
In previous chapters, you’ve learned about 
several techniques that malware uses to 

establish context and better understand its 
current environment. When malware determines 

that it’s running in an analyst’s lab or in an otherwise 
hostile environment, it may take evasive measures, 
such as delaying its execution, creating decoys, or even 
actively impeding investigation efforts by interfering 
with the analyst’s tools. This chapter will focus on these 
and other methods that malware uses to hide from and 
circumvent analysis tools.

8
E V A D I N G  S A N D B O X E S  A N D 

D I S R U P T I N G  A N A LY S I S
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Self-Termination
A simple and effective way in which malware can avoid analysis is self-
termination. The malware can simply call Windows API functions such as 
TerminateProcess or ExitProcess to issue a “kill” command to its own process, 
like so:

is_vm = enumerate_reg_keys(keys)
if (is_vm)
{
    current_process = GetCurrentProcess()
    TerminateProcess(current_process, ...)
}

This malware pseudocode first calls its own internal enumerate_reg_keys 
function to enumerate some of the VM-related registry keys discussed 
in Chapter 4. (The details of the function aren’t shown here.) Next, if 
is_vm returns true, the malware requests a handle to its own process 
(GetCurrentProcess) and then terminates itself by calling TerminateProcess. 
The ExitProcess function can be used in the same way, with a few trivial dif-
ferences. Sometimes malware even calls both functions to ensure that it has 
successfully terminated.

This technique is especially effective against automated sandboxes, 
which can’t monitor the behavior of a malware sample that has terminated 
itself. However, a sandbox could flag the function itself or detect that the 
sample terminated itself too soon. This approach can also be effective 
against a malware analyst interacting with the sample manually, as the ana-
lyst will have to walk backward through the code in a debugger or disassem-
bler to determine how and why the malware terminated itself.

When you’re analyzing a malware sample that’s using this technique, 
setting a debugger breakpoint on ExitProcess and TerminateProcess may help 
you catch the malware before it has a chance to kill itself. This will allow 
you to inspect the call stack and the code leading up to the process termi-
nation, and hopefully to identify what caused it. Keep in mind, however, 
that these API functions might also be called during a crash, so the mal-
ware may not be invoking them directly for evasion purposes.

Delayed Execution
Imagine a typical automated malware analysis sandbox environment. This 
environment will boot up on demand, detonate a malware sample, monitor 
the malware’s behaviors for a few minutes (depending on how the sandbox 
is configured), and then shut down. But what if the malware delays its own 
execution to “time out” the sandbox analysis process? For example, perhaps 
the malware executes a sleep routine in which it lies dormant for several 
minutes, outlasting the short life of the sandbox environment. It’s not 
unheard of for advanced malware to delay its execution for hours or even 
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weeks at a time. This is an effective method of evading sandboxes and frus-
trating malware analysts’ efforts.

Sleep Function Calls
Perhaps the most common form of delayed execution is malware simply 
invoking the Sleep function from the Windows API. Sleep, as well as its 
cousin, SleepEx, takes a parameter that represents the sleep time in milli-
seconds. The following assembly code shows a snippet of a malware sample 
calling the Sleep function:

push 493E0h ; 5 minutes
call Sleep

In this case, the 493E0h parameter passed to Sleep is the time in hexa-
decimal, representing 300,000 milliseconds, or 5 minutes.

N O T E  For more information on the Sleep function and how malware can use it, see 
Chapter 7.

To bypass this technique, you could put a breakpoint on Sleep and 
SleepEx function calls and then modify the dwMilliseconds parameter passed 
to it. Alternatively, you could nop out these Sleep instructions or jump over 
them in a debugger. These aren’t always foolproof solutions, however; 
advanced malware may calculate the system time before and after the calls 
to Sleep to verify that the Sleep function executed correctly! Lastly, many 
modern sandboxes can intercept calls to Sleep and modify them, dramati-
cally lowering the sample’s total sleep time.

Timeouts
Malware can take a less traditional route to delay its execution by using 
Windows utilities, such as ping.exe, to cause a timeout. This approach often 
works better than the sleep method, since it’s more difficult for sandboxes 
to interfere with. Another advantage is that it may confuse the analysis 
process, as the malware analyst must figure out why the malware sample is 
invoking a certain application.

In the following code snippet, a malware sample is executing ping.exe 
to ping Google 1,000 times. Depending on the network connection speed, 
this could create a long delay or even cause the sandbox to time out and 
stop analysis:

push eax ; "ping.exe google .com -n 1000"
push 0;
call CreateProcessA

Malware can also call the timeout.exe Windows tool, which is typically 
used in batch scripts to pause command processing, in order to delay execu-
tion. Be on the lookout for malware invoking these types of tools. Use code 
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analysis and debugging to understand why the malware might be executing 
this behavior.

Time and Logic Bombs
In a time bomb, the malware sets a specific time, such as a certain date or 
time of day, for when it will execute. For example, a malware sample may 
contain embedded code that executes only at 9 AM every morning, once 
every Saturday, or on December 26, 2024, at 5:55 PM. Unless the sandbox 
or malware analyst manually sets the date or time to trick the malware into 
running, the sample won’t execute its malicious code.

Similar to a time bomb, in a logic bomb, the malware executes after 
a specific event (such as a certain file deletion or database transaction) 
has occurred on the host. Logic bombs may be even more effective than 
time bombs, since they can be very specific to the malware’s operating 
environment.

The following simplified pseudocode demonstrates a time bomb tech-
nique in which the malware sample gets the current system date and com-
pares it to a hardcoded date (in this case, 2024):

--snip--
GetSystemTime(&systemTime)

if (systemTime.wYear <=  '2024') {
    KillSelf()
}

If the malware determines that the current date is 2024 or earlier, it will 
fail to execute.

Sometimes a sandbox can identify whether malware is using these tech-
niques, but they often fly under the radar. The best way to identify time and 
logic bombs is code analysis. Inspecting the malware sample in a disassem-
bler or debugger may uncover the time, date, or logic that the malware is 
looking for. Once you identify this, you can simply set your analysis system 
time to match it or try to re-create the logic. Alternatively, you could modify 
the malware’s code in a disassembler or debugger to bypass these checks.

It’s important to note that, besides being used for evasion, time bomb 
techniques are used to control the malware’s spread. Malware may be pro-
grammed to not execute after a specific date or time in order to better con-
trol it or otherwise limit its lifetime.

Dummy Code and Infinite Loops
Some malware authors introduce dummy code into their malware that loops, 
possibly infinitely, calling CPU-intensive functions or functions that serve 
no purpose other than to time out the analysis. The dummy code usually 
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runs once the malware has detected a sandbox or VM environment. The 
following assembly code example shows what that might look like:

loop:
inc ecx
cmp ecx,ecx
je loop

In this basic for loop, the value of ecx is incremented by 1 and then 
compared to itself. If it’s equal to itself (hint: it will be), the loop repeats. 
This simple code will stall the malware’s execution indefinitely, or at least 
until the sandbox terminates or the malware analyst becomes frustrated 
and kills the process.

Similarly, some malware repeatedly calls Windows API functions to 
stall analysis. For example, it might call RegEnumKey to enumerate the host’s 
entire registry, which will take a significant amount of time. Alternatively, 
the malware sample might repeatedly call LoadLibrary on nonexistent librar-
ies. While writing this book, I analyzed a Dridex banking trojan sample 
that executes GetProcAddress over five million times to resolve addresses of 
functions it never uses (see Figure 8-1). This stalls analysis, uses up valuable 
sandbox memory and CPU resources, and sometimes results in a crash.

Figure 8-1: Delaying analysis by repeatedly executing GetProcAddress

Dridex has also been known to execute OutputDebugString in an infi-
nite loop, which has the same effect as the GetProcAddress approach. The 
OutputDebugString function will be discussed in more detail in Chapter 10. 
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PERSIS T ENCE MECH A NISMS FOR DEL AY ING E X ECU T ION

Oftentimes, malware attempts to establish persistence on the victim host in 
order to “survive” system shutdowns and reboots, but persistence is also a great 
delayed-execution tactic . Malware can configure a persistence mechanism 
in the form of a scheduled task on the victim host to execute its payload only 
after a certain event or amount of time . Chapter 15 will discuss several ways to 
achieve persistence .

Forcing Reboots and Logouts
Forcing a system shutdown, reboot, or logout can be an effective method 
of evasion, especially in sandboxes. It will promptly halt all analysis efforts, 
at least until the host is back up. Most modern sandboxes are able to deal 
with this, however, and if the sandbox senses a shutdown or logout has 
been issued, it will simply continue analysis after the machine is back up. 
But this can still negatively affect the malware analysis process. In the case 
of reboots, for example, artifacts that were once in memory may now be 
destroyed.

Malware can force a reboot or shutdown by invoking functions such 
as InitiateShutdown, InitiateSystemShutdown, and InitiateSystemShutdownEx. All 
three functions operate similarly and take a few key arguments, such as 
an option specifying whether to shut down or reboot the host, as well as 
a timeout value representing the duration between the function call and 
the reboot or shutdown. Another API function that malware might use is 
ExitWindows (or its sibling, ExitWindowsEx), which adds the option to log out 
the user, rather than simply rebooting or shutting down the host. Finally, 
the system can also be shut down using WMI, PowerShell, or the built-in 
Windows shutdown.exe tool.

Malware often uses this technique after it has established persistence, at 
which point it forces a reboot and then runs its actual payload. In this way, 
it successfully evades certain automated analysis sandboxes and confuses 
(or at least annoys) malware analysts trying to investigate the sample.

Decoys and Noise
Some malware authors take advantage of the fact that sandboxes operate in 
a predictable way. For example, sandboxes must capture a large amount of 
data to understand and assess a malware sample’s behaviors, and malware 
can exploit this by generating lots of noisy or decoy data that can quickly 
overwhelm a sandbox or hamper analysis. This section covers a few differ-
ent ways in which malware can do this.
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API Hammering
When a sandbox detonates a malware sample, it logs the malware’s behav-
iors and function calls. API hammering involves calling the same function 
many times (in some cases, hundreds of thousands of times) to quickly fill 
up the sandbox logs and flood the analysis environment with useless data. 
As a result, the sandbox may be unable to successfully analyze the sample 
due to too much noise and a full log. Furthermore, malware samples using 
API-hammering techniques will take a lot longer to fully execute in a 
sandbox since its logging behaviors introduce extra overhead. If the same 
sample were executed on a normal end-user system, it would execute much 
more quickly.

Nearly any Windows API function can be abused for this purpose. Two 
I’ve seen are printf (a C function that prints characters to the calling appli-
cation) and TlsGetValue. The malware sample shown in Figure 8-2 called the 
TlsGetValue function over 30,000 times in a row!

Figure 8-2: Malware using API hammering by calling  
TlsGetValue multiple times

The malware families Nymaim and Trickbot both employ API-
hammering techniques, as described in blog posts from Joe Security 
(https://www .joesecurity .org). At least one Nymaim variant makes over half a 
million benign Windows API function calls if the sample detects that it’s 
running in a VM or sandbox environment! As you can imagine, this gener-
ates an enormous amount of data in a sandbox log. Some sandboxes, unable 
to handle that volume of data, would likely terminate the analysis early.

Many modern sandboxes can detect API hammering, however, and will 
flag such behavior as suspicious or even stop logging the questionable func-
tion altogether. A sandbox might also modify the running malware sample’s 
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behavior or take other actions to prevent API hammering from interfering 
with analysis. But if left undetected, API hammering can severely impact 
the sandbox’s ability to assess the malware.

Unnecessary Process Spawning
Like API hammering, unnecessary process spawning is a technique used to 
overwhelm sandboxes and malware analysts. The malware sample shown in 
Figure 8-3 spawns several hundred processes, all named <xxxx>.tmp, to hide 
its true activity.

Figure 8-3: Malware spawning a large number of  
“dummy” processes

Because of the staggering number of processes the malware creates, 
it’s difficult for the analyst to identify which ones are worth investigating. 
Sandboxes may also be overwhelmed by all the data.

Decoy Network Communication
Some malware variants send fake or decoy network traffic to attempt to 
conceal the real malicious traffic. One malware family, Formbook, is well 
known for using this technique. Formbook connects to a randomized list 
of several decoy web addresses and one actual command and control (C2) 
address, which can confuse analysts and sandboxes. In some cases, these 
decoy addresses are real domains that can lead the malware analyst down 
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the wrong paths during the investigation. Figure 8-4 shows Formbook con-
necting to multiple decoy C2 addresses using normal HTTP GET requests.

Figure 8-4: Formbook connecting to decoy C2 addresses

As you can see, all of the traffic looks almost identical, but only one of 
these connections is for the real C2 server.

N O T E  You can download the Formbook malware from VirusTotal or MalShare using the 
following file hash:

SHA256: 08ef1473879e6e8197f1eadfe3e51a9dbdc9c892e442b57a3186a64ecc9d1e41

Anti-hooking
Many malware analysis sandboxes and tools use API hooking, or simply hook-
ing, to analyze malware behavior. This involves injecting a piece of code, 
called a hook, into the malware’s memory space. The hook then intercepts 
API function calls, redirects them to a different function or modifies their 
behavior, and passes them on to the original function. This hook is often a 
module, typically in the form of a DLL, that then monitors the sample as it 
runs (see Figure 8-5).

Hooked
malware

. . .
Call API()

. . .

DLL
(Example: 
user32.dll)

. . .
Jump to hooked 

code()
. . .

Return

Sandbox
hooking DLL

Hooked code()
. . .

Jump back()

Figure 8-5: A sandbox hooking a running malware process
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In this example, a sandbox has hooked the running malware’s process 
(hooked malware) via DLL injection (the sandbox hooking DLL). The 
sandbox modifies the first few bytes of the function it’s hooking (inside 
user32.dll) and inserts a jump (jmp) instruction. Now any calls to the func-
tion in the user32.dll library will jump to the hook code in the sandbox 
hooking DLL. The installed hook allows the sandbox to intercept and 
monitor function calls and potentially modify the function call parameters 
or return values.

To implement a hook, the sandbox agent inserts a jump statement into 
the beginning of a function it wishes to hook. The following assembly code 
excerpt shows the first few bytes of the ReadFile function after it has been 
hooked by a sandbox:

0x77000000  jmp hook_code
0x77000005  // Start of real ReadFile code

In this hooked code, the inserted jump statement will ensure that when 
the malware calls the ReadFile function, the execution flow will transfer to 
the sandbox hook code (hook_code) before executing the real ReadFile code. 
This type of hook is called inline hooking. Sandboxes use a technique called 
process injection to inject inline hooks into target processes. We’ll discuss 
injection and various types of hooking in more detail in Chapter 12.

Some analysis tools, such as API Monitor and certain debugger plug-ins, 
use hooks for similar purposes. One example is the popular tool ScyllaHide, 
which can be used to circumvent anti-debugging techniques in malware. 
(Chapter 10 will cover ScyllaHide in greater detail.) In this section, we’ll  
dig deeper into some of the ways in which malware can detect and circum-
vent hooking and monitoring.

Hook Detection
Before executing, malware will likely try to detect whether it’s being hooked 
by a sandbox or an analysis tool by scanning its own memory for these 
injected hooking modules. In Chapter 7, you saw how malware can call 
functions such as Module32First and Module32Next to enumerate its loaded 
modules. For hook detection, the malware sample may keep track of which 
modules it will load, so if it enumerates its loaded modules and notices an 
anomalous loaded module, it may assume that it’s being hooked or other-
wise monitored.

Before executing its target function, malware can check whether a 
sandbox has modified that function’s code in an attempt to hook it. In 
order to accomplish this, the malware invokes either ReadProcessMemory or 
NtReadVirtualMemory to read the memory where the suspect function resides, 
and then it inspects the first few bytes of the function. The malware will be 
on the lookout for anomalous jump instructions that have been inserted 
into the beginning of the function in question, a sure sign of hooking, as 
the following pseudocode illustrates:
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handle = GetModuleHandle("ntdll.dll")
functionAddress = GetProcAddress(handle, "NtAllocateVirtualMemory")

ReadProcessMemory(GetCurrentProcess(), functionAddress, buffer, bufferSize, &bytesRead)

if (buffer[0] == 0xE9)
    {
         // Function hooked
           return true
    }

This malware’s code first obtains a handle for ntdll.dll and the address 
for NtAllocateVirtualMemory. The code then invokes ReadProcessMemory to 
inspect the first byte of the NtAllocateVirtualMemory function. If the first byte 
is a jump instruction (hex E9), then the malware assumes that NtAllocate 
VirtualMemory is hooked and that it’s being monitored by a sandbox or analy-
sis tool.

We’ll come back to this technique in a moment in “Performing Unaligned 
Function Calls” on page 140.

Hook Removal (Unhooking)
After detecting a hook, the malware sample can attempt to remove it by 
restoring the original data. There are a few ways in which malware can 
attempt to do this.

First, malware can manually unload any suspicious modules (injected 
hooking DLLs) that it determines have been loaded into its process address 
space. Once it detects an anomalous module, it can call the FreeLibrary 
function. FreeLibrary takes as a parameter the handle of the library module 
the malware wishes to unload.

A possibly better way for malware to accomplish this unhooking is by 
manually reloading Windows libraries that appear to be hooked. Malware 
can scan its loaded libraries for signs of a hooking module, and once it 
detects a hook, it can unload that DLL (using a function such as FreeLibrary) 
and then reload the fresh, unhooked library from disk. This effectively 
removes any function hooks installed by the sandbox or analysis tool.

Alternatively, once the malware detects that a function is hooked, it 
can simply rewrite the original code into the function, replacing the jump 
to the hooking code. To unhook an inline hook, the malware can simply 
remove the hooked bytes of the function (the jump statement) or overwrite 
them with something else, as the following pseudocode demonstrates:

handle = GetModuleHandle("ntdll.dll")
functionAddress = GetProcAddress(handle, "NtAllocateVirtualMemory")

VirtualProtect(functionAddress, size, PAGE_EXECUTE_READWRITE, &oldProtect)
memcpy(functionAddress, "\x4c\x8b\xd1\xb8", 4)

VirtualProtect(functionAddress, size, oldProtect, &newOldProtect)
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In this code, the malware gets the address (GetProcAddress) of the library 
and function it wishes to unhook (in this case, NtAllocateVirtualMemory), then 
calls VirtualProtect to prepare the function for modification by giving it 
execute, read, and write permissions. Then, the malware copies (memcpy) the 
four bytes (\x4c\x8b\xd1\xb8) to the beginning of the target function’s code. 
These bytes are the standard, unhooked, original bytes that would reside 
in the target function before they were hooked by the sandbox. Finally, the 
malware calls VirtualProtect again to change the memory permissions back 
to what they originally were.

Some sandboxes are aware that malware can try to unhook their 
installed function hooks and will be on the lookout for this. Similar to 
how malware scans its process memory for signs of hooking, sandboxes 
can periodically check whether their hooks are still in place and, if not, 
replace them. Or, sandboxes may monitor malware unhooking behaviors, 
such as by monitoring calls to ReadProcessMemory, WriteProcessMemory, memcpy, 
FreeLibrary, and others.

Next, let’s discuss a subtler approach that malware can take to get 
around sandbox hooks: hook circumvention.

Hook Circumvention
As opposed to hook removal, hook circumvention bypasses or prevents hook-
ing altogether. Examples of hook circumvention techniques include calling 
Windows functions in abnormal ways and manually loading code libraries 
(thus sidestepping the normal library-loading process). Since some sand-
boxes can detect whether their hooks are removed or altered, these meth-
ods can be less noisy and more difficult to detect.

Performing Unaligned Function Calls

In unaligned function calling, the malware indirectly calls functions by 
jumping over the sandbox hooking code, effectively skipping it entirely. 
Normally, malware will call a Windows API function, such as ReadFile, by 
using a call instruction (call ReadFile). This instruction will jump to the 
beginning of ReadFile (inside the kernel32.dll module) and execute this 
code. If the ReadFile function is hooked by a sandbox, however, the hooking 
code will be executed first, as discussed earlier in this chapter. In the fol-
lowing code, a hook has been injected into this function:

0x77000000  jmp hook_code
0x77000005  // Start of real ReadFile code

To implement an unaligned function call, the malware can directly 
jump to the 0x77000005 address by executing the instruction jmp 0x77000005 
(or adding 5 bytes to the base address, as in jmp 0x77000000 + 0x5), rather 
than calling ReadFile normally. This will skip the hooking jmp statement at 
0x77000000 and directly execute the real ReadFile code starting at 0x77000005.

One caveat here is that the malware must explicitly specify the func-
tion address, meaning it must know that address beforehand. One way the 
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malware can obtain the address is by calling GetProcAddress, as shown in this 
simplified assembly code:

--snip--
call GetProcAddress
mov  address, eax
cmp  [address], 0E9h
je   skip_hook
--snip--
skip_hook:
lea  eax, [address+5]
jmp  eax

The malware sample calls GetProcAddress to get the address of its desired 
target function, and it then stores that value in address (mov address, eax). 
The address points to the beginning of the function, where the malware is 
checking for hooks. Next, the malware compares the code at this address 
to the hex value 0E9h (one of the assembly opcodes for jmp). If this opcode 
exists, the code jumps to the skip_hook function, which adds 5 bytes to the 
address of the target function and stores the pointer to this final address  
in EAX (lea eax, [address+5]). Finally, the code jumps to this new address 
(jmp eax), bypassing the hook.

Calling Low-Level and Uncommon Functions

To circumvent hooking behaviors in sandboxes and analysis tools, some 
malware invokes lower-level Native API calls, attempting to avoid the more 
commonly hooked higher-level calls. For example, malware can call the 
NtProtectVirtualMemory function directly, rather than calling VirtualProtect in 
an attempt to bypass any hooks on the latter.

Alternatively, malware can even make direct syscalls into the kernel, 
bypassing the normal WinAPI calling procedures. (We discussed syscalls in 
Chapter 1.) Some sandboxes may not monitor direct calls into the kernel, 
and that can leave blind spots in the analysis reports from these sandboxes. 
As this is also a technique used to circumvent endpoint defenses, we’ll 
return to this topic in detail in Chapter 13.

Since automated sandboxes and some malware analysis tools hook or 
monitor the common Windows functions, malware may also use uncom-
mon functions as a hook circumvention tactic. The Windows API contains 
a huge number of functions that cover nearly every task a program could 
want to complete, so inevitably, there are rarely used and near-duplicate 
functions. For example, the SHEnumKeyEx function is very similar to RegEnumKey 
and can also be used to enumerate registry keys, but it’s far less commonly 
used. Thus, SHEnumKeyEx may receive less attention from automated sand-
boxes and analysts and may go unnoticed when used by malware to thwart 
hooking attempts.

Unfortunately, providing a list of all of these lesser-used functions is 
impossible since the Windows API is so extensive. However, it’s important 
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to keep this tactic in mind when investigating malware and researching any 
API calls you’re unfamiliar with.

SOCKE T S

Most modern Windows applications use higher-level network communication 
libraries such as WinINet (Wininet.dll), WinHTTP (Winhttp.dll), and URLMon 
(Urlmon.dll) . These are also some of the internet communication libraries most 
commonly loaded by malware; in fact, most of the malware examples through-
out this book use these libraries . The primary benefit of these libraries for mal-
ware authors is their ease of use and simple implementation .

That said, some malware uses the lower-level library Winsock instead . 
With Winsock, malware authors have greater flexibility in the way they craft 
and manipulate their network connections . Additionally, because they oper-
ate at a lower level than the previously mentioned libraries, Winsock functions 
may fly under the radar of analysis tools like web proxies, and analysts can 
therefore miss some malware behaviors . The following pseudocode dem-
onstrates how a malware sample might create a socket and send data to a 
remote server:

int sock = socket("AF_INET", 1, 6);
int connect(sock, *sockaddr, length);
send(sock, *data , strlen(*data) , 0 );

In this basic example, the malware sample creates a socket (sock) with 
parameters specifying that it should use IPv4 (AF_INET), connection-based byte 
streams (1), and the TCP protocol (6) . Next, the malware attempts to connect to 
a remote server (connect), specifying sock and a pointer to the sockaddr table, 
which contains information about the remote service, such as the hostname and 
TCP port number . Finally, the malware sends data (send) to the remote server, 
specifying a pointer to data, which contains the data that the malware wishes 
to send to the remote server .

The details of sockets and how they work are beyond the scope of this 
book . For more information on sockets and all their possible parameters, 
MSDN is a great resource .

Manually Loading Libraries and Calling Functions

Malware can also manually load Windows libraries, rather than relying on 
the standard Windows loader. As you may recall from Chapter 1, the stan-
dard way in which Windows applications load libraries is by using functions 
such as LoadLibrary. The LoadLibrary function maps the requested library 
into memory, making for a quick and simple loading process, with the OS 
doing all the heavy lifting. The downside to this simplicity is that sandboxes 
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and other analysis tools can easily implement hooks within this library to 
intercept function calls.

To circumvent this, malware can manually map the library file into its 
process address space by using NtMapViewOfSection, as shown in this simpli-
fied pseudocode:

file_name = "C:\Windows\System32\Ntdll.dll"
NtCreateFile(file_handle, ..., file_name, ...)
NtCreateSection(section_handle, ..., file_handle)
NtMapViewOfSection(section_handle, process_handle, ...)

In this example, the malware uses NtCreateFile to get a handle to the 
file C:\Windows\System32\Ntdll.dll, which is the library it wishes to load. Next, 
the malware creates a section object using NtCreateSection and references the 
previously obtained file handle. A section object is a section of memory that 
can be shared with other processes, and it provides a method of mapping 
a file into this area of memory. After the section object is created, the mal-
ware maps the ntdll.dll file into it using NtMapViewOfSection. The process_handle 
variable represents the target process into which the file will be mapped. In 
this case, it’s the malware’s own process.

Another similar method is to read the file from disk, rather than 
mapping it into memory. To read ntdll.dll from disk, the malware can call 
ReadFile (or NtReadFile) and pass the target filename as a parameter. With 
either of these methods, once the library is mapped or read into memory, 
the malware can execute its intended functions by jumping to or calling 
the addresses in the target library. Note that these methods would not be 
effective “out of the box” and would require some additional work from the 
malware, such as properly locating the offsets of the functions within the 
DLL it wishes to call.

Writing Custom Functions

Finally, malware authors may choose to rewrite Windows functions entirely 
and include them in their malware samples to avoid hooking. This is often 
the most difficult hook circumvention technique to implement; many fac-
tors come into play, and the modified function must work perfectly with the 
victim host’s operating system. It’s quite rare to see this malware approach 
in practice.

Anti-hooking Toolsets
There are also tools written specifically for anti-hooking purposes. One 
example is the appropriately named anticuckoo project (https://github.com/
therealdreg/anticuckoo), which detects potential sandbox hooking by using 
various methods. Additionally, the tool allows users to exploit the sandbox by 
modifying the hooked function’s code and possibly causing a memory stack 
corruption, thus causing the sandbox to crash. This project doesn’t seem to 
be maintained anymore, but it’s a good example of research on the topic of 
sandbox anti-hooking. For additional information on this technique, read 
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the informative blog post “Prevalent Threats Targeting Cuckoo Sandbox 
Detection and Our Mitigation” at https://www.fortinet.com/blog/threat-research /
prevalent-threats-targeting-cuckoo-sandbox-detection-and-our-mitigation.

Malware analysis is a cat-and-mouse game. Offensive-security researchers 
and malware authors consistently come up with new ways to detect and cir-
cumvent hooking, so malware analysts and sandbox developers must adapt. 
For example, the Cuckoo sandbox authors implemented several anti-anti-
hooking techniques, such as preventing hooks from being overwritten by 
restricting memory protection modification. Many other commercial sand-
boxes have implemented similar functionalities.

Circumventing Sandbox Analysis
Because they’re automated, sandboxes are susceptible to evasion tactics 
at the meta level, by which I mean the level of the sandbox product itself, 
not its implementation or the underlying OS. For example, certain sand-
boxes have a size limit on submitted files, so malware authors can simply 
artificially increase the size of the malware file to circumvent them. Other 
sandboxes can’t process certain file types or scripts. It’s becoming more 
common for malicious files to be delivered via email in an encrypted state, 
with the decryption password in the text of the email. An end user may 
happily enter this password, decrypt the file, and run the malware, but a 
sandbox has a much more difficult time with this!

Also, some sandboxes have trouble monitoring certain file types. At the 
time of this writing, many commercial and open source sandboxes don’t 
fully support Microsoft .NET, which is a cross-platform development frame-
work for Windows. Since .NET implements its own functions that differ 
from the native Windows and NT API functions, these sandboxes may miss 
important details about the malware’s behaviors and functionalities.

These are just a few examples, and there are many other methods of 
tricking sandboxes into not executing the malware at all. Keep this in mind 
when analyzing malware in an automated sandbox, and always be on the 
lookout for the evasion techniques listed here. It’s also important to properly 
evaluate a sandbox product to ensure it fits your needs before you deploy it in 
your environment.

Disrupting Manual Investigation
The techniques discussed in this chapter so far have focused on evading 
sandboxes, but malware can also directly interfere with manual analysis. 
For example, Chapter 4 described how malware can enumerate the pro-
cesses running on a host so that it can detect a sandbox environment, a VM, 
or analysis tooling. However, along with detecting these tools, some mal-
ware can actively terminate them.
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To terminate a target process, malware can iterate through the process 
tree by using CreateToolhelp32Snapshot, Process32First, and Process32Next, 
as you saw in Chapter 4. The malware can then call OpenProcess to obtain 
a handle to a victim process, followed by TerminateProcess. The following 
assembly code example demonstrates how a malware sample might termi-
nate a remote process:

--snip--
push    [ebp+dwProcessId] ; PID of "wireshark.exe"
push    0  ; bInheritHandle
push    0x1  ; dwDesiredAccess
call    OpenProcess
mov     [ebp+ProcessHandle], eax
xor     eax, eax
--snip--
push    [ebp+ProcessHandle]
call    TerminateProcess

In this code snippet, the malware calls OpenProcess with parameters 
representing the processID of the target process (wireshark.exe, in this case), 
the InheritHandle value (which isn’t important here), and the dwDesiredAccess 
value (the process access rights that the malware’s process is requesting). 
In this case, the malware is requesting access rights 1 (0x1 in hex), which 
equates to PROCESS_TERMINATE and allows a calling process (the malware) to 
terminate another process (wireshark.exe). Wireshark is, of course, just an 
example here. Malware can query and terminate any process if it has the 
correct permissions to do so.

N O T E  Sometimes renaming a malware analysis tool’s executable file before launching it  
will trick simple malware that’s employing this method. For example, renaming  
wireshark.exe to krahseriw.exe might prevent malware from “seeing” this process, 
thus preventing its termination. This solution won’t work in all cases, however.

Another tactic malware can use is disorienting the analyst. One  
interesting malware sample I’ve investigated creates a directory under  
C:\Users\<user>\AppData\Local\Temp. The malware names the directory a ran-
domly generated number (for example, 21335493) and writes temporary 
files that are necessary to its functionalities into it. In order to protect the 
directory, the malware constantly enumerates all open windows, looking 
specifically for windows that reference this temporary directory name, and 
issues a “kill” request for the window if there’s a match.

Here’s a simplified pseudocode example of this technique in action:

windows[] = EnumWindows()
for (i = 0; i < windows[].length; i++) {
    window_text = GetWindowText(windows[i])
    if (windows_text == "21335493") {
        PostMessage(windows[i], WM_CLOSE)
    }
}



146   Chapter 8

This malware sample uses EnumWindows to enumerate all desktop win-
dows and then loops through all the window title text, using GetWindowText, 
to look for 21335493. If the code finds a window containing this text, the 
malware calls the PostMessage function with the WM_CLOSE parameter, forcing 
that window to close. Now, if the malware analyst tries to open the 21335493 
temporary directory in, say, Explorer, it will be closed automatically before 
the analyst can inspect its contents.

These two examples only scratch the surface. Starting in Chapter 10, 
I’ll discuss other interesting measures that malware authors can implement 
in their code to confuse and impede manual analysis.

Hypervisor Exploits and VM Escaping
The last technique we’ll cover in this chapter may be the ultimate sand-
box and VM evasion move: exploiting the hypervisor itself or escaping it 
entirely. While it’s rarely seen in malware, there have been occasional uses 
of this technique in the wild, as well as the odd vulnerability discovered 
in products such as VMware and VirtualBox. One notable example is 
Cloudburst, an exploit developed in 2009 by Immunity Inc. that affected 
certain versions of VMware hypervisors. Playing a specially crafted video 
file on the Windows VM would exploit a flaw in VMware’s display functions 
and possibly allow code to execute on the host OS itself.

Most known hypervisor vulnerabilities don’t directly allow code execu-
tion on the host, meaning that complete “escape” from the sandbox envi-
ronment is unlikely. For example, some of these vulnerabilities allow for 
writing files to the host or possibly reading files from the host, but they 
won’t allow malicious files or code to be executed on the host. In addition, 
at the time of this writing, all of these discovered and reported vulner-
abilities have been patched by their respective hypervisor vendors. As long 
as you, the malware analyst, are detonating malware on an updated and 
patched hypervisor, your host system is theoretically safe.

N O T E  I say “theoretically” here because there’s always the possibility of zero-day vulnerabili-
ties and unknown, unreported bugs in hypervisor code that malware could poten-
tially exploit. There’s always a risk when you’re analyzing malware, but I believe any 
risk is outweighed by the benefits. In Appendix A, we’ll discuss a few steps you can 
take to ensure you’re working in the safest environment possible.

Evasion Countermeasures
As mentioned earlier, there’s a cat-and-mouse game between malware 
authors and malware researchers: authors invent a novel technique for 
detecting or bypassing analyst tools and sandboxes, and analysts and 
defensive-security researchers adapt. A great example of this is how far 
automated-analysis sandboxes have come. Many modern sandboxes have 
implemented countermeasures for the detection and evasion tactics men-
tioned throughout the past few chapters.
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Sandboxes can alert malware analysts to detection and evasion attempts, 
providing a window into the malware internals and enabling the analysts to 
respond appropriately. You can manually circumvent many such techniques 
by attaching the process to a debugger, setting breakpoints on interesting 
function calls, and modifying the malware’s code in the debugger itself or 
in a disassembler. These function calls can be nop’ed out, jumped over, or 
modified (by manipulating the function parameters or return values, as 
Chapter 3 explained). Finally, many of the techniques can be circumvented 
by properly configuring your VM and hypervisor. I’ll discuss how to do so 
in Appendix A.

Summary
This chapter gave you an overview of the methods that malware might use 
to evade sandboxes, VM environments, and analysis tooling when it detects 
that it’s being monitored. In Part III, you’ll build on some of this knowledge 
as we begin to explore how malware uses anti-reversing techniques to inter-
fere with disassemblers, detect and evade dynamic code analysis tools like 
debuggers, and misdirect malware analysts.




