, assembly, and pseudocode, you can
analyze a “Hello World” program written in C:

hello-world.c #include <stdio.h>

int main() {

printf("hello world\n");

return 0;

}

First, compile this program with gcc:

$ gcc hello-world.c -o hello-world

Next, use the objdump -D <FILE> command in Linux (you can use otool

-tvV <FILE> in macOS or dumpbin /disasm <FILE> in Windows) to disassemble
the machine code:

$ gcc hello-world.c -o hello-world

$ objdump -D hello-world

hello-world: file format elf64-x86-64

--snip--

Disassembly of section .text:

0000000000400526 <main>:

400526: 55 push %rbp

400527: 48 89 e5 mov %rsp,%rbp

40052a: bf c4 05 40 00 mov $0x4005c4,%edi

40052f: e8 cc fe ff ff callq 400400 <puts@plt>

400534: b8 00 00 00 00 mov $0x0,%eax

400539: 5d pop %rbp

40053a: c3 retq

40053b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

The output may vary depending on the operating system and CPU ar-
chitecture you compiled the binary for. However, it should follow the same
pattern of the virtual address, the hex representation of the machine code,
and the corresponding assembly instruction.

Next, download and install the Ghidra software reverse engineering
framework from https://github.com/NationalSecurityAgency/ghidra or by run-
ning sudo apt-get install -y ghidra. Create a new project and analyze the
binary with the CodeBrowser tool. In the right-hand pane, CodeBrowser will
output the following pseudocode:

undefined8 main(void)

{

¶ puts("hello world");

128 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/NationalSecurityAgency/ghidra

return 0;

}

You may notice that instead of printf, the pseudocode uses puts ¶. This
is not a mistake by Ghidra; if you refer to the disassembled machine code,
the binary actually uses puts. This is a compiler optimization by gcc that au-
tomatically converts instances of printf to the less resource-intensive equiva-
lent puts (see https://github.com/gcc-mirror/gcc/blob/061c331/gcc/gimple-fold.c#
L3230 for the exact code that does this).

When reverse engineering such binaries, you’ll be toggling regularly be-
tween the text and graph views of assembly code and pseudocode. You’ll
also reference metadata, if any, that is sometimes compiled into these bina-
ries, depending on the compiler options.

In the next sections, we’ll quickly examine how different compilation
methods affect the difficulty of reverse-engineering machine code binaries.

Statically Linked
A statically linked binary is compiled with all the libraries it uses, instead of
loading external libraries from the system at runtime. There are several ad-
vantages and disadvantages to this approach. On one hand, it makes the bi-
nary portable, since it can be executed independently without depending
on external libraries to be installed on the operating system. On the other
hand, it creates a much larger binary because more machine code must be
included in the output.

You can test this with a Golang implementation of “Hello World,” since
Golang compiles statically linked binaries by default:

hello-world.go package main

import "fmt"

func main() {

fmt.Println("hello world")

}

Install Go and compile the program to a Linux x86-64 executable binary:

$ sudo apt install golang

$ GOARCH=amd64 GOOS=linux go build hello-world.go

$./hello-world

hello world

$ file hello-world

hello-world: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically

linked

The binary is statically linked. If you disassemble it with objdump, you’ll
get a large output because the binary contains the instructions for every sin-
gle imported function. Furthermore, if you try to list the dynamic symbol

Binary Taxonomy 129

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/gcc-mirror/gcc/blob/061c331/gcc/gimple-fold.c#L3230
https://github.com/gcc-mirror/gcc/blob/061c331/gcc/gimple-fold.c#L3230

table, you’ll get no results because there are no dynamically linked functions.
Instead, you need to dump the whole symbol table to get the statically linked
functions that are now part of the binary:

$ objdump -t hello-world

hello-world: file format elf64-x86-64

SYMBOL TABLE:

0000000000000000 l df *ABS* 0000000000000000 go.go

0000000000401000 l F .text 0000000000000000 runtime.text

00000000004021a0 l F .text 000000000000022d cmpbody

0000000000402400 l F .text 000000000000013e memeqbody

0000000000402580 l F .text 0000000000000117 indexbytebody

000000000045a760 l F .text 0000000000000040 gogo

000000000045a7a0 l F .text 0000000000000035 callRet

000000000045a7e0 l F .text 000000000000002f gosave_systemstack_switch

000000000045a820 l F .text 000000000000000d setg_gcc

--snip--

000000000047b9a0 g F .text 0000000000000042 fmt.glob..func1

000000000047ba00 g F .text 0000000000000092 fmt.newPrinter

000000000047baa0 g F .text 000000000000011a fmt.(*pp).free

000000000047bbc0 g F .text 000000000000010a fmt.(*pp).Write

000000000047bce0 g F .text 00000000000000e5 fmt.Fprintln

As well as fmt.Fprintln, many other Golang packages and functions are
included in the final binary. While the Golang linker attempts to remove
dead code and unused symbols, it still needs to statically link many fmt pack-
age functions. If you use the Ghidra CodeBrowser to generate pseudocode
for the main function, you’ll get something similar to the following:

void main.main(void)

{

long unaff_R14;

undefined local_18 [16];

while (&stack0x00000000 < *(undefined **)(ulong *)(unaff_R14 + 0x10) ||

&stack0x00000000 == *(undefined **)(ulong *)(unaff_R14 + 0x10)) {

runtime.morestack_noctxt.abi0();

}

local_18._8_8_ = &PTR_DAT_004b71c8;

local_18._0_8_ = &DAT_004893e0;

¶ fmt.Fprintln(1,1,&PTR_DAT_004b71c8,local_18);

return;

}

While the binary does the exact same thing as the C “Hello World” ex-
ample, the machine code produced by the Golang compiler is harder for
Ghidra to decipher. This is because Go binaries are compiled with the Go
runtime, which performs additional functions such as garbage collection

130 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

and stack management. Additionally, you may notice that the final output
includes fmt.Fprintln instead of Println ¶. This is because in the fmt package,
Println is a wrapper around the Fprintln function, so the compiler optimizes
it away, similar to what happened with printf and puts earlier.

Dynamically Linked
In contrast to statically linked binaries, dynamically linked binaries are com-
piled with information about the libraries they depend on, but not the ac-
tual libraries themselves. The operating system parses this information and
loads the libraries in memory at runtime. As a quick comparison, check the
dynamic symbol table for the C “Hello World” binary using the dynamic
symbol option:

$ objdump -T hello-world

hello-world: file format elf64-x86-64

DYNAMIC SYMBOL TABLE:

0000000000000000 DF *UND* 0000000000000000 GLIBC_2.2.5 puts

0000000000000000 DF *UND* 0000000000000000 GLIBC_2.2.5 __libc_start_main

0000000000000000 w D *UND* 0000000000000000 __gmon_start__

In Ghidra, you could click fmt.Fprintln to jump to the instructions for
the Fprintln implementation, and so on. Clicking puts leads to an artificial
“thunk function” that is meant to represent the externally loaded puts func-
tion at runtime:

0060103f ?? ??

//

// EXTERNAL

// NOTE: This block is artificial and allows ELF Relocations

// ram:00602000-ram:0060202f

//

thunk int puts(char * __s)

Thunked-Function: <EXTERNAL>::puts

int EAX:4 <RETURN>

char * RDI:8 __s

puts@@GLIBC_2.2.5

<EXTERNAL>::puts

Complex software often contains more than one binary, including mul-
tiple executables and libraries. As such, you may find yourself jumping be-
tween various files as you reverse engineer functions that are implemented
in one library and called in another library or executable.

Binary Taxonomy 131

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

Stripped
Sometimes, to save space or to even to obstruct reverse engineering, devel-
opers may opt to strip a binary of debugging-related information, includ-
ing the symbol table. With the Golang compiler, you can do so by passing
the -s flag (which omits symbol table and debug information) and the -w

flag (which omits the Debugging With Attributed Record Formats [DWARF]
symbol table) to the linker via the -ldflags option.

Compile the “Hello World” executable accordingly and note the output
when you try to dump the symbols:

$ GOARCH=amd64 GOOS=linux go build -ldflags="-s -w" -o stripped hello-world.go

$ objdump -t stripped

stripped: file format elf64-x86-64

SYMBOL TABLE:

no symbols

To see how this affects your reverse engineering process, analyze the
binary in the Ghidra CodeBrowser. CodeBrowser jumps to the default en-
try point that initializes the Go runtime instead of jumping straight to the
main function because it can no longer reference the symbol for the main

function. Stripped Golang binaries still include the actual function names
in a separate data structure, so it’s possible to restore the symbol names
using a script; however, this isn’t always an option for other programming
languages.

For now, you can quickly jump to the main function by going to the same
virtual address as the one for the main function in the unstripped binary.
Simply run objdump -t hello-world | grep main.main to get the virtual address,
then use the g keyboard shortcut in CodeBrowser and go to that address.
Other than the function names, both the assembly and the pseudocode
should match the unstripped binary.

In short, while stripped binaries can present a significant challenge to re-
verse engineering, it’s still possible to reconstruct the symbol names, either
with a script (depending on the compiler) or simply based on what the ma-
chine code does. The latter approach requires a good grasp of assembly and
the experience to quickly recognize common patterns in standard library
functions. Beyond that, you can also look out for logging or error messages
that provide more insight into what a particular function does or even con-
tain the name of the function.

Packed
To reduce the size of executables further, developers may sometimes use a
packer. Packers compress programs into self-contained executables that dy-
namically unpack, decompress, and execute the original files. The Ultimate

132 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

Packer for eXecutables (UPX) is a commonly used packer that you can down-
load from https://github.com/upx/upx/releases or install via various package
managers.

After downloading UPX, run it on the original Golang “Hello World”
binary with upx -o hello-world-packed hello-world. According to the output,
this achieves a rather impressive compression ratio of about 60 percent:

File size Ratio Format Name

-------------------- ------ ----------- -----------

1850090 -> 1146320 61.96% linux/amd64 hello-world-packed

Packed 1 file.

However, since the packed binary now runs the UPX decompression
routine before executing the actual instructions, it’s no longer possible to
analyze the original machine code directly.

The most important step in dealing with a packed binary is to first rec-
ognize that it has been packed. The next step is to identify which packer
was used. In the case of UPX, the initial instructions are well known, and
UPX helpfully includes the magic bytes 0x55505821 (“UPX!” in ASCII) in the
header. You can observe this in a simple hex dump of the packed binary:

> hexdump -C hello-world-packed | head -n 20

00000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 02 00 3e 00 01 00 00 00 08 33 5e 00 00 00 00 00 |..>......3^.....|

00000020 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |@...............|

00000030 00 00 00 00 40 00 38 00 03 00 00 00 00 00 00 00 |....@.8.........|

00000040 01 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00 |................|

00000050 00 00 40 00 00 00 00 00 00 00 40 00 00 00 00 00 |..@.......@.....|

00000060 00 10 00 00 00 00 00 00 d0 e7 15 00 00 00 00 00 |................|

00000070 00 10 00 00 00 00 00 00 01 00 00 00 05 00 00 00 |................|

00000080 00 00 00 00 00 00 00 00 00 f0 55 00 00 00 00 00 |..........U.....|

00000090 00 f0 55 00 00 00 00 00 e6 4d 08 00 00 00 00 00 |..U......M......|

000000a0 e6 4d 08 00 00 00 00 00 00 10 00 00 00 00 00 00 |.M..............|

000000b0 51 e5 74 64 06 00 00 00 00 00 00 00 00 00 00 00 |Q.td............|

000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

000000e0 08 00 00 00 00 00 00 00 4f 05 91 f3 55 50 58 21 |........O...UPX!|

000000f0 ec 0a 0e 16 00 00 00 00 ea 3a 1c 00 6a 6c 09 00 |.........:..jl..|

00000100 c8 01 00 00 9d 00 00 00 08 00 00 00 bb fb 20 ff |.............. .|

00000110 7f 45 4c 46 02 01 01 00 02 00 3e 00 1b 80 ed 45 |.ELF......>....E|

00000120 1f bf 5f da ed 40 2f c8 45 26 38 00 07 0a 17 00 |.._..@/.E&8.....|

00000130 03 3e d8 d7 de 00 06 1e 04 4f 40 00 40 0f 88 01 |.>.......O@.@...|

Fortunately, UPX allows you to easily unpack UPX-packed binaries via
the -d command line option (enter upx -d hello-world-packed to try it for
yourself). Some packers and obfuscators deploy techniques that make it
difficult to reverse engineer, such as encrypting data with randomized val-
ues, and may require you to dump the unpacked and decrypted bytes from

Binary Taxonomy 133

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

https://github.com/upx/upx/releases

memory or analyze the unpacking routine in detail. While you’ll encounter
this more commonly with malware, it helps to be prepared to recognize a
situation where a packer has been used and to know how to approach such
binaries.

Conclusion
In this chapter, you navigated a wide range of binaries across different cate-
gories, including scripts, intermediate representations, and machine code.
You also reverse engineered simple examples of each type with appropriate
tools and techniques.

As you target larger and more complex software, like firmware, you may
need to juggle multiple types of binaries. For example, an Android applica-
tion written in JavaScript (React Native) may call a native module compiled
from Java, which in turn can call C++ libraries via the Java Native Interface.
This is why it’s essential to build breadth rather than focusing too much on
techniques that may apply to only a small subset of binaries.

While this was hardly an exhaustive introduction to all the types of bi-
naries you’ll encounter, you should be able to generalize some of the ap-
proaches used regardless of the programming language or compilation. For
example, keep an eye out for sources of metadata that can help you analyze
the machine code more effectively or even decompile it to source code. Pay
attention to language- or compiler-specific quirks and optimizations that can
assist you in identifying function names and imports. Look for clues that a
developer has used a packer or obfuscator, identify the tool used, and read
the documentation to find out how to reverse it, if possible. These tips will
help you identify the most important or useful parts of the program to re-
verse engineer first, which is a topic the next chapter will explore in greater
detail.

134 Chapter 4

From Day Zero to Zero Day (Sample Chapter) © 01/27/2025 by Eugene Lim

