
®Kyle Cucci

®

E V A S I V E
M A LW A R E

A F i e l d G u i d e t o D e t e c t i n g ,
A n a l y z i n g , a n d D e f e a t i n g

A d v a n c e d T h r e a t s

by Kyle Cucci

San Francisco

[E]

EVASIVE MALWARE. Copyright © 2024 by Kyle Cucci.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0326-7 (print)
ISBN-13: 978-1-7185-0327-4 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www​.nostarch​.com; info@nostarch​.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Sydney Cromwell
Developmental Editor: Rachel Monaghan
Cover Illustrator: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Thomas Roccia
Copyeditor: Doug McNair
Proofreader: Audrey Doyle

Library of Congress Cataloging-in-Publication Data

Names: Cucci, Kyle, author.
Title: Evasive malware : understanding deceptive and self-defending threats
 / Kyle Cucci.
Identifiers: LCCN 2024001989 (print) | LCCN 2024001990 (ebook) | ISBN
 9781718503267 (paperback) | ISBN 9781718503274 (ebook)
Subjects: LCSH: Malware (Computer software) | Computer security.
Classification: LCC QA76.76.C68 C83 2024 (print) | LCC QA76.76.C68
 (ebook) | DDC 005.8/8--dc23/eng/20240830
LC record available at https://lccn.loc.gov/2024001989
LC ebook record available at https://lccn.loc.gov/2024001990

For customer service inquiries, please contact info@nostarch​.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch​.com. For permission to translate this work:
rights@nostarch​.com. To report counterfeit copies or piracy: counterfeit@nostarch​.com. The authorized
representative in the EU for product safety and compliance is EU Compliance Partner, Pärnu mnt. 139b
-14, 11317 Tallinn, Estonia, hello@eucompliancepartner.com, +3375690241.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

About the Author
Kyle Cucci has been hooked on computers since building a PC and buying a
C++ book as a teenager. He has over 17 years of diverse experience in cyber-
security and IT, and he is currently part of Proofpoint’s Threat Research
team, with a day-to-day focus on hunting and reverse-engineering malware.
Previously, Kyle led the malware research and forensic investigations team
at a large global financial institution. Throughout his career, Kyle’s threat
intelligence contributions and research have been featured in government
intelligence reports and security tools and products. Kyle regularly speaks
at security conferences and has led international trainings and workshops
on topics such as malware analysis and security engineering. In his free
time, Kyle enjoys contributing to the community via open source tooling
and blogging, spending quiet time with his family, and brewing acceptably
drinkable beer.

About the Technical Reviewer
Thomas Roccia (aka @fr0gger_) is a seasoned threat researcher who has
worked on complex malware cases and investigations around the world,
ranging from cybercrime to nation-state level outbreaks. Thomas has
worked with top tech companies, including McAfee and Microsoft, where
he gained a broad spectrum of knowledge on different malware types
and techniques across the entire kill chain, from destructive malware and
ransomware to targeting industrial systems and advanced malware frame-
works used for intelligence gathering and espionage. Thomas founded the
Unprotect Project in 2015, the most extensive database dedicated to mal-
ware evasion techniques, which is a community-driven project and used
by thousands of researchers. He has shared his knowledge as a speaker at
major conferences, including BlackHat, BSides, and SANS Summits, as
well as via his website, Security Break (https://security break.io).

Building an analysis lab is a critical part of
malware analysis, and this is doubly true

when it comes to highly evasive and context-
aware malware. A well-tuned analysis environ-

ment makes the tricky task of analyzing and reversing
this type of malware a bit easier. In this chapter, I’ll
walk you through creating a basic malware analysis
lab environment, provide some configuration tips for
concealing your hypervisor and virtual machines from
malware, and share a few tricks you can use during the
analysis process.

APPENDIX A
B U I L D I N G A N A N T I - E V A S I O N

A N A LY S I S L A B

388 Appendix A

Lab Architecture
Malware analysis lab environments contain various virtual machines, soft-
ware, and other tools that support the analysis process. Lab environments
will likely include some or all of the components illustrated in Figure A-1.

Host
machine

Victim VM
(Windows 7)

Services VM
(Windows)

Services VM
(Linux)

Victim VM
(Windows 10)

Virtual network

Hypervisor

Figure A-1: A typical malware analysis lab environment

Let’s go through each in turn.

The Host Machine
Your host machine consists of one or more computers that contain and run
your malware analysis VMs. It’s generally smart to select an operating sys-
tem for your host that differs from the operating system of the malware
you’ll primarily be analyzing. For example, in this book, I’ve focused on
Windows malware, so I’d choose Linux or macOS as my host operating
system. The reason for this is simple: if the malware you’re analyzing were
to escape the Windows VM environment (unlikely, but still a risk), having a
different operating system on your host would mean that the malware likely
wouldn’t be able to infect it.

The Hypervisor
The second most important component of a malware analysis lab is the
hypervisor. Essentially, a hypervisor allocates the host computer’s resources
(processing power, memory, storage, and so on) to a virtual operating sys-
tem and its applications (the VM). Hypervisors can run multiple VMs at a
time while ensuring that they don’t interfere with one another.

Most hypervisors can take a snapshot, which is an image of a VM in a
particular state and is an important part of malware analysis. After you
configure your VMs, remember to take a “clean,” preinfection snapshot;
this will be your starting point before detonating the malware. You can
even take snapshots during malware execution at key points in the analysis
process. For example, you may wish to take snapshots of your VM while

Building an Anti-evasion Analysis Lab 389

debugging a malware executable. If the debugger crashes or the malware is
using anti-debugging techniques, you can simply revert to a previous snap-
shot as necessary. Snapshots can also be reverted to their original state after
you’ve finished your analysis. We’ll revisit snapshots later in this chapter.

Two of the most popular hypervisors for both Windows and Linux are
VirtualBox and VMware Workstation. We’ll return to them in a moment.

Victim Windows VMs
When working with malware that targets Windows, you should dedicate
one or more Windows VMs as the “victim” hosts where you’ll execute mal-
ware and monitor its behaviors. (For malware that targets Linux or macOS,
you’d need the equivalent.) Because some malware targets specific versions
of Windows, it’s wise to keep different configurations of VMs. For example,
I use both Windows 7 and Windows 10 VMs, and I keep various versions of
software (such as Microsoft Office) installed on them. Note that you should
not primarily rely on Windows 7 for malware analysis; as it is now quite
dated, it may be missing files and libraries that modern malware depends on!

The malware analysis and research community has very generously
provided many handy, free, and open source tools for setting up your victim
machines.

Services Windows VMs
As its name suggests, the “services” Windows VM hosts services that may
be used to support your malware analysis processes. Examples include
Active Directory services (to simulate an AD domain), Server Message Block
(SMB) and file-sharing services, chat services (such as IRC), and database
servers. If the malware sample you’re analyzing is attempting to communi-
cate with other services on the network, it won’t hurt to install these services
to see how the malware interacts with them. This component of the lab
isn’t a strict requirement, however, and you may be able to get by without it;
it all depends on the capabilities of the malware and what you’re trying to
achieve in your analysis. You can even simulate some of these services using
a network simulation tool such as INetSim, FakeDNS, or FakeNet, as we’ll
briefly discuss later.

Linux VMs
Even when you’re dealing with malware that targets Windows, it’s a good idea
to have a Linux VM handy. Linux has many command line tools that can
save you a lot of time and effort. It can also serve as a network gateway for the
Windows victim VMs by monitoring and faking network services. There are
even a few prebuilt Linux malware analysis environments. Remnux (https://
remnux​.org) includes nearly all of the tools you’ll ever need for malware
analysis on Linux. Alternatives to Remnux include SANS SIFT Workstation
(https://www​.sans​.org​/tools​/sift​-workstation​/) and Tsurugi Linux (https://
tsurugi​-linux​.org), but note that these also focus on general forensics and

390 Appendix A

incident response tasks. Finally, Security Onion (https://securityonionsolutions​
.com​/software) is a preconfigured VM image specializing in network traffic
analysis and monitoring. It can also be a great addition to your malware
analysis toolbox.

Now that you have a basic understanding of what makes up an analysis
lab, it’s time to build your own!

Building Your Lab
This section walks you through setting up a basic malware analysis lab con-
sisting of a host machine with a hypervisor, a Windows victim VM, and a
Linux VM. There are simply too many variations of host OS and hypervisor
for me to cover them all, so this lab assumes your host operating system is
a variant of Linux, such as Ubuntu, and your hypervisor is either VMware
Workstation or Oracle VirtualBox. The following steps should also work for
a Windows or macOS host, but keep in mind that there may be slight differ-
ences you’ll need to adjust for.

Choosing a Hypervisor
Your choice of hypervisor will largely depend on the operating system of
your host machine and the resources available to you. Here are some of the
most popular hypervisors:

Oracle VirtualBox

VirtualBox (https://www​.virtualbox​.org) is a feature-rich hypervisor that is
free for noncommercial use. It includes most of the features that more
costly hypervisors have, and it is supported on Windows, Linux, and
macOS environments.

VMware Workstation

VMware Workstation (https://www​.vmware​.com​/products​/workstation​-pro​
.html) has a large set of features and can be installed in a Windows
or Linux host environment. It requires you to purchase a license, but
VMware provides a free 30-day trial.

VMware Fusion

VMware Fusion (https://www​.vmware​.com​/products​/fusion​.html) is the
dedicated VMware hypervisor for macOS. It is very similar to VMware
Workstation and also requires a license.

Microsoft Hyper-V

Hyper-V (https://learn​.microsoft​.com​/en​-us​/virtualization​/hyper​-v​-on​-windows/​
about/) is a good, free hypervisor for Windows hosts. It can run Windows
VMs as well as some Linux-based VMs.

KVM (Kernel-based Virtual Machine)

KVM (https://linux​-kvm​.org) is an open source hypervisor for Linux host
environments.

Building an Anti-evasion Analysis Lab 391

As paid products, VMware Workstation and VMware Fusion have a
few additional features that free or open source hypervisors may not have.
However, in my experience, VirtualBox is completely suitable for malware
analysis, and I don’t find myself missing any features while using it.

After you’ve selected your hypervisor, you’ll need to download and
install it. For VirtualBox, you can find the latest build of the hypervisor for
your operating system, as well as further installation instructions, at https://
www​.virtualbox​.org​/wiki​/Downloads. To download a trial version of VMware
Workstation, go to https://www​.vmware​.com​/products​/workstation​-pro​/workstation​
-pro​-evaluation​.html.

After installing the hypervisor on your host operating system, you’ll
need to verify a few settings.

Verifying Hypervisor Network Settings
To implement networking in your VMs later, you need to inspect the
VirtualBox hypervisor network settings first. In VirtualBox, navigate to
FileHost Network Manager.

If no networks are listed here, click Create to make one. You can simply
use the default settings (set the IPv4 Address to 192.168.56.1, the network
mask to 255.255.255.0, and so on), but in the DHCP Server tab, make sure
Enable Server is checked.

If you don’t see a network listed in the VirtualBox Host Network Manager
and you get an error such as “Error: VBoxNetAdpCtl: Error while adding
new interface: failed to open /dev/vboxnetctl: No such file or directory”
when you try to create one, try exiting VirtualBox, executing the following
command in a terminal, and then restarting VirtualBox:

> sudo modprobe vboxnetadp

If you’re using the VMware Workstation hypervisor, nothing special is
required in terms of network settings, and you can move on to the next step:
downloading and installing Windows on your VM.

Obtaining a Windows Image
To build the Windows victim VM, you’ll need a copy of Windows 7, 10, or 11,
but I’ll use Windows 10 as an example going forward since it’s my first
choice for malware analysis. You may already have a copy and license for
Windows lying around. If not, you can get an ISO image file of Windows 10
from https://www​.microsoft​.com​/en​-us​/software​-download​/windows10ISO. Simply
select the version of Windows you want to download, such as Windows 10
(Multi-edition ISO), and select Confirm.

Next, you’ll select the language of the Windows installation file you
want to download, as well as the architecture (either 64-bit or 32-bit). You’ll
want the 64-bit version unless you’ll explicitly be investigating 32-bit mal-
ware, which is unlikely. Set the Windows ISO file aside; you’ll need it later.

392 Appendix A

Creating the Windows Victim VM
Now you’ll create your Windows VM inside your chosen hypervisor. I’ll start
with VirtualBox. Later, I’ll discuss the same sequence of steps for VMware
Workstation.

N O T E 	 The following instructions include a sequence of menus in the hypervisor. The steps
will likely change slightly depending on the version of the hypervisor you’re using. If
you’re missing a certain configuration window or your window appears different from
what’s described here, the specific configuration will likely show up in another win-
dow later in the VM creation process.

Creating a VM in VirtualBox

If you’ve selected VirtualBox as your hypervisor, start the program and
select MachineNew, then specify the name of the VM and the location
where it will be stored on disk. Also specify the Type and Version of the
operating system you’re installing. For our purposes, it should be Microsoft
Windows and Windows 10 (64-bit), respectively. Click Next.

Next, you’ll need to configure some basic settings of the VM. Set the
Memory Size to 4,096MB (which equates to 4GB) or higher. Evasive mal-
ware often uses memory size detection as an anti-VM technique, so it’s
important to set this value as high as you can (4GB is typically plenty). This
also will boost the VM performance. Then, select Create a Virtual Hard
Disk Now under the Hard Disk settings and click Next.

To configure the VM disk image, set a File Size of at least 80GB. Ensure
that VDI is selected under Hard Disk File Type and that Dynamically
Allocated is selected under Storage on Physical Hard Disk. Click Create.

You should be able to see and select your new VM in the Oracle VM
VirtualBox Manager screen, as shown in Figure A-2.

Figure A-2: Your new VirtualBox VM in the Oracle VM VirtualBox Manager

Now we’ll cover these same steps in VMware Workstation.

Building an Anti-evasion Analysis Lab 393

Creating a VM in VMware Workstation

To create a new VM in VMware Workstation, navigate to FileNew Virtual
Machine. You should see the New Virtual Machine Wizard dialog. Under
Virtual Machine Configuration, select Typical (Recommended) and then
click Next.

VMware Workstation should prompt you to select how to install the
operating system. Choose Use ISO Image and browse for the Windows 10
ISO you previously downloaded. Then, click Next.

Now you’ll need to configure some basic Windows installation settings.
Leave the Windows Product Key field empty (unless you have a product key
to enter). For Version of Windows to Install, select the appropriate Windows
version (for this example, Windows 10 Pro). In the Personalize Windows
field, enter your username (and optionally a password) for your new
Windows installation. Then, click Next.

Next, you’ll need to specify the name of your new VM as well as the
location where it and all of its files should be stored. After configuring
these settings, click Next.

To configure the VM disk, set the disk size to at least 80GB and then
select either Store Virtual Disk as Single File or Split Virtual Disk into
Multiple Files. This choice is strictly based on personal preference. I prefer
the latter option because it’s easier to transfer smaller VM files to another
hard disk or USB drive than it is to transfer one massive file. Once you’ve
made your selection, click Next.

Finally, you should see a screen showing an overview of the settings for
the new VM. In a bit, we’ll customize this VM. For now, be sure to deselect
Automatically Power on This Virtual Machine After Creation and then
click Finish to create the VM.

Installing Windows in Your VM

Now that you’ve created your VM in your chosen hypervisor, you’re ready
to install Windows. To start this installation process, first you’ll need to
point the VM to the Windows installer image (the ISO file you downloaded
previously).

If you’re using VMware Workstation and you followed along with the
previous instructions, the ISO is already loaded into the VM and ready to
go! For VirtualBox, you’ll need to right-click your VM and select Settings
and then Storage. Next, select the CD icon both under Storage Devices and
in the Optical Drive drop-down menu under Attributes (see Figure A-3),
navigate to the Windows ISO file on your disk, and click OK to save the
configuration.

394 Appendix A

Figure A-3: Adding the Windows installer ISO to the VirtualBox VM

To begin the Windows installation sequence, boot up the VM. To do
this in VirtualBox, right-click your VM, mouse over Start, and then select
Normal Start. In VMware Workstation, right-click your VM, mouse over
Power, and click Start Up Guest. The ISO file should load and kick off the
Windows installation process.

The Windows installation process takes roughly 20–40 minutes. If you
need help completing the Windows 10 installation steps, there are many
resources online, such as at https://answers​.microsoft​.com.

Once you’ve completed the installation, shut down your VM and remove
the Windows ISO from it. (Some versions of VirtualBox and VMware
Workstation remove it automatically.) For VirtualBox, you can remove the
ISO image much like you added it: in the VM’s Storage settings, right-click
the ISO image and select Remove Disk from Virtual Drive. For VMware
Workstation, simply make sure Connect at Power On is unchecked in the
VM’s CD/DVD settings.

Tuning VM Settings for Concealment and Isolation
Next, you’ll do some basic configuration and tuning to help limit the VM’s
footprint, making it more difficult for evasive malware to detect that it is
running inside a VM. Isolating the VM from the host operating system is
also a safety measure to better protect the host during malware analysis.
These settings are typically very easy to implement and quite effective, so
don’t disregard them.

Memory and Processors

To address malware trying to detect a VM through CPU and memory enu-
meration, set your VM memory as high as possible (4GB at minimum) and
use at least two processors. This may trick the malware into thinking it’s
executing in a non-VM environment.

Building an Anti-evasion Analysis Lab 395

In VirtualBox, to modify the memory, go to SettingsSystem​
Motherboard. To modify the CPU settings, navigate to SettingsSystem​
Processor.

To access the memory settings in VMware, go to SettingsMemory.
For the CPU settings, go to SettingsProcessors.

Another benefit of assigning more CPU power and memory to your
analysis VMs is performance. The “beefier” your analysis VMs, the better
they perform during malware analysis, especially given that some malware
analysis tools use a lot of system resources. Keep in mind that evasive mal-
ware uses several techniques to interfere with analysis sandboxes and VMs
based on system performance and resources, such as API hammering (cov-
ered in Chapter 8).

Hard Disk Size

Checking the hard disk size is one of the oldest, simplest, and most com-
mon techniques malware uses to detect a VM. VMs are notorious for hav-
ing small hard drives, so assign your virtual disk drive at least 60GB of
space. Typically, I assign 80GB or more. If you followed the VirtualBox
and VMware Workstation VM creation instructions earlier in this chapter,
you’ve already done this step.

To check your virtual disk drive storage space in VirtualBox, go to
SettingsStorage. In VMware, go to SettingsHard Disk.

You can extend the hard disk size of a VM retroactively, but it’s gener-
ally best to configure hard disk size when you create the VM.

Display Settings and Acceleration

Features supporting 3D acceleration add performance enhancements
to a VM, but they may expose the hypervisor to certain malware. To
protect against detection, disable these options. In VirtualBox, navi-
gate to SettingsDisplay and on the Screen tab, make sure Enable 3D
Acceleration isn’t selected.

In VMware, navigate to SettingsDisplay and deselect Accelerate 3D
Graphics.

USB Controller Settings

Some malware attempts to enumerate the USB controller on the system.
If the system is using outdated USB drivers (such as version 1.0 or 2.0,
as opposed to the newer 3.0 drivers), the malware might assume it’s run-
ning in an analysis machine. To configure this setting, in VirtualBox go
to SettingsUSB, and in VMware Workstation go to SettingsUSB
Controller.

Network Adapter Configurations

A critical part of malware analysis in a VM is understanding and properly
utilizing the right VM network configuration for the task at hand. There

396 Appendix A

are different types of network configurations you can assign to your analysis
lab VMs, but these are some of the most important modes:

Not Attached

The Not Attached mode in VirtualBox (for VMware Workstation, this
setting is a checkbox labeled Connect at Power On, which must be
unchecked) essentially switches off networking for the VM. The VM
will be completely isolated from any networks, unable to communicate
with other VMs, the local host’s network, or the internet. This is the
safest option for analyzing malware. However, modern evasive malware
expects some sort of network connection, so it may not execute fully (or
at all) while the VM is in this mode. For this reason, I won’t discuss this
mode further in this chapter.

Host-Only

The Host-Only connection is a private network that is shared with the
host operating system. In this configuration, the VM won’t have access to
the internet. It will, however, have network access to the host and other
VMs running on the host. This option is a good middle ground between
safety and effectiveness, especially when you’re using another VM con-
figured as a network gateway, as we’ll explore later in this chapter.

Bridged and NAT

In both Bridged and Network Address Translation (NAT) modes, the
VM is connected to the host’s local network, allowing it to access the
internet and other network resources. In Bridged mode, the VM has its
own IP address separate from the host. In NAT mode, the VM shares the
host’s IP address and can’t be reached directly from the local network.
The most important point here is that the VM (and any running mal-
ware!) is able to reach out to the internet. NAT mode provides a bit of
extra security, so I use this mode if I need my VM to have internet access.

As a rule of thumb, I nearly always keep my analysis VMs in Host-Only
mode. I use a Linux VM as a network gateway for the Windows victim VM to
fake an internet connection, which we’ll talk about more later. However, as
described in Chapter 6, an increasingly common anti-VM and anti-sandbox
technique is for malware to attempt to contact a remote server to determine
whether the VM is connected to the internet. Some malware might also
download modules or payloads from an attacker-controlled server, and you
can miss this activity if the analysis environment is isolated. In these special
cases, it makes sense to put your VM in NAT or Bridged mode. Just be cog-
nizant of the risks of connecting live malware to the internet. For example,
the malware may be able to steal data from your VM (such as from your
clipboard or any virtual shared drives) or even add your VM to a botnet, in
which case your VM may be used without your permission to commit crime.

To configure your VM’s network adapter in VirtualBox, navigate
to SettingsNetwork, and on the Adapter 1 tab, make sure Enable
Network Adapter is checked. Then, in the Attached To drop-down menu,
change the VM network adapter to Host-only Adapter, NAT, or Bridged,

Building an Anti-evasion Analysis Lab 397

depending on your needs (see Figure A-4). For now, select NAT or Bridged
mode, as you’ll need access to the internet in a moment.

Figure A-4: Configuring your VM’s network adapter in VirtualBox

If you’re unable to set the network adapter to NAT, you may need to
first configure a NAT network in VirtualBox. To do this, navigate to File​
PreferencesNetwork and click +.

To configure the network adapter in VMware Workstation, navigate
to VM SettingsHardwareNetwork Adapter and select the network
connection type you require (see Figure A-5). For now, select NAT or
Bridged mode.

Figure A-5: Configuring your VM’s network adapter in VMware Workstation

MAC Addresses

Also listed under the network configuration options are MAC address set-
tings. Hypervisors often use standard MAC address ranges for their virtual
network adapters. For example, VirtualBox may use the MAC address pre-
fixes 00:00:7D, 00:01:5D, 00:0F:4B, 00:10:E0, 00:14:4F, 00:21:28, 00:21:F6,
08:00:27, or 52:54:00. VMware may use the prefixes 00:05:69, 00:0C:29,
00:1C:14, or 00:50:56.

398 Appendix A

To circumvent MAC address–based VM detection, simply change the
default MAC address of your VM to a different prefix.

N O T E 	 For a fairly complete list of MAC address prefixes you can use, see https://gist​
.github​.com​/aallan​/b4bb86db86079509e6159810ae9bd3e4. Ideally, select a
MAC address that corresponds to a well-known network adapter manufacturer.

To change your MAC address in VirtualBox, navigate to Settings​
Network. On the Adapter 1 tab, click the arrow next to Advanced and then
enter the new address in the MAC Address field (see Figure A-6).

Figure A-6: Network adapter settings in VirtualBox

For VMware, navigate to SettingsNetwork AdapterAdvanced and
enter the new address in the MAC Address field (Figure A-7).

Figure A-7: Network adapter settings in VMware

Building an Anti-evasion Analysis Lab 399

In both VirtualBox and VMware, you can generate a random MAC
address simply by clicking the refresh symbol (VirtualBox) or Generate
(VMware), next to the MAC Address field. The generated random addresses
are still within the normal hypervisor address range, however, so it’s best to
set this manually with a new prefix in order to avoid detection.

Clipboard and Drag-and-Drop Settings

Some hypervisors (including VMware Workstation and VirtualBox) allow
clipboard sharing between host and guest systems. This means you can
copy data from your host machine and paste it into your guest VM, and
vice versa. This feature may be convenient, but it carries some risk. When
clipboard sharing is enabled, any data in your host system’s clipboard is
theoretically available to your guest VM. If you copy sensitive data (such as
a password) into your clipboard on your host machine, malware running in
the guest VM may be able to access it. Likewise, the malware could use the
clipboard to write data to the host system or exploit potential vulnerabilities
in the hypervisor. This scenario is unlikely but still possible.

Drag-and-drop features allow you to drag (copy) files from your host
machine to your guest VM, and vice versa. Much like clipboard sharing, this
could expose your host machine to more risk than necessary, depending
on the nature of the malware you’re analyzing. Enable these features only if
absolutely required.

To turn off clipboard and file drag-and-drop settings in VirtualBox,
navigate to SettingsGeneralAdvanced and select Disabled in the
Shared Clipboard and Drag’n’Drop drop-down menus (see Figure A-8).

Figure A-8: The clipboard and drag-and-drop settings in VirtualBox

In VMware, navigate to SettingsOptionsGuest Isolation, as shown
in Figure A-9.

Figure A-9: The clipboard and drag-and-drop settings in VMware

400 Appendix A

In this menu, disable drag-and-drop and clipboard sharing by deselect-
ing the Enable drag and drop and Enable copy and paste options.

Shared Folders

Shared folders allow easy sharing of files from guest to host operating sys-
tem. Keep in mind, however, that malware will also have access to whatever
is in your shared folder. (I learned this the hard way.) Enable shared folders
only if necessary; if you must use them, set them to “read only” as a mini-
mum precaution.

You can find shared folder settings in VirtualBox (see Figure A-10) by
going to SettingsShared Folders.

Figure A-10: Shared folder settings in VirtualBox

To add a shared folder in VirtualBox, click the icon of a folder with the
plus sign (+) on the right side of the menu. You can also edit a shared folder
configuration by double-clicking the shared folder under Machine Folders.
To remove a shared folder, click the icon of a folder with the (X) sign.

In VMware, shared folder settings are also under Settings  Shared
Folders (see Figure A-11).

Figure A-11: Shared folder settings in VMware

You can add and edit shared folders from this menu. To disable shared
folders, select Disabled under Folder Sharing.

Building an Anti-evasion Analysis Lab 401

N O T E 	 Clipboard sharing, drag-and-drop settings, and shared folders are functional only if
you have the optional VirtualBox Guest Additions or VMware Tools installed in your
VM. We’ll discuss these tools later in this chapter.

Installing Windows Malware Analysis Tools
You should now have a functioning Windows VM that is already tuned to
be quite resistant to many basic VM detection and evasion techniques. This
alone isn’t sufficient for your malware analysis journey, however; you’ll also
need analysis tools. I recommend downloading and installing FLARE-VM
(https://www​.mandiant​.com​/resources​/blog​/flare​-vm​-the​-windows​-malware), a fully
configured malware analysis environment from Mandiant. It includes
a series of scripts that prepares Windows for malware analysis tasks by
downloading and installing many useful tools. It’s not a requirement to
install FLARE-VM, but it can save you a lot of time. To download and install
FLARE-VM, boot up your Windows VM and carefully follow the installation
steps from the README at https://github​.com​/mandiant​/flare​-vm.

If you choose not to install FLARE-VM, you should at least take the fol-
lowing measures to prepare your malware analysis environment:

	 1.	Disable Windows updates. Typically you won’t want your malware anal-
ysis environment to receive regular Windows updates, so it’s a good idea
to disable them. For instructions, see https://www​.windowscentral​.com​/how​
-stop​-updates​-installing​-automatically​-windows​-10. Keep in mind, however,
that if you disable Windows updates, you might miss any attempts by
malware to exploit versions of the operating system or application soft-
ware you do not have installed.

	 2.	Disable Windows tamper protection. Disabling Windows tamper pro-
tection is a necessary step before you can disable Microsoft Defender
(described next). You can disable tamper protection in the Windows
SecurityVirus and Threat Protection settings. For more information
on disabling tamper protection, see https://support​.microsoft​.com​/en​-us​/
windows​/prevent​-changes​-to​-security​-settings​-with​-tamper​-protection​-31d51aaa​
-645d​-408e​-6ce7​-8d7f8e593f87.

	 3.	Disable Microsoft Defender. Disabling Defender prevents anti-malware
software from interfering with your malware analysis environment.
Learn how to disable it at https://www​.windowscentral​.com​/how​-permanently​
-disable​-windows​-defender​-windows​-10.

If you chose not to install FLARE-VM, you’ll need to manually install
your tools. Table A-1 summarizes the tools I use in my environment, many
of which I’ve mentioned throughout this book, and what they do.

402 Appendix A

Table A-1: Windows-Based Malware Analysis Tools

Tool type Purpose Example(s)

Advanced task
manager

Interact with running processes
and malware

Process Hacker
https://processhacker​.sourceforge​.io

Debugger Dynamically analyze malicious
code

x64dbg
https://github​.com​/x64dbg​/x64dbg

Disassembler Reverse engineer malware IDA Pro
https://hex​-rays​.com​/ida​-free/

Ghidra
https://github​.com​/NationalSecurityAgency/
ghidra

File detector Detect various file types, identify
packers and obfuscators, and more

Detect It Easy
https://github​.com​/horsicq​/DIE​-engine​/
releases

Hex editor View and modify binary data HxD
https://mh​-nexus​.de​/en​/hxd/

Network monitoring
tool

Monitor and inspect the network
interactions of a malware sample

Wireshark
https://www​.wireshark​.org

PE analyzer Get an overview of PE-based
malware

PEStudio
https://www​.winitor​.com​/download

Process monitor Monitor malware processes and
their interactions with the operating
system

Procmon
https://learn​.microsoft​.com​/en​-us​/sysinternals/
downloads​/procmon

Registry and baseline
comparison utility

Compare a system state to a base-
line state after detonating malware

Regshot
https://sourceforge​.net​/projects​/regshot/

Web proxy Intercept and monitor web requests
initiated by the malware

Fiddler
https://www​.telerik​.com​/fiddler

Depending on what kind of malware you’re analyzing, you may need
other tools and software. For example, if you’re dealing with Excel and
Word files, you’ll have to install Microsoft Office; to analyze the behav-
iors of malicious PDFs, you’ll probably need Adobe Acrobat; and if you’re
investigating .NET executables, you’ll need the .NET framework and its
associated libraries. Be sure to identify, install, and configure the soft-
ware required for detonating the files you’ll be investigating. Note that
FLARE-VM may not contain all of the tools you’ll need, so you’ll have to
manually install them.

Installing VM Tools
VM tools is a generic term for hypervisor software that can be installed
inside a guest VM. In VirtualBox, this tool set is called Guest Additions; in
VMware Workstation, it’s VMware Tools. This software increases the usabil-
ity and performance of the VM, and it also adds helpful features such as
shared folders and clipboard sharing. Unfortunately, these tools also intro-
duce anomalies, such as processes and driver files, that malware can use to
detect the hypervisor.

Building an Anti-evasion Analysis Lab 403

Even with the risks, these tools add convenient functionality and
extra performance for the analysis VM. I take a twofold approach: I have
one Windows VM without the VM tools installed and one VM with them
installed. I use my VM with the tools installed as my primary analysis envi-
ronment. If the malware I’m investigating is particularly problematic in
its evasion and VM detection capabilities, I switch to the toolless VM. This
works well for me, and it likely will for you also.

Another option is to uninstall the VM tools using the Windows software
uninstaller prior to detonating problematic malware. And finally, there
are two tools, VBoxCloak and VMwareCloak, that have an option to clean
up some of the files and cruft (unwanted processes and artifacts) left from
installing VM tools. We’ll look at them later in the chapter.

To install Guest Additions in a VirtualBox VM, start the VM and, once
Windows has booted, go to DevicesInsert Guest Additions CD Image.

The Guest Additions installer files are now accessible in the virtual
CD drive of your VM. In my case, this is the D: drive. Double-click the
VBoxWindowsAdditions.exe executable to start the Guest Additions
installer (see Figure A-12). Don’t forget to reboot the VM after installing.

Figure A-12: Installing Guest Additions

For more information or help with the installation process, see the
VirtualBox Guest Additions documentation at https://www​.virtualbox​.org​/
manual​/ch04​.html.

For newer versions of VMware Workstation, VMware Tools is often
installed automatically. If you need to install it manually, the process is
nearly identical to that for VirtualBox. In the VMware Workstation VM,
navigate to VMInstall VMware Tools. (This option appears as Reinstall
VMware Tools in my case, since I already have the tools installed, as shown
in Figure A-13.) As with VirtualBox Guest Additions, you’ll need to reboot
the VM after installation.

404 Appendix A

Figure A-13: Installing VMware Tools

Now we’ll take a short break from our Windows VM to discuss how to
set up a Linux VM.

Installing and Configuring a Linux VM
One of the primary benefits of having a Linux VM in your lab is that it can
act as a lightweight gateway for the Windows VM. As you detonate malware
in your Windows VM, your Linux VM can intercept network traffic for
later analysis, and it can even fake network and internet services, as you’ll
see later. I use Remnux in my lab, so that’s what I’ll cover in this guide.
Remnux, as mentioned earlier in this chapter, is a prepackaged, fully capa-
ble Linux malware analysis environment. It has most of the tools you’ll ever
need for static analysis of malicious files and code, as well as some options
for dynamic analysis (such as code emulation tools). You can download
Remnux at https://docs​.remnux​.org​/install​-distro​/get​-virtual​-appliance. Simply
select the appliance you need (either VirtualBox or VMware) and download
and configure the VM according to the instructions provided. When you’re
finished, you should have a working Remnux VM. Don’t forget to update
Remnux using the following commands:

> remnux upgrade
> remnux update

N O T E 	 Before updating Remnux to its latest version, you’ll need to give Remnux internet
access, so be sure to set its network adapter to NAT or Bridged mode before using it.
You can set it back to Host-Only after the updates are completed.

Building an Anti-evasion Analysis Lab 405

Manually Installing Linux VM Tools
Using Remnux is optional, and you may choose to configure your own
Linux VM from scratch instead. If you do, you’ll need to install your mal-
ware analysis tools yourself. Table A-2 lists some Linux tools I consider
essential for malware analysis. These tools are all preinstalled and con-
figured in Remnux. Note that some of these tools are also included in
FLARE-VM for Windows.

Table A-2: Linux Malware Analysis Tools

Tool Purpose

Base64dump
https://github​.com​/DidierStevens​/DidierStevensSuite/
blob​/master​/base64dump​.py

Identifies and extracts Base64-encoded data
from a file

Binwalk
https://github​.com​/ReFirmLabs​/binwalk

Analyzes binary images and extracts embedded
files (such as malware that uses steganography
techniques)

CAPA
https://github​.com​/mandiant​/capa

Scans for and detects suspicious signatures in
executable files, such as potential evasion and
obfuscation techniques

ExifTool
https://exiftool​.org

Identifies file types and allows you to view and
edit their metadata

FakeDNS
https://github​.com​/SocialExploits​/fakedns​/blob/
main​/fakedns​.py

Responds to DNS queries and simulates a DNS
service

FLOSS
https://github​.com​/mandiant​/flare​-floss

Extracts encoded and obfuscated strings from a
PE file

INetSim (Internet Services Simulation Suite)
https://www​.INetSim​.org

Simulates different network services (such as DNS,
FTP, and HTTP)

Speakeasy
https://github​.com​/mandiant/speakeasy

Emulates executable code and shellcode

XORSearch
https://blog​.didierstevens​.com​/programs​/xorsearch/

Scans a file for strings encoded and obfuscated
in various formats (such as XOR or ROL)

Yara
https://github​.com​/Yara​-Rules​/rules

Identifies and classifies malware

This section has only scratched the surface of the useful tools available
on Remnux and for Linux-based analysis environments; there are also mali-
cious document analysis tools, emulation tools, and memory forensics tools,
but a full discussion of them is beyond the scope of this book.

Configuring and Verifying Network Settings
You’ve nearly completed the setup of your malware analysis lab, but there
are a few more steps. Before proceeding, make sure the network adapters
for both your Windows VM and Remnux VM are set to Host-Only. This is
very important for the next steps you’ll take to finalize the lab setup.

406 Appendix A

Next, you’ll need to get some network adapter information from the
Remnux VM. Execute the ifconfig command in a terminal in Remnux.
Figure A-14 shows some example output.

Figure A-14: Obtaining the Remnux operating system network configuration

The first entry listed in this output is what we care about. The inet (IP)
address of this VM is 192.168.56.101, and the netmask is 255.255.255.0. Your
results may be different depending on your specific Remnux configuration
and whether you’re using VirtualBox or VMware. Jot down these values, as
you’ll need them in a minute.

Return to your Windows VM and navigate to the Windows network
settings from the Start menu. Set the IP address of your Windows VM to
the same subnet as your Remnux VM. (For example, if your Remnux VM
IP address is 192.168.56.101, you might set your Windows VM IP address
to 192.168.56.102.) If the netmask of your Remnux VM is 255.255.255.0
(the default), enter 24 in the Subnet Prefix Length field. For the Gateway
address, enter the Remnux VM’s IP address (since Remnux will be acting as
the gateway for the Windows VM), and enter it again for the Preferred DNS
address. Figure A-15 shows how this configuration looks in Windows 10.

Building an Anti-evasion Analysis Lab 407

Figure A-15: Configuring Windows VM IP settings

Click Save to set the configuration. You may need to reboot your
Windows VM.

Now you’ll test the connection between the Remnux VM and Windows
VM. Make sure both VMs are powered on, and execute a ping command to
the Remnux IP in your Windows VM, as shown in Figure A-16.

Figure A-16: Testing the lab network configuration

This command should return a Reply, similar to the output shown here.
If not, you’ll have a bit of troubleshooting to do. For starters, confirm that
the Remnux VM is powered on, that the Windows and Remnux network
adapters are set to Host-Only in your hypervisor, and that your Windows IP
address configuration is correct.

There is one last step to finalize your new lab environment: take snap-
shots of the VMs.

408 Appendix A

Taking and Restoring VM Snapshots
As mentioned earlier in this chapter, snapshots allow you to save a VM in
a certain state; in this case, that will be the pristine, clean state before the
Windows VM is infected with any malware. First, shut down your Windows
and Remnux VMs by initiating a normal shutdown within the operat-
ing system.

To take a snapshot in VirtualBox, select your Windows VM and go to
SnapshotTake. Be sure to name the snapshot something that makes
sense to you (such as “Windows Malware Analysis – Clean”). Repeat this
process for your Remnux VM.

To take snapshots in VMware Workstation, right-click the Windows VM
and select SnapshotTake Snapshot. Again, name the snapshot something
intuitive, and repeat these steps for Remnux.

To revert to a snapshot (for example, after you detonate and analyze a
malware sample), you’ll need to access the hypervisor’s snapshot manager.
In VirtualBox, you can access this by selecting a virtual machine and then
navigating to MachineToolsSnapshots. The snapshots are listed in the
right window pane, under Name. Figure A-17 shows a list of snapshots for
my VM. (I called the first snapshot in the list “BASE – 08 Aug 23 – Pristine
Windows 10,” but you should name your snapshots whatever makes sense to
you.) To restore a previous snapshot, right-click it and select Restore.

Figure A-17: The VirtualBox Snapshot Manager

In VMware Workstation, the Snapshot Manager is a bit more hidden
away. To access it, right-click your VM and select SnapshotsSnapshot
Manager. You’ll see a tree graph view of all your snapshots, as shown in
Figure A-18. Simply right-click a snapshot and select Restore.

Building an Anti-evasion Analysis Lab 409

Figure A-18: The VMware Snapshot Manager

Snapshots are powerful tools not only for restoring a VM to a pristine
state but also for preventing analysis headaches. For example, one of my
strategies is taking snapshots of the VM at certain phases of debugging.
Sometimes a debugger will crash during analysis, or the malware may exe-
cute code covertly to “escape” the debugger. Reverting to a previous debug-
ging snapshot lets me avoid having to start all over again.

If you followed the previous steps, you should have a working malware
analysis lab. You have a Windows victim VM where malware can be safely
detonated and a Linux VM for simulating network services and capturing
network traffic. You’ve also configured your Windows VM virtual hardware
for robustness against malware trying to detect it. Now let’s turn to how you
can configure your operating system to further conceal the Windows VM.

Windows Configurations for Concealment
There are several optional Windows settings and tips that you can apply
to your Windows VM to help hide it from context-aware malware. Most
of these aren’t exactly advanced, and some might even seem a bit absurd,
but incorporating them can make your analysis system more resilient
and discreet.

Registry Data
As you learned in Chapter 4, the Windows registry contains a wealth of
information related to the operating system and hardware that the mal-
ware could query to detect a hypervisor. Fortunately, you can modify many
of these registry keys, values, and data to circumvent detection. You can
do this directly in the Windows Registry Editor (RegEdit) or by using
PowerShell. For example, run the following PowerShell command to modify
a registry key’s value:

PS C:\> Set-ItemProperty -Path Registry Path -Name Name of Value -Value Registry Data

410 Appendix A

To rename the value inside BIOSProductName to Fake BIOS, execute the fol-
lowing command:

PS C:\> Set-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\
SystemInformation" -Name "BIOSVersion" -Value "Fake BIOS"

Many registry keys that could be of interest to malware are updated
within different iterations of Windows and hypervisor versions and patches,
so it’s not feasible to list them all here. Instead, I’ve created a simple script
in PowerShell that scrubs the registry to hide some of these indicators and
also accomplishes a number of other VM concealment tasks that I’ll discuss
throughout this section. You can find the VirtualBox version of the script,
VBoxCloak, at https://github​.com​/d4rksystem​/VBoxCloak, and the VMware ver-
sion, VMwareCloak, at https://github​.com​/d4rksystem​/VMwareCloak.

Hostname and Domain Name
Since some advanced malware enumerates the analysis environment’s
hostname, domain name, and user account information to determine if
it’s running in a VM, it’s wise to set these values to something innocuous.
The malware might look for strings such as sandbox, virus, malware, VMware,
virtualbox, test, or cuckoo, for example. Ideally, you should set your system
hostname and primary user account name when you install and configure
the system, but you can also change these before detonating the malware.

To change the system hostname using PowerShell, use the following
command:

PS C:\> Rename-Computer -NewName "new hostname"

To change the local user account name, use this command:

PS C:\> Rename-LocalUser -Name "current local username" -NewName "new local username"

You’ll need to reboot the VM for these changes to take effect. Addition
ally, some malware (like certain variants of infostealers and ransomware)
tests to see if a system is part of a corporate domain (or, in the case of more
targeted malware, a specific corporate domain) before infecting it. Adding
a fake domain name to your system can help you avoid detection in these
cases. You can do this by creating an actual domain (using a domain con-
troller) or, more simply, by issuing the following PowerShell command,
which will “add” the system to the domain corp​.com:

PS C:\> Set-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\Tcpip\
Parameters\" -Name "Domain" -Value "corp​.com" -Force

Keep in mind that this registry change doesn’t add the Windows system
to a real domain; it simply changes one configuration setting that malware
may query. I’ve created a short script that automatically changes the sys-
tem’s hostname and local user account name and then adds the VM to a

Building an Anti-evasion Analysis Lab 411

fake domain using this registry trick. You can find this script at https://github​
.com​/d4rksystem​/hostname​-changer. However, to fully simulate a domain envi-
ronment, a better approach is to set up a real domain controller in your lab.

Additional Tips and Tricks
Here are some additional configuration tips and tricks that may prove valu-
able in certain circumstances:

Renaming analysis tools and installing them in nonstandard locations

Some crafty malware looks for running analysis tools such as Wireshark
or Procmon. Simply renaming the tool’s executable files (for example,
from wireshark.exe to krahseriw.exe) before launching them can thwart
this detection technique. (Note that renaming an executable in this
way may break the tool’s functionality.) It can also be useful to install
your tools in nondefault locations.

Adding decoy files

Malware may inspect the victim system’s Desktop or Documents directo-
ries and infect the system only if there are files and documents there. It
never hurts to add a few fake documents (invoice.doc, passwords.txt, and
the like) to these directories to simulate a normal Windows user.

Activating the mouse

Context-aware malware might sleep until the mouse moves or a certain
mouse button is pressed. Moving the mouse manually and clicking can
help circumvent these simple mouse detection techniques. You can
even automate mouse activities inside your VMs and sandboxes using a
Python library like PyAutoGUI (https://pyautogui​.readthedocs​.io​/en​/latest​/).

Changing the malware filename and path

Malware sometimes checks its running location to see its filename and
path. Some malware sandboxes automatically name a malware file
by its MD5 or SHA-1 hash, which can be a dead giveaway. To conceal
your VM, it’s best to name the malware file something random and not
include words like malware, virus, and lab in the filename or run path.
Some malware also checks its run path to ensure it’s running from a
directory the author intended and not from Documents, Desktop, and
so on. Sometimes the malware may even verify it still has its original
filename.

The tool exiftool (which I briefly mentioned earlier in this chap-
ter), as well as many other PEStudio-type tools, allows you to view the
Original File Name field of an executable file, which may be a hint into
what the malicious file was originally named. In the following code, you
can see the output of exiftool and an executable file’s original name:

> exiftool malware.exe
--snip--
File Version : 6.0.7.2527

412 Appendix A

Internal Name : RealOne Player
Legal Copyright : Copyright © 2001-2002
Original File Name : player.exe
Product Name : RealOne Player
--snip--

		 You can even often find clues in the strings of the malware file that
indicate its original filename, as in this example (epmntdrv.sys):

> strings evil.bin
--snip--
Invalid parameter passed to C runtime function.
h:\projectarea\00_source\mod.windiskaccessdriver\epmntdrv.sys
ExAllocatePoolWithTag
--snip--

Adding system uptime

Malware may check how long the system has been booted before fully
executing, or it may not run if the system has an insufficient system
uptime. Waiting a few minutes after booting your analysis VM before
detonating the malware may trick it into executing. Better yet, prior to
infecting the VM, let it run for 20 minutes and then take a snapshot of
the system. You can later revert to this snapshot and the VM will already
be in a state that has been running, ready for malware detonation.

Mimicking your organization or the malware target

Before detonating a targeted malware sample, you can configure the
environment to match the malware’s target as closely as possible. For
example, adding the machine to a fake but realistic domain may help
extract behaviors from the malware that you’d otherwise not see.

Part II discussed VM artifacts and detection in detail, so refer to those
chapters for more information to help you conceal your analysis VMs.

Advanced VM and Hypervisor Hardening
In addition to VM hardware and guest operating system configurations,
you can apply so-called hardening techniques to your VMs and hypervi-
sor. Hardening involves configuring the more advanced settings of the VM
or hypervisor or even patching the hypervisor directly. This section dis-
cusses some of these tools and techniques for VMware Workstation and
VirtualBox.

N O T E 	 These techniques are included in the book for completeness. Depending on your host
operating system, guest operating system, and hypervisor version, they may be inef-
fective or even cause stability or performance issues in your VMs, so use them at your
own risk.

Building an Anti-evasion Analysis Lab 413

Hardening VMware
Each VMware VM has a VMX (.vmx) file that contains the machine’s config-
urations. You can modify this file to configure some of the more advanced
options for your VM. The VMX file resides in the VM’s home directory.
(For example, on my Linux host, it’s located at /home/<user>/VMware/<vm​
_name>/<vm_name>.vmx.) VMware VMs have notable system manufacturer
and model strings that can raise flags for malware. A default Windows VM
running in VMware looks like this:

System Manufacturer: VMware, Inc.
System Model: VMware Virtual Platform

Adding this simple line to the VMX file may help conceal your VM by
mirroring the host’s system information in the guest VM:

SMBIOS.reflectHost = "True"

Malware may also attempt to detect the disk drive model of your VMware
VM, which will be quite generic if the hardware is virtualized. To circumvent
this, add these lines to your VMX file (you can replace “Samsung” with any-
thing you’d like):

scsi0:0.productID = "Samsung SSD"
scsi0:0.vendorID = "Samsung"

To fend off some cpuid- and rdtsc-based VM detection techniques, add
these lines to your VMX file:

hypervisor.cpuid.v0 = "FALSE"
monitor_control.virtual_rdtsc = "FALSE"

N O T E 	 As Chapter 7 discussed, cpuid can be used to detect whether a machine’s processor is
virtualized, and rdtsc can be used to perform processor timing analysis.

These are simple changes, but as previously mentioned, your mileage
may vary depending on your operating systems and versions. For example,
I was unable to reflect my host system information to my VM using the
SMBIOS.reflectHost trick with a host system running Linux Ubuntu 20 and
a Windows 10 guest VM. However, it worked on a Windows 10 host with a
Windows 10 guest.

Here are some other known VMX configurations you can add to
your VMs:

SMBIOS.noOEMStrings = "TRUE"
serialNumber.reflectHost = "TRUE"
hw.model.reflectHost = "TRUE"
board-id.reflectHost = "TRUE"

414 Appendix A

monitor_control.restrict_backdoor = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"
monitor_control.disable_btseg = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"

The first group in this configuration may help hide the VM by reflect-
ing host information to the guest, rather than using the default VMware
strings. The second group pertains to how binary code is emulated in the
guest VM, how the VM interacts with the physical processor, and other
functions. It may help circumvent malware that uses these settings to detect
a VM. Many of these configurations are undocumented by VMware, but a
few notable projects seek to identify and elaborate on them. For example,
check out the research from Tom Liston and Ed Skoudis in their presen-
tation “On the Cutting Edge: Thwarting Virtual Machine Detection,” at
https://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf,
and read about monitor control in the list of advanced parameters at http://
sanbarrow​.com​/vmx​/vmx​-advanced​.html. There is also an older tool called
VmwareHardenedLoader (https://github​.com​/hzqst/VmwareHardenedLoader),
which is a set of scripts and configurations that performs many of the afore-
mentioned changes, plus some others.

Hardening VirtualBox
VirtualBox is a bit trickier to tune; it doesn’t have the equivalent of a VMX
file. Instead, you’re forced to use VBoxManage, an application for Windows
and Linux that’s specifically designed for making configuration changes
to VirtualBox VMs. For example, to prevent some rdtsc VM detection tech-
niques, you can configure your VM by running the following commands in
the command line:

> VBoxManage setextradata "vm_name" VBoxInternal/TM/TSCMode RealTSCOffset
> VBoxManage setextradata "vm_name" VBoxInternal/CPUM/SSE4.1 1
> VBoxManage setextradata "vm_name" VBoxInternal/CPUM/SSE4.2 1

Some configurations in VirtualBox are complicated in comparison to
VMware and (at the time of this writing) are surprisingly difficult to find
information on. Fortunately, since VirtualBox is open source, some mem-
bers of the community have written hardeners for VirtualBox and its VMs.
Much like for VMware, there is also VBoxHardenedLoader (https://github​
.com/hfiref0x​/VboxHardenedLoader), which you may want to look into.

The main problem with some of these hardeners is that they can break
with different iterations of the hypervisor, so they must be modified for each
new version of VirtualBox. As with any tool or configuration mentioned in
this chapter, your success depends on your specific lab environment.

Building an Anti-evasion Analysis Lab 415

Stress-Testing Your VM
Prior to detonating malware, particularly potentially evasive malware, it can
be helpful to stress-test your Windows analysis VM against detection tech-
niques by using a tool such as Pafish (https://github​.com​/a0rtega​/Pafish), as
shown in Figure A-19.

Figure A-19: Pafish running in a VirtualBox VM

You can see here that Pafish detected my VM using several different
indicators (denoted by the “traced!” message), such as CPU timing coun-
ters, lack of free disk space, and operating system uptime. Two tools similar
to Pafish are Al-Khaser (https://github​.com​/LordNoteworthy​/al​-khaser) and
InviZzzible (https://github​.com​/CheckPointSW​/InviZzzible). Running multiple
assessment tools inside your analysis VMs, both before and after you follow
the guidance in this chapter, will give you an idea of how detectable the
VMs are.

It’s very difficult to completely conceal a VM from all the techniques
that stress-testing software like Pafish and Al-Khaser use. After all, these
tools were designed specifically for VM detection. Keep in mind that the
goal of malware analysis isn’t passing a stress test, and it’s very unlikely that
a malware sample in the wild would use all of these techniques.

416 Appendix A

That said, you can score higher on a stress test (and, of course, thwart
malware) by using a bare-metal analysis system or instrumentation tools,
both of which we’ll touch on briefly at the end of this chapter.

Tips for Operational Security and Effectiveness
Operational security (OPSEC) is critical for malware analysis. Proper OPSEC
includes safely handling both the malware and the investigation tools to
protect yourself and others, including your organization if you analyze mal-
ware professionally.

Analyzing malware in any capacity is inherently risky. You could expose
credentials or sensitive files from your host machine, especially if folder-
and clipboard-sharing functionalities are enabled in your VM. You may
unintentionally leak your home IP address to threat actors when investigat-
ing malicious infrastructure. Or, by allowing a malware sample to connect
to a C2 server from your VM, you may tip off a threat actor to your investi-
gation, which could have negative consequences. To mitigate these risks,
this section contains some general tips for analyzing malware in your lab
both safely and effectively.

Simulating Network Services
Detonating malware in a VM connected to the internet or even a local
network carries risk, so a safer alternative is to simulate network services.
Using tools such as INetSim and FakeDNS, you can trick the malware into
believing it’s operating in a networked or internet-accessible environment.
INetSim can simulate many types of network services, such as FTP and
HTTP, and FakeDNS specializes in simulating DNS services.

Network simulation is a simple process using the Remnux VM you set
up earlier. First, make sure that both the Remnux and Windows VM net-
work adapters are in Host-Only mode and that the Remnux VM is powered
on. Issue the following command in a terminal in Remnux:

> accept-all-ips start

The accept-all-ips script configures the gateway (Remnux, in this case)
to accept all IPv4 and IPv6 addresses and redirect them to the correspond-
ing local port. Simply put, this enables Remnux to intercept, monitor,
or manipulate network traffic destined to a certain IP address from the
Windows VM.

Next, issue this command to start the INetSim service:

> inetsim

Building an Anti-evasion Analysis Lab 417

You should see output similar to that shown here:

remnux@remnux:~$ inetsim
INetSim 1.3.2 (2020-05-19) by Matthias Eckert & Thomas Hungenberg
Using log directory: /var/log/inetsim/
Using data directory: /var/lib/inetsim/
Using report directory: /var/log/inetsim/report/
Using configuration file: /etc​/inetsim​/inetsim​.conf
Parsing configuration file.
Configuration file parsed successfully.
=== INetSim main process started (PID 1511) ===
Session ID: 1511
Listening on: 192.168.56.102
Real Date/Time: 2024-03-25 15:39:28
Fake Date/Time: 2024-03-25 15:39:28 (Delta: 0 seconds)
 Forking services...
 * smtps_465_tcp - started (PID 1518)
 * ftp​_21​_tcp - started (PID 1521)
 * smtp_25_tcp - started (PID 1517)
 * http​_80​_tcp - started (PID 1515)
 * pop3_110_tcp - started (PID 1519)
 * ftps​_990​_tcp - started (PID 1522)
 * pop3s_995_tcp - started (PID 1520)
 * https​_443​_tcp - started (PID 1516)
 done.
Simulation running.
--snip--

Then issue the fakedns command, like so:

> fakedns

This should generate output similar to the code shown here (you may
not have as much output if your Windows VM is not yet powered on and
communicating with the Remnux VM):

remnux@remnux:~$ fakedns
fakedns[INFO]: dom.query. 60 IN A 192.168.56.102
fakedns[INFO]: Response: au​.download​.windowsupdate​.com -> 192.168.56.102
fakedns[INFO]: Response: api​.msn​.com -> 192.168.56.102
fakedns[INFO]: Response: slscr​.update​.microsoft​.com -> 192.168.56.102
--snip--

Next, power up your Windows VM. After Windows is booted, test out
FakeDNS and INetSim by navigating to your favorite website in a browser. If
you’ve configured everything correctly, you should see something like the
page shown in Figure A-20.

418 Appendix A

Figure A-20: INetSim and FakeDNS working correctly

INetSim and FakeDNS are successfully intercepting your web requests.
Now, when you detonate malware in your Windows VM, the network con-
nections will also be captured and can be analyzed later. When capturing
and analyzing network traffic originating from your infected Windows VM,
remember that Windows is quite noisy. Much of this traffic will be benign,
so it’s your job to filter out what’s really of interest.

N O T E 	 INetSim stores detailed logs of network connections in /var/log/inetsim, and its
configuration is stored in ​/etc​/inetsim​/inetsim​.conf. Configuring INetSim is out-
side the scope of this chapter, but you can read more about it at https://www​.inetsim​
.org​/documentation​.html.

In addition to INetSim and FakeDNS, Wireshark and FakeNet are tools at your
disposal for monitoring network traffic and capturing malicious activity safely.

Concealing Your IP
If you decide to connect your VM to the internet (by configuring the
VM’s network adapter in NAT or Bridged mode), you should always route
your traffic through a VPN or similar technology to protect yourself. An
additional benefit of using a VPN is that, depending on the VPN service
provider, you may be able to choose your exit node (the point at which traf-
fic exits the network). Some malware (for example, the SocGholish family)
is targeted to a specific region or country, so if you’re using an internet-
connected VM for analysis, configuring the VPN exit node to a country that
the malware is targeting can be a good analysis tactic.

Shared Folders and File Transferring
Given the risks of using clipboard sharing and shared folders, ideally these
functions should be switched off unless you explicitly require them. Shared
folders in particular are quite convenient for transferring malware files and
other files between your host system and your VMs. If you choose to keep
shared folders disabled (or if you didn’t install any VM tools), you can copy
files to and from your host by configuring FTP software such as FileZilla
(https://filezilla​-project​.org). Simply configure an FTP server on your Linux
VM and an FTP client on your Windows VM, for example, and then transfer
files between them.

Building an Anti-evasion Analysis Lab 419

Updating Software
Keep your hypervisor software up to date. Hypervisor software is a prime tar-
get for malware authors, and it’s not uncommon for vulnerabilities to be dis-
covered and reported for software like VMware Workstation and VirtualBox.
For reference, at the time of this writing, a quick search on the vulnerability
database site CVEdetails​.com showed 171 known vulnerabilities for VMware
Workstation and 326 known vulnerabilities for VirtualBox! These vulner-
abilities are not all critical, of course, but they’re a risk to keep in mind. They
could be used to attack your host operating system if not properly patched.
You should also keep your VM guest software, such as VMware Tools and
VirtualBox Guest Additions, updated to the latest version.

Bare-Metal Analysis
It’s very difficult, if not impossible, to make a VM appear identical to a
real, physical machine when you’re dealing with advanced malware. You
might be able to fool checks like querying the registry or enumerating run-
ning processes, but advanced malware will likely use more sophisticated
tactics, such as CPU timing checks, or perhaps even currently unknown
techniques. You may be able to circumvent these types of checks using
techniques such as manually patching problematic areas of code (which
can be very time-consuming) or using binary instrumentation techniques
(discussed in the next section), but sometimes the best and most efficient
solution is bare-metal analysis.

The term bare metal refers to an operating system running directly on
the underlying hardware rather than virtualized in a hypervisor. This could
be as simple as a spare laptop you’ve got lying around or as complex as a
server rack full of physical devices with freshly installed operating systems.
Detonating and analyzing malware on a bare-metal system is as close as
you can get to how malware will actually behave on a real victim host. The
hypervisor artifacts mentioned in this chapter and in Part II should be non-
existent, and more advanced VM detection techniques (such as CPU timing
analysis) won’t be effective. Bare-metal systems are even more powerful with
some basic malware analysis tools installed. Just as in a VM, you might want
to install tools such as a disassembler, a debugger, and process and network
monitors, for example. In fact, I install many of the same tools in my bare-
metal analysis system as in my analysis VMs.

While the positives of bare-metal analysis usually outweigh the nega-
tives, there are a few things to be aware of. First and foremost, its effec-
tiveness depends on your objectives. Second, since there’s no underlying
hypervisor, like VirtualBox or VMware, you can’t take snapshots of a clean
system. In VirtualBox, for example, after detonating a malware sample,
you can simply revert the VM to a pristine state, which is not so easy with
a bare-metal analysis setup. There are also special tools, such as Deep
Freeze, Microsoft Deployment Toolkit (MDT), FOG Project, Clonezilla, and
Rollback Rx. These tools allow snapshot-like capabilities, but they introduce

420 Appendix A

some amount of overhead, and this type of malware analysis environment
doesn’t scale very well. Additionally, while bare-metal systems won’t have the
hypervisor-related artifacts that malware can detect (such as registry keys
and driver files on the disk), they might have other analysis tools installed
that give you away.

Binary Instrumentation and Emulation
There are two more tools you might want to add to your malware analysis
toolbox: binary instrumentation and emulation. Binary instrumentation is a
method of modifying, or instrumenting, binary data and code to achieve
some end result. In the context of malware analysis, binary instrumentation
can be used to modify code to streamline the analysis process; this in turn
will allow you to circumvent anti-analysis techniques. There are two pri-
mary forms of binary instrumentation: dynamic binary instrumentation (DBI)
and static binary instrumentation (SBI). DBI patches a program’s instructions
during runtime, and SBI makes changes to code prior to execution.

Binary instrumentation, specifically DBI, can complement other analy-
sis tools, like debuggers. Using DBI, a reverse engineer can dynamically
modify assembly instructions, which can be especially useful for analyzing
context-aware malware. For example, problematic VM detection instruc-
tions such as cpuid and rdtsc can be modified or removed on the fly while
the malware is running. Additionally, DBI is useful for monitoring and
modifying Windows API calls and automating certain malware analy-
sis tasks.

Binary instrumentation is not a silver bullet, however. DBI can intro-
duce a lot of performance overhead, which can be problematic during
the analysis process; it can also introduce time delays that malware might
detect.

Binary instrumentation is a complex topic, so we won’t go into more
depth here, but some of the available binary instrumentation frameworks
are summarized here:

DynamoRIO

A tool for manipulating and transforming code at runtime, while the
target malware is executing. See https://dynamorio​.org.

FRIDA

A dynamic instrumentation toolkit based on Python and JavaScript.
See https://frida​.re and also the post “Malware Analysis with Dynamic
Binary Instrumentation Frameworks” from the BlackBerry Research
& Intelligence Team at https://blogs.blackberry.com/en/2021/04/malware​
-analysis-with-dynamic-binary-instrumentation-frameworks.

Intel Pin

A popular dynamic binary instrumentation framework that is used
as the base framework for many other instrumentation projects. See
“Pin—A Dynamic Binary Instrumentation Tool” in Intel’s developer

Building an Anti-evasion Analysis Lab 421

resources at https://www.intel.com/content/www/us/en/developer/articles/tool​/​
pin-a-dynamic-binary-instrumentation-tool.html.

Two instrumentation tools built on Intel PIN are tiny_tracer and
BluePill. The tiny_tracer project (https://github​.com​/hasherezade​/tiny​_tracer)
is a tool that allows for dynamic logging (tracing) and manipulation
of malware’s code. It has built-in capabilities to bypass problematic
anti-analysis features in malware. BluePill (https://github​.com​/season​-lab​/​
bluepill) is an older prototype tool designed with anti-analysis circum-
vention in mind. These are good examples of what can be done with
dynamic instrumentation.

As opposed to binary instrumentation, emulation runs malicious code
in a virtual, or emulated, environment. Emulation was discussed in the
context of anti-malware software in Chapter 13, and it works in much the
same way for malware analysis. It’s also not as resource intensive as a com-
plete sandbox environment or VM. Emulation allows for great control over
malware and, similar to binary instrumentation, enables you to automate
many analysis tasks. Here are some emulation frameworks you may want
to explore:

Qiling Framework

A lightweight, cross-platform emulator that supports multiple software
architectures. It also has support for many operating systems, including
Windows, macOS, and Linux. See https://qiling​.io.

Speakeasy

A modular emulator designed with malware in mind. It can emulate
both user and kernel-mode malware. See https://github​.com​/mandiant/
speakeasy.

Unicorn

A lightweight, multiplatform emulator framework. Qiling and
Speakeasy are based on Unicorn. See https://www​.unicorn​-engine​.org.

Because of their ability to supplement and automate parts of the mal-
ware analysis process, binary instrumentation tools and emulators can be
formidable additions to your analysis toolbox. If you want to delve deeper
into these topics, Practical Binary Analysis by Dennis Andriesse (No Starch
Press, 2018) contains a lot more information.

Summary
This appendix discussed some fundamental concepts of arguably the most
important part of malware analysis: the lab environment. You learned about
the basic setup of an analysis lab environment, important safety principles,
and some tools and techniques for concealing your malware analysis VMs
and lab components from malware.

Concealing and hardening your analysis VMs can be a very effec-
tive, time-saving technique that helps circumvent many of the common

422 Appendix A

anti-analysis and VM detection tactics malware uses. However, there’s one
big downside to using these concealment techniques: you may be forgoing
key intelligence about the malware’s capabilities. If your goal is to truly
understand a malware sample, concealing your VM can be counterproduc-
tive, as you could miss some of its most interesting evasion and detection
behaviors.

NO STARCH PRESS

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com

WEB:
www.nostarch.com

PRACTICAL BINARY ANALYSIS
Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and
Disassembly
BY dennis andriesse
456 pp., $59.99
isbn 978-1-59327-912-7

ROOTKITS AND BOOTKITS
Reversing Modern Malware and Next
Generation Threats
BY alex matrosov, eugene
rodionov, AND sergey bratus
448 pp., $49.95
isbn 978-1-59327-716-1

PRACTICAL MALWARE ANALYSIS
The Hands-On Guide to Dissecting
Malicious Software
BY michael sikorski AND

andrew honig
800 pp., $59.99
isbn 978-1-59327-290-6

THE IDA PRO BOOK,
2ND EDITION
The Unoffi cial Guide to the World’s Most
Popular Disassembler
BY chris eagle
672 pp., $79.99
isbn 978-1-59327-289-0

THE GHIDRA BOOK
The Defi nitive Guide
BY chris eagle AND kara nance
608 pp., $59.99
isbn 978-1-7185-0102-7

EVADING EDR
The Defi nitive Guide to Defeating
Endpoint Detection Systems
BY matt hand
312 pp., $59.99
isbn 978-1-7185-0334-2

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/evasive-malware for errata and more information.

®

We’re all aware of Stuxnet, ShadowHammer,
Sunburst, and similar attacks that use evasion
to remain hidden while defending themselves
from detection and analysis. Because advanced
threats like these can adapt and, in some cases,
self-destruct to evade detection, even the most
seasoned investigators can use a little help
with analysis now and then. Evasive Malware
will introduce you to the evasion techniques
used by today’s malicious software and show
you how to defeat them.

Following a crash course on using static and
dynamic code analysis to uncover malware’s
true intentions, you’ll learn how malware
weaponizes context awareness to detect and
skirt virtual machines and sandboxes, plus
the various tricks it uses to thwart analysis
tools. You’ll explore the world of anti-reversing,
from anti-disassembly methods and debugging
interference to covert code execution and
misdirection tactics. You’ll also delve into
defense evasion, from process injection
and rootkits to fileless malware. Finally,
you’ll dissect encoding, encryption, and
the complexities of malware obfuscators
and packers to uncover the evil within.

You’ll learn how malware:

 Abuses legitimate components of Windows,
like the Windows API and LOLBins, to run
undetected

 Uses environmental quirks and context
awareness, like CPU timing and hypervisor
enumeration, to detect attempts at analysis

 Bypasses network and endpoint defenses
using passive circumvention techniques,
like obfuscation and mutation, and active
techniques, like unhooking and tampering

 Detects debuggers and circumvents
dynamic and static code analysis

You’ll also find tips for building a malware
analysis lab and tuning it to better counter
anti-analysis techniques in malware.

Whether you’re a frontline defender, a
forensic analyst, a detection engineer, or a
researcher, Evasive Malware will arm you
with the knowledge and skills you need to
outmaneuver the stealthiest of today’s cyber
adversaries.

About the Author
KYLE CUCCI KYLE CUCCI has over 17 years in cybersecurity
and IT, including roles as a malware analyst
and detection engineer with Proofpoint’s
Threat Research team and leader of the
forensic investigations and malware research
teams at Deutsche Bank. Cucci regularly
speaks at security conferences and has led
international trainings and workshops on
topics such as malware analysis and security
engineering. In his free time, Cucci enjoys
contributing to the community via open
source tooling, research, and blogging.

We’re all aware of Stuxnet, ShadowHammer,  Bypasses network and endpoint defenses

“A must-have for anyone who needs to identify,
investigate, and analyze modern malware.”

—anuj soni, malware reverse engineer

®

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
nostarch.com

