
While the drivers covered in previous chap-
ters can monitor many important events on

the system, they aren’t able to detect a partic-
ularly critical kind of activity: filesystem opera-

tions. Using filesystem minifilter drivers, or minifilters for
short, endpoint security products can learn about the
files being created, modified, written to, and deleted.

These drivers are useful because they can observe an attacker’s interac-
tions with the filesystem, such as the dropping of malware to disk. Often,
they work in conjunction with other components of the system. By integrat-
ing with the agent’s scanning engine, for example, they can enable the EDR
to scan files.

Minifilters might, of course, monitor the native Windows filesystem,
which is called the New Technology File System (NTFS) and is imple-
mented in ntfs.sys. However, they might also monitor other important
filesystems, including named pipes, a bidirectional inter-process communi-
cation mechanism implemented in npfs.sys, and mailslots, a unidirectional

6
F I L E S Y S T E M M I N I F I L T E R

D R I V E R S

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

104 Chapter 6

inter-process communication mechanism implemented in msfs.sys. Adversary
tools, particularly command-and-control agents, tend to make heavy use of
these mechanisms, so tracking their activities provides crucial telemetry.
For example, Cobalt Strike’s Beacon uses named pipes for tasking and the
linking of peer-to-peer agents.

Minifilters are similar in design to the drivers discussed in the previous
chapters, but this chapter covers some unique details about their implemen-
tations, capabilities, and operations on Windows. We’ll also discuss evasion
techniques that attackers can leverage to interfere with them.

Legacy Filters and the Filter Manager
Before Microsoft introduced minifilters, EDR developers would write legacy
filter drivers to monitor filesystem operations. These drivers would sit on
the filesystem stack, directly inline of user-mode calls destined for the file-
system, as shown in Figure 6-1.

I/O managerUser request to
interact with a file

Legacy filter
driver A

Legacy filter
driver B

User mode Kernel mode

Filesystem driver
(for example,

ntfs.sys)

Figure 6-1: The legacy filter driver architecture

These drivers were notoriously difficult to develop and support in
production environments. A 2019 article published in The NT Insider,
titled “Understanding Minifilters: Why and How File System Filter Drivers
Evolved,” highlights seven large problems that developers face when writing
legacy filter drivers:

Confusing Filter Layering

In cases when there is more than one legacy filter installed on the
system, the architecture defines no order for how these drivers
should be placed on the filesystem stack. This prevents the driver
developer from knowing when the system will load their driver in
relation to the others.

A Lack of Dynamic Loading and Unloading

Legacy filter drivers can’t be inserted into a specific location on the
device stack and can only be loaded at the top of the stack. Additionally,
legacy filters can’t be unloaded easily and typically require a full system
reboot to unload.

Tricky Filesystem-Stack Attachment and Detachment

The mechanics of how the filesystem stack attaches and detaches
devices are extremely complicated, and developers must have a

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 105

substantial amount of arcane knowledge to ensure that their driver can
appropriately handle odd edge cases.

Indiscriminate IRP Processing

Legacy filter drivers are responsible for processing all Interrupt Request
Packets (IRPs) sent to the device stack, regardless of whether they are
interested in the IRPs or not.

Challenges with Fast I/O Data Operations

Windows supports a mechanism for working with cached files, called
Fast I/O, that provides an alternative to its standard packet-based I/O
model. It relies on a dispatch table implemented in the legacy drivers.
Each driver processes Fast I/O requests and passes them down the stack
to the next driver. If a single driver in the stack lacks a dispatch table, it
disables Fast I/O processing for the entire device stack.

An Inability to Monitor Non-data Fast I/O Operations

In Windows, filesystems are deeply integrated into other system compo-
nents, such as the memory manager. For instance, when a user requests
that a file be mapped into memory, the memory manager calls the Fast
I/O callback AcquireFileForNtCreateSection. These non-data requests
always bypass the device stack, making it hard for a legacy filter driver
to collect information about them. It wasn’t until Windows XP, which
introduced nt!FsRtlRegisterFileSystemFilterCallbacks(), that developers
could request this information.

Issues with Handling Recursion

Filesystems make heavy use of recursion, so filters in the filesystem
stack must support it as well. However, due to the way that Windows
manages I/O operations, this is easier said than done. Because
each request passes through the entire device stack, a driver could
easily deadlock or exhaust its resources if it handles recursion
poorly.

To address some of these limitations, Microsoft introduced the filter
manager model. The filter manager (fltmgr.sys) is a driver that ships with
Windows and exposes functionality commonly used by filter drivers
when intercepting filesystem operations. To leverage this functional-
ity, developers can write minifilters. The filter manager then intercepts
requests destined for the filesystem and passes them to the minifilters
loaded on the system, which exist in their own sorted stack, as shown in
Figure 6-2.

Minifilters are substantially easier to develop than their legacy coun-
terparts, and EDRs can manage them more easily by dynamically loading
and unloading them on a running system. The ability to access function-
ality exposed by the filter manager makes for less complex drivers, allow-
ing for easier maintenance. Microsoft has made tremendous efforts to

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

106 Chapter 6

move developers away from the legacy filter model and over to the mini-
filter model. It has even included an optional registry value that allows
administrators to block legacy filter drivers from being loaded on the sys-
tem altogether.

I/O managerUser request to
interact with a file Filter manager

Filesystem driver
(for example,

ntfs.sys)

User mode Kernel mode

Minifilter C
altitude: 145000

Minifilter B
altitude: 268000

Minifilter B
altitude: 309000

Figure 6-2: The filter manager and minifilter architecture

Minifilter Architecture
Minifilters have a unique architecture in several respects. First is the role of
the filter manager itself. In a legacy architecture, filesystem drivers would
filter I/O requests directly, while in a minifilter architecture, the filter
manager handles this task before passing information about the requests
to the minifilters loaded on the system. This means that minifilters are only
indirectly attached to the filesystem stack. Also, they register with the filter
manager for the specific operations they’re interested in, removing the
need for them to handle all I/O requests.

Next is how they interact with registered callback routines. As with the
drivers discussed in the previous chapters, minifilters may register both pre-
and post-operation callbacks. When a supported operation occurs, the filter
manager first calls the correlated pre-operation callback function in each of
the loaded minifilters. Once a minifilter completes its pre-operation routine,
it passes control back to the filter manager, which calls the next callback
function in the subsequent driver. When all drivers have completed their
pre-operation callbacks, the request travels to the filesystem driver, which
processes the operation. After receiving the I/O request for completion, the
filter manager invokes the post-operation callback functions in the mini-
filters in reverse order. Once the post-operation callbacks complete, control
is transferred back to the I/O manager, which eventually passes control back
to the caller application.

Each minifilter has an altitude, which is a number that identifies its loca-
tion in the minifilter stack and determines when the system will load that
minifilter. Altitudes address the issue of ordering that plagued legacy filter
drivers. Ideally, Microsoft assigns altitudes to the minifilters of production
applications, and these values are specified in the drivers’ registry keys,
under Altitude. Microsoft sorts altitudes into load-order groups, which are
shown in Table 6-1.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 107

Table 6-1: Microsoft’s Minifilter Load-Order Groups

Altitude range Load-order group name Minifilter role

420000–429999 Filter Legacy filter drivers

400000–409999 FSFilter Top Filters that must attach above all others

360000–389999 FSFilter Activity Monitor Drivers that observe and report on file I/O

340000–349999 FSFilter Undelete Drivers that recover deleted files

320000–329998 FSFilter Anti-Virus Antimalware drivers

300000–309998 FSFilter Replication Drivers that copy data to a remote system

280000–289998 FSFilter Continuous
Backup

Drivers that copy data to backup media

260000–269998 FSFilter Content
Screener

Drivers that prevent the creation of
specific files or content

240000–249999 FSFilter Quota
Management

Drivers that provide enhanced filesystem
quotas that limit the space allowed for a
volume or folder

220000–229999 FSFilter System Recovery Drivers that maintain operating system
integrity

200000–209999 FSFilter Cluster File
System

Drivers used by applications that
provide file server metadata across a
network

180000–189999 FSFilter HSM Hierarchical storage management
drivers

170000–174999 FSFilter Imaging ZIP-like drivers that provide a virtual
namespace

160000–169999 FSFilter Compression File-data compression drivers

140000–149999 FSFilter Encryption File-data encryption and decryption
drivers

130000–139999 FSFilter Virtualization Filepath virtualization drivers

120000–129999 FSFilter Physical Quota
Management

Drivers that manage quotes by using
physical block counts

100000–109999 FSFilter Open File Drivers that provide snapshots of
already-opened files

80000–89999 FSFilter Security
Enhancer

Drivers that apply file-based lockdowns
and enhanced access control

60000–69999 FSFilter Copy Protection Drivers that check for out-of-band data
on storage media

40000–49999 FSFilter Bottom Filters that must attach below all others

20000–29999 FSFilter System Reserved

<20000 FSFilter Infrastructure Reserved for system use but attaches
closest to the filesystem

Most EDR vendors register their minifilters in the FSFilter Anti-Virus
or FSFilter Activity Monitor group. Microsoft publishes a list of registered
altitudes, as well as their associated filenames and publishers. Table 6-2

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

108 Chapter 6

lists altitudes assigned to minifilters belonging to popular commercial EDR
solutions.

Table 6-2: Altitudes of Popular EDRs

Altitude Vendor EDR

389220 Sophos sophosed.sys

389040 SentinelOne sentinelmonitor.sys

328010 Microsoft wdfilter.sys

321410 CrowdStrike csagent.sys

388360 FireEye/Trellix fekern.sys

386720 Bit9/Carbon Black/VMWare carbonblackk.sys

While an administrator can change a minifilter’s altitude, the system
can load only one minifilter at a single altitude at one time.

Writing a Minifilter
Let’s walk through the process of writing a minifilter. Each minifilter
begins with a DriverEntry() function, defined in the same way as other driv-
ers. This function performs any required global initializations and then
registers the minifilter. Finally, it starts filtering I/O operations and returns
an appropriate value.

Beginning the Registration
The first, and most important, of these actions is registration, which the
DriverEntry() function performs by calling fltmgr!FltRegisterFilter(). This
function adds the minifilter to the list of registered minifilter drivers on the
host and provides the filter manager with information about the minifilter,
including a list of callback routines. This function is defined in Listing 6-1.

NTSTATUS FLTAPI FltRegisterFilter(
 [in] PDRIVER_OBJECT Driver,
 [in] const FLT_REGISTRATION *Registration,
 [out] PFLT_FILTER *RetFilter
);

Listing 6-1: The fltmgr!FltRegisterFilter() function definition

Of the three parameters passed to it, the Registration parameter is
the most interesting. This is a pointer to an FLT_REGISTRATION structure,
defined in Listing 6-2, which houses all the relevant information about the
minifilter.

typedef struct _FLT_REGISTRATION {
 USHORT Size;
 USHORT Version;

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 109

 FLT_REGISTRATION_FLAGS Flags;
 const FLT_CONTEXT_REGISTRATION *ContextRegistration;
 const FLT_OPERATION_REGISTRATION *OperationRegistration;
 PFLT_FILTER_UNLOAD_CALLBACK FilterUnloadCallback;
 PFLT_INSTANCE_SETUP_CALLBACK InstanceSetupCallback;
 PFLT_INSTANCE_QUERY_TEARDOWN_CALLBACK InstanceQueryTeardownCallback;
 PFLT_INSTANCE_TEARDOWN_CALLBACK InstanceTeardownStartCallback;
 PFLT_INSTANCE_TEARDOWN_CALLBACK InstanceTeardownCompleteCallback;
 PFLT_GENERATE_FILE_NAME GenerateFileNameCallback;
 PFLT_NORMALIZE_NAME_COMPONENT NormalizeNameComponentCallback;
 PFLT_NORMALIZE_CONTEXT_CLEANUP NormalizeContextCleanupCallback;
 PFLT_TRANSACTION_NOTIFICATION_CALLBACK TransactionNotificationCallback;
 PFLT_NORMALIZE_NAME_COMPONENT_EX NormalizeNameComponentExCallback;
 PFLT_SECTION_CONFLICT_NOTIFICATION_CALLBACK SectionNotificationCallback;
} FLT_REGISTRATION, *PFLT_REGISTRATION;

Listing 6-2: The FLT_REGISTRATION structure definition

The first two members of this structure set the structure size, which
is always sizeof(FLT_REGISTRATION), and the structure revision level, which is
always FLT_REGISTRATION_VERSION. The next member is flags, which is a bitmask
that may be zero or a combination of any of the following three values:

FLTFL_REGISTRATION_DO_NOT_SUPPORT_SERVICE_STOP (1)

The minifilter won’t be unloaded in the event of a service stop request.

FLTFL_REGISTRATION_SUPPORT_NPFS_MSFS (2)

The minifilter supports named pipe and mailslot requests.

FLTFL_REGISTRATION_SUPPORT_DAX_VOLUME (4)

The minifilter supports attaching to a Direct Access (DAX) volume.

Following this member is the context registration. This will be either
an array of FLT_CONTEXT_REGISTRATION structures or null. These contexts
allow a minifilter to associate related objects and preserve state across
I/O operations. After this array of context comes the critically important
operation registration array. This is a variable length array of FLT_OPERATION
_REGISTRATION structures, which are defined in Listing 6-3. While this array
can technically be null, it’s rare to see that configuration in an EDR sensor.
The minifilter must provide a structure for each type of I/O for which it
registers a pre-operation or post-operation callback routine.

typedef struct _FLT_OPERATION_REGISTRATION {
 UCHAR MajorFunction;
 FLT_OPERATION_REGISTRATION_FLAGS Flags;
 PFLT_PRE_OPERATION_CALLBACK PreOperation;
 PFLT_POST_OPERATION_CALLBACK PostOperation;
 PVOID Reserved1;
} FLT_OPERATION_REGISTRATION, *PFLT_OPERATION_REGISTRATION;

Listing 6-3: The FLT_OPERATION_REGISTRATION structure definition

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

110 Chapter 6

The first parameter indicates which major function the minifilter
is interested in processing. These are constants defined in wdm.h, and
Table 6-3 lists some of those most relevant to security monitoring.

Table 6-3: Major Functions and Their Purposes

Major function Purpose

IRP_MJ_CREATE (0x00) A new file is being created or a handle to an
existing one is being opened .

IRP_MJ_CREATE_NAMED_PIPE (0x01) A named pipe is being created or opened .

IRP_MJ_CLOSE (0x02) A handle to a file object is being closed .

IRP_MJ_READ (0x03) Data is being read from a file .

IRP_MJ_WRITE (0x04) Data is being written to a file .

IRP_MJ_QUERY_INFORMATION (0x05) Information about a file, such as its creation time,
has been requested .

IRP_MJ_SET_INFORMATION (0x06) Information about a file, such as its name, is being
set or updated .

IRP_MJ_QUERY_EA (0x07) A file’s extended information has been requested .

IRP_MJ_SET_EA (0x08) A file’s extended information is being set or updated .

IRP_MJ_LOCK_CONTROL (0x11) A lock is being placed on a file, such as via a call
to kernel32!LockFileEx() .

IRP_MJ_CREATE_MAILSLOT (0x13) A new mailslot is being created or opened .

IRP_MJ_QUERY_SECURITY (0x14) Security information about a file is being requested .

IRP_MJ_SET_SECURITY (0x15) Security information related to a file is being set or
updated .

IRP_MJ_SYSTEM_CONTROL (0x17) A new driver has been registered as a supplier of
Windows Management Instrumentation .

The next member of the structure specifies the flags. This bitmask
describes when the callback functions should be invoked for cached I/O or
paging I/O operations. At the time of this writing, there are four supported
flags, all of which are prefixed with FLTFL_OPERATION_REGISTRATION_. First,
SKIP_PAGING_IO indicates whether a callback should be invoked for IRP-based
read or write paging I/O operations. The SKIP_CACHED_IO flag is used to pre-
vent the invocation of callbacks on fast I/O-based read or write cached I/O
operations. Next, SKIP_NON_DASD_IO is used for requests issued on a Direct
Access Storage Device (DASD) volume handle. Finally, SKIP_NON_CACHED_NON
_PAGING_IO prevents callback invocation on read or write I/O operations that
are not cached or paging operations.

Defining Pre-operation Callbacks
The next two members of the FLT_OPERATION_REGISTRATION structure define the
pre-operation or post-operation callbacks to be invoked when each of
the target major functions occurs on the system. Pre-operation callbacks

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 111

are passed via a pointer to an FLT_PRE_OPERATION_CALLBACK structure, and
post-operation routines are specified as a pointer to an FLT_POST _OPERATION
_CALLBACK structure. While these functions’ definitions aren’t too dissimilar,
their capabilities and limitations vary substantially.

As with callbacks in other types of drivers, pre-operation callback
functions allow the developer to inspect an operation on its way to its des-
tination (the target filesystem, in the case of a minifilter). These callback
functions receive a pointer to the callback data for the operation and some
opaque pointers for the objects related to the current I/O request, and they
return an FLT_PREOP_CALLBACK_STATUS return code. In code, this would look
like what is shown in Listing 6-4.

PFLT_PRE_OPERATION_CALLBACK PfltPreOperationCallback;

FLT_PREOP_CALLBACK_STATUS PfltPreOperationCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{...}

Listing 6-4: Registering a pre-operation callback

The first parameter, Data, is the most complex of the three and contains
all the major information related to the request that the minifilter is pro-
cessing. The FLT_CALLBACK_DATA structure is used by both the filter manager
and the minifilter to process I/O operations and contains a ton of useful
data for any EDR agent monitoring filesystem operations. Some of the
important members of this structure include:

Flags A bitmask that describes the I/O operation. These flags may
come preset from the filter manager, though the minifilter may set
additional flags in some circumstances. When the filter manager initial-
izes the data structure, it sets a flag to indicate what type of I/O opera-
tion it represents: either fast I/O, filter, or IRP operations. The filter
manager may also set flags indicating whether a minifilter generated or
reissued the operation, whether it came from the non-paged pool, and
whether the operation completed.

Thread A pointer to the thread that initiated the I/O request. This is
useful for identifying the application performing the operation.

Iopb The I/O parameter block that contains information about IRP-
based operations (for example, IRP_BUFFERED_IO, which indicates that it is
a buffered I/O operation); the major function code; special flags related
to the operation (for example, SL_CASE_SENSITIVE, which informs drivers in
the stack that filename comparisons should be case sensitive); a pointer
to the file object that is the target of the operation; and an FLT_PARAMETERS
structure containing the parameters unique to the specific I/O operation
specified by the major or minor function code member of the structure.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

112 Chapter 6

IoStatus A structure that contains the completion status of the I/O
operation set by the filter manager.

TagData A pointer to an FLT_TAG_DATA_BUFFER structure containing infor-
mation about reparse points, such as in the case of NTFS hard links or
junctions.

RequestorMode A value indicating whether the request came from user
mode or kernel mode.

This structure contains much of the information that an EDR agent
needs to track file operations on the system. The second parameter passed
to the pre-operation callback, a pointer to an FLT_RELATED_OBJECTS struc-
ture, provides supplemental information. This structure contains opaque
pointers to the object associated with the operation, including the vol-
ume, minifilter instance, and file object (if present). The last parameter,
CompletionContext, contains an optional context pointer that will be passed
to the correlated post-operation callback if the minifilter returns FLT_PREOP
_SUCCESS_WITH_CALLBACK or FLT_PREOP_SYNCHRONIZE.

On completion of the routine, the minifilter must return an FLT_PREOP
_CALLBACK_STATUS value. Pre-operation callbacks may return one of seven sup-
ported values:

FLT_PREOP_SUCCESS_WITH_CALLBACK (0)

Return the I/O operation to the filter manager for processing and
instruct it to call the minifilter’s post-operation callback during
completion.

FLT_PREOP_SUCCESS_NO_CALLBACK (1)

Return the I/O operation to the filter manager for processing and
instruct it not to call the minifilter’s post-operation callback during
completion.

FLT_PREOP_PENDING (2)

Pend the I/O operation and do not process it further until the minifilter
calls fltmgr!FltCompletePendedPreOperation().

FLT_PREOP_DISALLOW_FASTIO (3)

Block the fast I/O path in the operation. This code instructs the filter
manager not to pass the operation to any other minifilters below the
current one in the stack and to only call the post-operation callbacks of
those drivers at higher altitudes.

FLT_PREOP_COMPLETE (4)

Instruct the filter manager not to send the request to minifilters below
the current driver in the stack and to only call the post-operation call-
backs of those minifilters above it in the driver stack.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 113

FLT_PREOP_SYNCHRONIZE (5)

Pass the request back to the filter manager but don’t complete it. This
code ensures that the minifilter’s post-operation callback is called at
IRQL ≤ APC_LEVEL in the context of the original thread.

FLT_PREOP_DISALLOW_FSFILTER_IO (6)

Disallow a fast QueryOpen operation and force the operation down the
slower path, causing the I/O manager to process the request using an
open, query, or close operation on the file.

The filter manager invokes the pre-operation callbacks for all minifilters
that have registered functions for the I/O operation being processed before
passing their requests to the filesystem, beginning with the highest altitude.

Defining Post-operation Callbacks
After the filesystem performs the operations defined in every minifilter’s
pre-operation callbacks, control is passed up the filter stack to the filter
manager. The filter manager then invokes the post-operation callbacks
of all minifilters for the request type, beginning with the lowest altitude.
These post-operation callbacks have a similar definition to the pre-operation
routines, as shown in Listing 6-5.

PFLT_POST_OPERATION_CALLBACK PfltPostOperationCallback;

FLT_POSTOP_CALLBACK_STATUS PfltPostOperationCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [in, optional] PVOID CompletionContext,
 [in] FLT_POST_OPERATION_FLAGS Flags
)
{...}

Listing 6-5: Post-operation callback routine definitions

Two notable differences here are the addition of the Flags parameter
and the different return type. The only documented flag that a minifilter
can pass is FLTFL_POST_OPERATION_DRAINING, which indicates that the minifilter
is in the process of unloading. Additionally, post-operation callbacks can
return different statuses. If the callback returns FLT_POSTOP_FINISHED _PROCESSING
(0), the minifilter has completed its post-operation callback routine and is
passing control back to the filter manager to continue processing the I/O
request. If it returns FLT_POSTOP_MORE_PROCESSING_REQUIRED (1), the minifilter has
posted the IRP-based I/O operation to a work queue and halted completion
of the request until the work item completes, and it calls fltmgr!FltComplete
PendedPostOperation(). Lastly, if it returns FLT_POSTOP _DISALLOW_FSFILTER_IO (2),
the minifilter is disallowing a fast QueryOpen operation and forcing the opera-
tion down the slower path. This is the same as FLT_PREOP_DISALLOW_FSFILTER_IO.

Post-operation callbacks have some notable limitations that reduce
their viability for security monitoring. The first is that they’re invoked in

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

114 Chapter 6

an arbitrary thread unless the pre-operation callback passes the FLT_PREOP
_SYNCHRONIZE flag, preventing the system from attributing the operation to
the requesting application. Next is that post-operation callbacks are invoked
at IRQL ≤ DISPATCH_LEVEL. This means that certain operations are
restricted, including accessing most synchronization primitives (for example,
mutexes), calling kernel APIs that require an IRQL ≤ DISPATCH_LEVEL,
and accessing paged memory. One workaround to these limitations involves
delaying the execution of the post-operation callback via the use of fltmgr!Flt
DoCompletionProcessingWhenSafe(), but this solution has its own challenges.

The array of these FLT_OPERATION_REGISTRATION structures passed in the
OperationRegistration member of FLT_REGISTRATION may look like Listing 6-6.

const FLT_OPERATION_REGISTRATION Callbacks[] = {
 {IRP_MJ_CREATE, 0, MyPreCreate, MyPostCreate},
 {IRP_MJ_READ, 0, MyPreRead, NULL},
 {IRP_MJ_WRITE, 0, MyPreWrite, NULL},
 {IRP_MJ_OPERATION_END}
};

Listing 6-6: An array of operation registration callback structures

This array registers pre- and post-operation callbacks for IRP_MJ_CREATE
and only pre-operation callbacks for IRP_MJ_READ and IRP_MJ_WRITE. No flags
are passed in for any of the target operations. Also note that the final ele-
ment in the array is IRP_MJ_OPERATION_END. Microsoft requires this value to be
present at the end of the array, and it serves no functional purpose in the
context of monitoring.

Defining Optional Callbacks
The last section in the FLT_REGISTRATION structure contains the optional call-
backs. The first three callbacks, FilterUnloadCallback, InstanceSetupCallback,
and InstanceQueryTeardownCallback, may all technically be null, but this will
impose some restrictions on the minifilter and system behavior. For example,
the system won’t be able to unload the minifilter or attach to new filesystem
volumes. The rest of the callbacks in this section of the structure relate to
various functionality provided by the minifilter. These include things such as
the interception of filename requests (GenerateFileNameCallback) and filename
normalization (NormalizeNameComponentCallback). In general, only the first three
semi-optional callbacks are registered, and the rest are rarely used.

Activating the Minifilter
After all callback routines have been set, a pointer to the created
FLT_REGISTRATION structure is passed as the second parameter to fltmgr!
FltRegisterFilter(). Upon completion of this function, an opaque filter
pointer (PFLT_FILTER) is returned to the caller in the RetFilter parameter.
This pointer uniquely identifies the minifilter and remains static as long as
the driver is loaded on the system. This pointer is typically preserved as a
global variable.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 115

When the minifilter is ready to start processing events, it passes the
PFLT_FILTER pointer to fltmgr!FltStartFilter(). This notifies the filter man-
ager that the driver is ready to attach to filesystem volumes and start
filtering I/O requests. After this function returns, the minifilter will be
considered active and sit inline of all relevant filesystem operations. The
callbacks registered in the FLT_REGISTRATION structure will be invoked for
their associated major functions. Whenever the minifilter is ready to unload
itself, it passes the PFLT_FILTER pointer to fltmgr!FltUnregisterFilter() to
remove any contexts that the minifilter has set on files, volumes, and other
components and calls the registered InstanceTeardownStartCallback and
InstanceTeardownCompleteCallback functions.

Managing a Minifilter
Compared to working with other drivers, the process of installing, load-
ing, and unloading a minifilter requires special consideration. This is
because minifilters have specific requirements related to the setting of
registry values. To make the installation process easier, Microsoft recom-
mends installing minifilters through a setup information (INF) file. The
format of these INF files is beyond the scope of this book, but there are
some interesting details relevant to how minifilters work that are worth
mentioning.

The ClassGuid entry in the Version section of the INF file is a GUID that
corresponds to the desired load-order group (for example, FSFilter Activity
Monitor). In the AddRegistry section of the file, which specifies the registry
keys to be created, you’ll find information about the minifilter’s altitude.
This section may include multiple similar entries to describe where the sys-
tem should load various instances of the minifilter. The altitude can be set
to the name of a variable (for example, %MyAltitude%) defined in the Strings
section of the INF file. Lastly, the ServiceType entry under the ServiceInstall
section is always set to SERVICE_FILE_SYSTEM_DRIVER (2).

Executing the INF installs the driver, copying files to their specified
locations and setting up the required registry keys. Listing 6-7 shows an
example of what this looks like in the registry keys for WdFilter, Microsoft
Defender’s minifilter driver.

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\WdFilter\" | Select *
-Exclude PS* | fl

DependOnService : {FltMgr}
Description : @%ProgramFiles%\Windows Defender\MpAsDesc.dll,-340
DisplayName : @%ProgramFiles%\Windows Defender\MpAsDesc.dll,-330
ErrorControl : 1
Group : FSFilter Anti-Virus
ImagePath : system32\drivers\wd\WdFilter.sys
Start : 0
SupportedFeatures : 7
Type : 2

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

116 Chapter 6

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\WdFilter\Instances\
WdFilter Instance" | Select * -Exclude PS* | fl

Altitude : 328010
Flags : 0

Listing 6-7: Viewing WdFilter’s altitude with PowerShell

The Start key dictates when the minifilter will be loaded. The service
can be started and stopped using the Service Control Manager APIs, as
well as through a client such as sc.exe or the Services snap-in. In addition,
we can manage minifilters with the filter manager library, FltLib, which
is leveraged by the fltmc.exe utility included by default on Windows. This
setup also includes setting the altitude of the minifilter, which for WdFilter
is 328010.

Detecting Adversary Tradecraft with Minifilters
Now that you understand the inner workings of minifilters, let’s explore
how they contribute to the detection of attacks on a system. As discussed
in “Writing a Minifilter” on page 108, a minifilter can register pre- or post-
operation callbacks for activities that target any filesystem, including NTFS,
named pipes, and mailslots. This provides an EDR with an extremely pow-
erful sensor for detecting adversary activity on the host.

File Detections
If an adversary interacts with the filesystem, such as by creating new files or
modifying the contents of existing files, the minifilter has an opportunity
to detect the behavior. Modern attacks have tended to avoid dropping arti-
facts directly onto the host filesystem in this way, embracing the “disk is
lava” mentality, but many hacking tools continue to interact with files
due to limitations of the APIs being leveraged. For example, consider
dbghelp!MiniDumpWriteDump(), a function used to create process memory
dumps. This API requires that the caller pass in a handle to a file for the
dump to be written to. The attacker must work with files if they want to use
this API, so any minifilter that processes IRP_MJ_CREATE or IRP_MJ_WRITE I/O
operations can indirectly detect those memory-dumping operations.

Additionally, the attacker has no control over the format of the data
being written to the file, allowing a minifilter to coordinate with a scanner
to detect a memory-dump file without using function hooking. An attacker
might try to work around this by opening a handle to an existing file and
overwriting its content with the dump of the target process’s memory, but
a minifilter monitoring IRP_MJ_CREATE could still detect this activity, as both
the creation of a new file and the opening of a handle to an existing file
would trigger it.

Some defenders use these concepts to implement filesystem canaries.
These are files created in key locations that users should seldom, if ever,
interact with. If an application other than a backup agent or the EDR

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 117

requests a handle to a canary file, the minifilter can take immediate
action, including crashing the system. Filesystem canaries provide strong
(though at times brutal) anti-ransomware control, as ransomware tends
to indiscriminately encrypt files on the host. By placing a canary file in a
directory nested deep in the filesystem, hidden from the user but still in
one of the paths typically targeted by ransomware, an EDR can limit the
damage to the files that the ransomware encountered before reaching the
canary.

Named Pipe Detections
Another key piece of adversary tradecraft that minifilters can detect highly
effectively is the use of named pipes. Many command-and-control agents,
like Cobalt Strike’s Beacon, make use of named pipes for tasking, I/O, and
linking. Other offensive techniques, such as those that use token imper-
sonation for privilege escalation, revolve around the creation of a named
pipe. In both cases, a minifilter monitoring IRP_MJ_CREATE_NAMED_PIPE requests
would be able to detect the attacker’s behavior, in much the same way as
those that detect file creation via IRP_MJ_CREATE.

Minifilters commonly look for the creation of anomalously named pipes,
or those originating from atypical processes. This is useful because many
tools used by adversaries rely on the use of named pipes, so an attacker who
wants to blend in should pick pipe and host process names that are typical
in the environment. Thankfully for attackers and defenders alike, Windows
makes enumerating existing named pipes easy, and we can straightforwardly
identify many of the common process-to-pipe relationships. One of the most
well-known named pipes in the realm of security is mojo. When a Chromium
process spawns, it creates several named pipes with the format mojo.PID.TID
.VALUE for use by an IPC abstraction library called Mojo. This named pipe
became popular after its inclusion in a well-known repository for document-
ing Cobalt Strike’s Malleable profile options.

There are a few problems with using this specific named pipe that a
minifilter can detect. The main one is related to the structured format-
ting used for the name of the pipe. Because Cobalt Strike’s pipe name is a
static attribute tied to the instance of the Malleable profile, it is immutable
at runtime. This means that an adversary would need to accurately predict
the process and thread IDs of their Beacon to ensure the attributes of their
process match those of the pipe name format used by Mojo. Remember that
minifilters with pre-operation callbacks for monitoring IRP_MJ_CREATE_NAMED
_PIPE requests are guaranteed to be invoked in the context of the calling
thread. This means that when a Beacon process creates the “mojo” named
pipe, the minifilter can check that its current context matches the informa-
tion in the pipe name. Pseudocode to demonstrate this would look like that
shown in Listing 6-8.

DetectMojoMismatch(string mojoPipeName)
{
 pid = GetCurrentProcessId();
 tid = GetCurrentThreadId();

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

118 Chapter 6

1 if (!mojoPipeName.beginsWith("mojo. " + pid + "." + tid + "."))

 {
 // Bad Mojo pipe found
 }

}

Listing 6-8: Detecting anomalous Mojo named pipes

Since the format used in Mojo named pipes is known, we can simply
concatenate the PID and TID 1 of the thread creating the named pipe and
ensure that it matches what is expected. If not, we can take some defensive
action.

Not every command inside Beacon will create a named pipe. There are
certain functions that will create an anonymous pipe (as in, a pipe without
a name), such as execute-assembly. These types of pipes have limited opera-
tional viability, as their name can’t be referenced and code can interact
with them through an open handle only. What they lose in functionality,
however, they gain in evasiveness.

Riccardo Ancarani’s blog post “Detecting Cobalt Strike Default
Modules via Named Pipe Analysis” details the OPSEC considerations
related to Beacon’s usage of anonymous pipes. In his research, he found
that while Windows components rarely used anonymous pipes, their cre-
ation could be profiled, and their creators could be used as viable spawnto
binaries. These included ngen.exe, wsmprovhost.exe, and firefox.exe, among oth-
ers. By setting their sacrificial processes to one of these executables, attack-
ers could ensure that any actions resulting in the creation of anonymous
pipes would likely remain undetected.

Bear in mind, however, that activities making use of named pipes would
still be vulnerable to detection, so operators would need to restrict their
tradecraft to activities that create anonymous pipes only.

Evading Minifilters
Most strategies for evading an EDR’s minifilters rely on one of three tech-
niques: unloading, prevention, or interference. Let’s walk through exam-
ples of each to demonstrate how we can use them to our advantage.

Unloading
The first technique is to completely unload the minifilter. While you’ll need
administrator access to do this (specifically, the SeLoadDriverPrivilege token
privilege), it’s the most surefire way to evade the minifilter. After all, if the
driver is no longer on the stack, it can’t capture events.

Unloading the minifilter can be as simple as calling fltmc.exe unload, but
if the vendor has put a lot of effort into hiding the presence of their mini-
filter, it might require complex custom tooling. To explore this idea further,
let’s target Sysmon, whose minifilter, SysmonDrv, is configured in the regis-
try, as shown in Listing 6-9.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 119

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv" | Select *
-Exclude PS* | fl

Type : 1
Start : 0
ErrorControl : 1
ImagePath : SysmonDrv.sys
DisplayName : SysmonDrv
Description : System Monitor driver

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv\Instances\
Sysmon Instance\" | Select * -Exclude PS* | fl

Altitude : 385201
Flags : 0

Listing 6-9: Using PowerShell to view SysmonDrv’s configuration

By default, SysmonDrv has the altitude 385201, and we can easily
unload it via a call to fltmc.exe unload SysmonDrv, assuming the caller has
the required privilege. Doing so would create a FilterManager event ID of 1,
which indicates that a filesystem filter was unloaded, and a Sysmon event ID
of 255, which indicates a driver communication failure. However, Sysmon
will no longer receive events.

To complicate this process for attackers, the minifilter sometimes uses
a random service name to conceal its presence on the system. In the case of
Sysmon, an administrator can implement this approach during installation
by passing the -d flag to the installer and specifying a new name. This pre-
vents an attacker from using the built-in fltmc.exe utility unless they can also
identify the service name.

However, an attacker can abuse another feature of production mini-
filters to locate the driver and unload it: their altitudes. Because Microsoft
reserves specific altitudes for certain vendors, an attacker can learn these
values and then simply walk the registry or use fltlib!FilterFindNext() to
locate any driver with the altitude in question. We can’t use fltmc.exe to
unload minifilters based on an altitude, but we can either resolve the driver’s
name in the registry or pass the minifilter’s name to fltlib!FilterUnload() for
tooling that makes use of fltlib!FilterFindNext(). This is how the Shhmon
tool, which hunts and unloads SysmonDrv, works under the hood.

Defenders could further thwart attackers by modifying the minifilter’s
altitude. This isn’t recommended in production applications, however,
because another application might already be using the chosen value. EDR
agents sometimes operate across millions of devices, raising the odds of
an altitude collision. To mitigate this risk, a vendor might compile a list of
active minifilter allocations from Microsoft and choose one not already in
use, although this strategy isn’t bulletproof.

In the case of Sysmon, defenders could either patch the installer to
set the altitude value in the registry to a different value upon installation
or manually change the altitude after installation by directly modifying
the registry value. Since Windows doesn’t place any technical controls on

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

120 Chapter 6

altitudes, the engineer could move SysmonDrv to any altitude they wish.
Bear in mind, however, that the altitude affects the minifilter’s position in
the stack, so choosing too low a value could have unintended implications
for the efficacy of the tool.

Even with all these obfuscation methods applied, an attacker could
still unload a minifilter. Starting in Windows 10, both the vendor and
Microsoft must sign a production driver before it can be loaded onto
the system, and because these signatures are meant to identify the driv-
ers, they include information about the vendor that signed them. This
information is often enough to tip an adversary off to the presence of the
target minifilter. In practice, the attacker could walk the registry or use
the fltlib!FilterFindNext() approach to enumerate minifilters, extract
the path to the driver on disk, and parse the digital signatures of all
enumerated files until they’ve identified a file signed by an EDR. At that
point, they can unload the minifilter using one of the previously covered
methods.

As you’ve just learned, there are no particularly great ways to hide a
minifilter on the system. This doesn’t mean, however, that these obfusca-
tions aren’t worthwhile. An attacker might lack the tooling or knowledge
to counter the obfuscations, providing time for the EDR’s sensors to detect
their activity without interference.

Prevention
To prevent filesystem operations from ever passing through an EDR’s
minifilter, attackers can register their own minifilter and use it to force the
completion of I/O operations. As an example, let’s register a malicious pre-
operation callback for IRP_MJ_WRITE requests, as shown in Listing 6-10.

PFLT_PRE_OPERATION_CALLBACK EvilPreWriteCallback;

FLT_PREOP_CALLBACK_STATUS EvilPreWriteCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{
 --snip--
}

Listing 6-10: Registering a malicious pre-operation callback routine

When the filter manager invokes this callback routine, it must return
an FLT_PREOP_CALLBACK_STATUS value. One of the possible values, FLT_PREOP
_COMPLETE, tells the filter manager that the current minifilter is in the pro-
cess of completing the request, so the request shouldn’t be passed to any
minifilters below the current altitude. If a minifilter returns this value, it
must set the NTSTATUS value in the Status member of the I/O status block to
the operation’s final status. Antivirus engines whose minifilters communi-
cate with user-mode scanning engines commonly use this functionality to

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

Filesystem Minifilter Drivers 121

determine whether malicious content is being written to a file. If the scan-
ner indicates to the minifilter that the content is malicious, the minifilter
completes the request and returns a failure status, such as STATUS_VIRUS
_INFECTED, to the caller.

But attackers can abuse this feature of minifilters to prevent the secu-
rity agent from ever intercepting their filesystem operations. Using the ear-
lier callback we registered, this would look something like what’s shown in
Listing 6-11.

FLT_PREOP_CALLBACK_STATUS EvilPreWriteCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{
 --snip--
 if (IsThisMyEvilProcess(PsGetCurrentProcessId())
 {
 --snip--
 1 Data->IoStatus.Status = STATUS_SUCCESS;
 return FLT_PREOP_COMPLETE
 }
 --snip--
}

Listing 6-11: Intercepting write operations and forcing their completion

The attacker first inserts their malicious minifilter at an altitude higher
than the minifilter belonging to the EDR. Inside the malicious minifilter’s
pre-operation callback would exist logic to complete the I/O requests com-
ing from the adversary’s processes in user mode 1, preventing them from
being passed down the stack to the EDR.

Interference
A final evasion technique, interference, is built around the fact that a mini-
filter can alter members of the FLT_CALLBACK_DATA structure passed to its call-
backs on a request. An attacker can modify any members of this structure
except the RequestorMode and Thread members. This includes the file pointer
in the FLT_IO_PARAMETER_BLOCK structure’s TargetFileObject member. The only
requirement of the malicious minifilter is that it calls fltmgr!FltSetCallback
DataDirty(), which indicates that the callback data structure has been mod-
ified when it is passing the request to minifilters lower in the stack.

An adversary can abuse this behavior to pass bogus data to the mini-
filter associated with an EDR by inserting itself anywhere above it in the
stack, modifying the data tied to the request and passing control back to
the filter manager. A minifilter that receives the modified request may
evaluate whether FLTFL_CALLBACK_DATA_DIRTY, which is set by fltmgr!FltSet
CallbackDataDirty(), is present and act accordingly, but the data will still
be modified.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

122 Chapter 6

Conclusion
Minifilters are the de facto standard for monitoring filesystem activity on
Windows, whether it be for NTFS, named pipes, or even mailslots. Their
implementation is somewhat more complex than the drivers discussed ear-
lier in this book, but the way they work is very similar; they sit inline of some
system operation and receive data about the activity. Attackers can evade
minifilters by abusing some logical issue in the sensor or even unloading
the driver entirely, but most adversaries have adapted their tradecraft to
drastically limit creating new artifacts on disk to reduce the chances of a
minifilter picking up their activity.

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand

