
While the drivers covered in previous chap-
ters can monitor many important events on 

the system, they aren’t able to detect a partic-
ularly critical kind of activity: filesystem opera-

tions. Using filesystem minifilter drivers, or minifilters for 
short, endpoint security products can learn about the 
files being created, modified, written to, and deleted.

These drivers are useful because they can observe an attacker’s interac-
tions with the filesystem, such as the dropping of malware to disk. Often, 
they work in conjunction with other components of the system. By integrat-
ing with the agent’s scanning engine, for example, they can enable the EDR 
to scan files.

Minifilters might, of course, monitor the native Windows filesystem, 
which is called the New Technology File System (NTFS) and is imple-
mented in ntfs.sys. However, they might also monitor other important 
filesystems, including named pipes, a bidirectional inter-process communi-
cation mechanism implemented in npfs.sys, and mailslots, a unidirectional 
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inter-process communication mechanism implemented in msfs.sys. Adversary 
tools, particularly command-and-control agents, tend to make heavy use of 
these mechanisms, so tracking their activities provides crucial telemetry. 
For example, Cobalt Strike’s Beacon uses named pipes for tasking and the 
linking of peer-to-peer agents.

Minifilters are similar in design to the drivers discussed in the previous 
chapters, but this chapter covers some unique details about their implemen-
tations, capabilities, and operations on Windows. We’ll also discuss evasion 
techniques that attackers can leverage to interfere with them.

Legacy Filters and the Filter Manager
Before Microsoft introduced minifilters, EDR developers would write legacy 
filter drivers to monitor filesystem operations. These drivers would sit on 
the filesystem stack, directly inline of user-mode calls destined for the file-
system, as shown in Figure 6-1.

I/O managerUser request to 
interact with a file

Legacy filter 
driver A

Legacy filter 
driver B

User mode Kernel mode

Filesystem driver
(for example, 

ntfs.sys)

Figure 6-1: The legacy filter driver architecture

These drivers were notoriously difficult to develop and support in 
production environments. A 2019 article published in The NT Insider, 
titled “Understanding Minifilters: Why and How File System Filter Drivers 
Evolved,” highlights seven large problems that developers face when writing 
legacy filter drivers:

Confusing Filter Layering

In cases when there is more than one legacy filter installed on the 
system, the architecture defines no order for how these drivers 
should be placed on the filesystem stack. This prevents the driver 
developer from knowing when the system will load their driver in 
relation to the others.

A Lack of Dynamic Loading and Unloading

Legacy filter drivers can’t be inserted into a specific location on the 
device stack and can only be loaded at the top of the stack. Additionally, 
legacy filters can’t be unloaded easily and typically require a full system 
reboot to unload.

Tricky Filesystem-Stack Attachment and Detachment

The mechanics of how the filesystem stack attaches and detaches 
devices are extremely complicated, and developers must have a 
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substantial amount of arcane knowledge to ensure that their driver can 
appropriately handle odd edge cases.

Indiscriminate IRP Processing

Legacy filter drivers are responsible for processing all Interrupt Request 
Packets (IRPs) sent to the device stack, regardless of whether they are 
interested in the IRPs or not.

Challenges with Fast I/O Data Operations

Windows supports a mechanism for working with cached files, called 
Fast I/O, that provides an alternative to its standard packet-based I/O 
model. It relies on a dispatch table implemented in the legacy drivers. 
Each driver processes Fast I/O requests and passes them down the stack 
to the next driver. If a single driver in the stack lacks a dispatch table, it 
disables Fast I/O processing for the entire device stack.

An Inability to Monitor Non-data Fast I/O Operations

In Windows, filesystems are deeply integrated into other system compo-
nents, such as the memory manager. For instance, when a user requests 
that a file be mapped into memory, the memory manager calls the Fast 
I/O callback AcquireFileForNtCreateSection. These non-data requests 
always bypass the device stack, making it hard for a legacy filter driver 
to collect information about them. It wasn’t until Windows XP, which 
introduced nt!FsRtlRegisterFileSystemFilterCallbacks(), that developers 
could request this information.

Issues with Handling Recursion

Filesystems make heavy use of recursion, so filters in the filesystem 
stack must support it as well. However, due to the way that Windows 
manages I/O operations, this is easier said than done. Because  
each request passes through the entire device stack, a driver could 
easily deadlock or exhaust its resources if it handles recursion  
poorly.

To address some of these limitations, Microsoft introduced the filter 
manager model. The filter manager (fltmgr.sys) is a driver that ships with 
Windows and exposes functionality commonly used by filter drivers  
when intercepting filesystem operations. To leverage this functional-
ity, developers can write minifilters. The filter manager then intercepts 
requests destined for the filesystem and passes them to the minifilters 
loaded on the system, which exist in their own sorted stack, as shown in 
Figure 6-2.

Minifilters are substantially easier to develop than their legacy coun-
terparts, and EDRs can manage them more easily by dynamically loading 
and unloading them on a running system. The ability to access function-
ality exposed by the filter manager makes for less complex drivers, allow-
ing for easier maintenance. Microsoft has made tremendous efforts to 
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move developers away from the legacy filter model and over to the mini-
filter model. It has even included an optional registry value that allows 
administrators to block legacy filter drivers from being loaded on the sys-
tem altogether.

I/O managerUser request to 
interact with a file Filter manager

Filesystem driver
(for example, 

ntfs.sys)

User mode Kernel mode

Minifilter C
altitude: 145000

Minifilter B
altitude: 268000

Minifilter B
altitude: 309000

Figure 6-2: The filter manager and minifilter architecture

Minifilter Architecture
Minifilters have a unique architecture in several respects. First is the role of 
the filter manager itself. In a legacy architecture, filesystem drivers would 
filter I/O requests directly, while in a minifilter architecture, the filter 
manager handles this task before passing information about the requests 
to the minifilters loaded on the system. This means that minifilters are only 
indirectly attached to the filesystem stack. Also, they register with the filter 
manager for the specific operations they’re interested in, removing the 
need for them to handle all I/O requests.

Next is how they interact with registered callback routines. As with the 
drivers discussed in the previous chapters, minifilters may register both pre- 
and post-operation callbacks. When a supported operation occurs, the filter 
manager first calls the correlated pre-operation callback function in each of 
the loaded minifilters. Once a minifilter completes its pre-operation routine, 
it passes control back to the filter manager, which calls the next callback 
function in the subsequent driver. When all drivers have completed their 
pre-operation callbacks, the request travels to the filesystem driver, which 
processes the operation. After receiving the I/O request for completion, the 
filter manager invokes the post-operation callback functions in the mini-
filters in reverse order. Once the post-operation callbacks complete, control 
is transferred back to the I/O manager, which eventually passes control back 
to the caller application.

Each minifilter has an altitude, which is a number that identifies its loca-
tion in the minifilter stack and determines when the system will load that 
minifilter. Altitudes address the issue of ordering that plagued legacy filter 
drivers. Ideally, Microsoft assigns altitudes to the minifilters of production 
applications, and these values are specified in the drivers’ registry keys, 
under Altitude. Microsoft sorts altitudes into load-order groups, which are 
shown in Table 6-1.
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Table 6-1: Microsoft’s Minifilter Load-Order Groups

Altitude range Load-order group name Minifilter role

420000–429999 Filter Legacy filter drivers

400000–409999 FSFilter Top Filters that must attach above all others

360000–389999 FSFilter Activity Monitor Drivers that observe and report on file I/O

340000–349999 FSFilter Undelete Drivers that recover deleted files

320000–329998 FSFilter Anti-Virus Antimalware drivers

300000–309998 FSFilter Replication Drivers that copy data to a remote system

280000–289998 FSFilter Continuous 
Backup

Drivers that copy data to backup media

260000–269998 FSFilter Content 
Screener

Drivers that prevent the creation of  
specific files or content

240000–249999 FSFilter Quota 
Management

Drivers that provide enhanced filesystem 
quotas that limit the space allowed for a 
volume or folder

220000–229999 FSFilter System Recovery Drivers that maintain operating system 
integrity

200000–209999 FSFilter Cluster File 
System

Drivers used by applications that 
provide file server metadata across a 
network

180000–189999 FSFilter HSM Hierarchical storage management 
drivers

170000–174999 FSFilter Imaging ZIP-like drivers that provide a virtual 
namespace

160000–169999 FSFilter Compression File-data compression drivers

140000–149999 FSFilter Encryption File-data encryption and decryption 
drivers

130000–139999 FSFilter Virtualization Filepath virtualization drivers

120000–129999 FSFilter Physical Quota 
Management

Drivers that manage quotes by using 
physical block counts

100000–109999 FSFilter Open File Drivers that provide snapshots of 
already-opened files

80000–89999 FSFilter Security 
Enhancer

Drivers that apply file-based lockdowns 
and enhanced access control

60000–69999 FSFilter Copy Protection Drivers that check for out-of-band data 
on storage media

40000–49999 FSFilter Bottom Filters that must attach below all others

20000–29999 FSFilter System Reserved

<20000 FSFilter Infrastructure Reserved for system use but attaches  
closest to the filesystem

Most EDR vendors register their minifilters in the FSFilter Anti-Virus 
or FSFilter Activity Monitor group. Microsoft publishes a list of registered 
altitudes, as well as their associated filenames and publishers. Table 6-2 
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lists altitudes assigned to minifilters belonging to popular commercial EDR 
solutions.

Table 6-2: Altitudes of Popular EDRs

Altitude Vendor EDR

389220 Sophos sophosed.sys

389040 SentinelOne sentinelmonitor.sys

328010 Microsoft wdfilter.sys

321410 CrowdStrike csagent.sys

388360 FireEye/Trellix fekern.sys

386720 Bit9/Carbon Black/VMWare carbonblackk.sys

While an administrator can change a minifilter’s altitude, the system 
can load only one minifilter at a single altitude at one time.

Writing a Minifilter
Let’s walk through the process of writing a minifilter. Each minifilter 
begins with a DriverEntry() function, defined in the same way as other driv-
ers. This function performs any required global initializations and then 
registers the minifilter. Finally, it starts filtering I/O operations and returns 
an appropriate value.

Beginning the Registration
The first, and most important, of these actions is registration, which the 
DriverEntry() function performs by calling fltmgr!FltRegisterFilter(). This 
function adds the minifilter to the list of registered minifilter drivers on the 
host and provides the filter manager with information about the minifilter, 
including a list of callback routines. This function is defined in Listing 6-1.

NTSTATUS FLTAPI FltRegisterFilter(
 [in] PDRIVER_OBJECT  Driver,
 [in] const FLT_REGISTRATION *Registration,
 [out] PFLT_FILTER  *RetFilter
);

Listing 6-1: The fltmgr!FltRegisterFilter() function definition

Of the three parameters passed to it, the Registration parameter is 
the most interesting. This is a pointer to an FLT_REGISTRATION structure, 
defined in Listing 6-2, which houses all the relevant information about the 
minifilter.

typedef struct _FLT_REGISTRATION {
 USHORT  Size;
 USHORT  Version;
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 FLT_REGISTRATION_FLAGS Flags;
 const FLT_CONTEXT_REGISTRATION  *ContextRegistration;
 const FLT_OPERATION_REGISTRATION  *OperationRegistration;
 PFLT_FILTER_UNLOAD_CALLBACK  FilterUnloadCallback;
 PFLT_INSTANCE_SETUP_CALLBACK  InstanceSetupCallback;
 PFLT_INSTANCE_QUERY_TEARDOWN_CALLBACK InstanceQueryTeardownCallback;
 PFLT_INSTANCE_TEARDOWN_CALLBACK  InstanceTeardownStartCallback;
 PFLT_INSTANCE_TEARDOWN_CALLBACK  InstanceTeardownCompleteCallback;
 PFLT_GENERATE_FILE_NAME   GenerateFileNameCallback;
 PFLT_NORMALIZE_NAME_COMPONENT  NormalizeNameComponentCallback;
 PFLT_NORMALIZE_CONTEXT_CLEANUP  NormalizeContextCleanupCallback;
 PFLT_TRANSACTION_NOTIFICATION_CALLBACK TransactionNotificationCallback;
 PFLT_NORMALIZE_NAME_COMPONENT_EX  NormalizeNameComponentExCallback;
 PFLT_SECTION_CONFLICT_NOTIFICATION_CALLBACK SectionNotificationCallback;
} FLT_REGISTRATION, *PFLT_REGISTRATION;

Listing 6-2: The FLT_REGISTRATION structure definition

The first two members of this structure set the structure size, which 
is always sizeof(FLT_REGISTRATION), and the structure revision level, which is 
always FLT_REGISTRATION_VERSION. The next member is flags, which is a bitmask 
that may be zero or a combination of any of the following three values:

FLTFL_REGISTRATION_DO_NOT_SUPPORT_SERVICE_STOP (1)

The minifilter won’t be unloaded in the event of a service stop request.

FLTFL_REGISTRATION_SUPPORT_NPFS_MSFS (2)

The minifilter supports named pipe and mailslot requests.

FLTFL_REGISTRATION_SUPPORT_DAX_VOLUME (4)

The minifilter supports attaching to a Direct Access (DAX) volume.

Following this member is the context registration. This will be either 
an array of FLT_CONTEXT_REGISTRATION structures or null. These contexts 
allow a minifilter to associate related objects and preserve state across 
I/O operations. After this array of context comes the critically important 
operation registration array. This is a variable length array of FLT_OPERATION 
_REGISTRATION structures, which are defined in Listing 6-3. While this array 
can technically be null, it’s rare to see that configuration in an EDR sensor. 
The minifilter must provide a structure for each type of I/O for which it 
registers a pre-operation or post-operation callback routine.

typedef struct _FLT_OPERATION_REGISTRATION {
 UCHAR    MajorFunction;
 FLT_OPERATION_REGISTRATION_FLAGS Flags;
 PFLT_PRE_OPERATION_CALLBACK PreOperation;
 PFLT_POST_OPERATION_CALLBACK PostOperation;
 PVOID    Reserved1;
} FLT_OPERATION_REGISTRATION, *PFLT_OPERATION_REGISTRATION;

Listing 6-3: The FLT_OPERATION_REGISTRATION structure definition

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand



110   Chapter 6

The first parameter indicates which major function the minifilter 
is interested in processing. These are constants defined in wdm.h, and 
Table 6-3 lists some of those most relevant to security monitoring.

Table 6-3: Major Functions and Their Purposes

Major function Purpose

IRP_MJ_CREATE (0x00) A new file is being created or a handle to an  
existing one is being opened .

IRP_MJ_CREATE_NAMED_PIPE (0x01) A named pipe is being created or opened .

IRP_MJ_CLOSE (0x02) A handle to a file object is being closed .

IRP_MJ_READ (0x03) Data is being read from a file .

IRP_MJ_WRITE (0x04) Data is being written to a file .

IRP_MJ_QUERY_INFORMATION (0x05) Information about a file, such as its creation time, 
has been requested .

IRP_MJ_SET_INFORMATION (0x06) Information about a file, such as its name, is being 
set or updated .

IRP_MJ_QUERY_EA (0x07) A file’s extended information has been requested .

IRP_MJ_SET_EA (0x08) A file’s extended information is being set or updated .

IRP_MJ_LOCK_CONTROL (0x11) A lock is being placed on a file, such as via a call 
to kernel32!LockFileEx() .

IRP_MJ_CREATE_MAILSLOT (0x13) A new mailslot is being created or opened .

IRP_MJ_QUERY_SECURITY (0x14) Security information about a file is being requested .

IRP_MJ_SET_SECURITY (0x15) Security information related to a file is being set or 
updated .

IRP_MJ_SYSTEM_CONTROL (0x17) A new driver has been registered as a supplier of 
Windows Management Instrumentation .

The next member of the structure specifies the flags. This bitmask 
describes when the callback functions should be invoked for cached I/O or 
paging I/O operations. At the time of this writing, there are four supported 
flags, all of which are prefixed with FLTFL_OPERATION_REGISTRATION_. First, 
SKIP_PAGING_IO indicates whether a callback should be invoked for IRP-based 
read or write paging I/O operations. The SKIP_CACHED_IO flag is used to pre-
vent the invocation of callbacks on fast I/O-based read or write cached I/O 
operations. Next, SKIP_NON_DASD_IO is used for requests issued on a Direct 
Access Storage Device (DASD) volume handle. Finally, SKIP_NON_CACHED_NON 
_PAGING_IO prevents callback invocation on read or write I/O operations that 
are not cached or paging operations.

Defining Pre-operation Callbacks
The next two members of the FLT_OPERATION_REGISTRATION structure define the 
pre-operation or post-operation callbacks to be invoked when each of 
the target major functions occurs on the system. Pre-operation callbacks 
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are passed via a pointer to an FLT_PRE_OPERATION_CALLBACK structure, and 
post-operation routines are specified as a pointer to an FLT_POST _OPERATION 
_CALLBACK structure. While these functions’ definitions aren’t too dissimilar, 
their capabilities and limitations vary substantially.

As with callbacks in other types of drivers, pre-operation callback 
functions allow the developer to inspect an operation on its way to its des-
tination (the target filesystem, in the case of a minifilter). These callback 
functions receive a pointer to the callback data for the operation and some 
opaque pointers for the objects related to the current I/O request, and they 
return an FLT_PREOP_CALLBACK_STATUS return code. In code, this would look 
like what is shown in Listing 6-4.

PFLT_PRE_OPERATION_CALLBACK PfltPreOperationCallback;

FLT_PREOP_CALLBACK_STATUS PfltPreOperationCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{...}

Listing 6-4: Registering a pre-operation callback

The first parameter, Data, is the most complex of the three and contains 
all the major information related to the request that the minifilter is pro-
cessing. The FLT_CALLBACK_DATA structure is used by both the filter manager 
and the minifilter to process I/O operations and contains a ton of useful 
data for any EDR agent monitoring filesystem operations. Some of the 
important members of this structure include:

Flags  A bitmask that describes the I/O operation. These flags may 
come preset from the filter manager, though the minifilter may set 
additional flags in some circumstances. When the filter manager initial-
izes the data structure, it sets a flag to indicate what type of I/O opera-
tion it represents: either fast I/O, filter, or IRP operations. The filter 
manager may also set flags indicating whether a minifilter generated or 
reissued the operation, whether it came from the non-paged pool, and 
whether the operation completed.

Thread  A pointer to the thread that initiated the I/O request. This is 
useful for identifying the application performing the operation.

Iopb  The I/O parameter block that contains information about IRP-
based operations (for example, IRP_BUFFERED_IO, which indicates that it is 
a buffered I/O operation); the major function code; special flags related 
to the operation (for example, SL_CASE_SENSITIVE, which informs drivers in 
the stack that filename comparisons should be case sensitive); a pointer 
to the file object that is the target of the operation; and an FLT_PARAMETERS 
structure containing the parameters unique to the specific I/O operation 
specified by the major or minor function code member of the structure.
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IoStatus  A structure that contains the completion status of the I/O 
operation set by the filter manager.

TagData  A pointer to an FLT_TAG_DATA_BUFFER structure containing infor-
mation about reparse points, such as in the case of NTFS hard links or 
junctions.

RequestorMode  A value indicating whether the request came from user 
mode or kernel mode.

This structure contains much of the information that an EDR agent 
needs to track file operations on the system. The second parameter passed 
to the pre-operation callback, a pointer to an FLT_RELATED_OBJECTS struc-
ture, provides supplemental information. This structure contains opaque 
pointers to the object associated with the operation, including the vol-
ume, minifilter instance, and file object (if present). The last parameter, 
CompletionContext, contains an optional context pointer that will be passed 
to the correlated post-operation callback if the minifilter returns FLT_PREOP 
_SUCCESS_WITH_CALLBACK or FLT_PREOP_SYNCHRONIZE.

On completion of the routine, the minifilter must return an FLT_PREOP 
_CALLBACK_STATUS value. Pre-operation callbacks may return one of seven sup-
ported values:

FLT_PREOP_SUCCESS_WITH_CALLBACK (0)

Return the I/O operation to the filter manager for processing and 
instruct it to call the minifilter’s post-operation callback during 
completion.

FLT_PREOP_SUCCESS_NO_CALLBACK (1)

Return the I/O operation to the filter manager for processing and 
instruct it not to call the minifilter’s post-operation callback during 
completion.

FLT_PREOP_PENDING (2)

Pend the I/O operation and do not process it further until the minifilter 
calls fltmgr!FltCompletePendedPreOperation().

FLT_PREOP_DISALLOW_FASTIO (3)

Block the fast I/O path in the operation. This code instructs the filter 
manager not to pass the operation to any other minifilters below the 
current one in the stack and to only call the post-operation callbacks of 
those drivers at higher altitudes.

FLT_PREOP_COMPLETE (4)

Instruct the filter manager not to send the request to minifilters below 
the current driver in the stack and to only call the post-operation call-
backs of those minifilters above it in the driver stack.
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FLT_PREOP_SYNCHRONIZE (5)

Pass the request back to the filter manager but don’t complete it. This 
code ensures that the minifilter’s post-operation callback is called at 
IRQL ≤ APC_LEVEL in the context of the original thread.

FLT_PREOP_DISALLOW_FSFILTER_IO (6)

Disallow a fast QueryOpen operation and force the operation down the 
slower path, causing the I/O manager to process the request using an 
open, query, or close operation on the file.

The filter manager invokes the pre-operation callbacks for all minifilters 
that have registered functions for the I/O operation being processed before 
passing their requests to the filesystem, beginning with the highest altitude.

Defining Post-operation Callbacks
After the filesystem performs the operations defined in every minifilter’s 
pre-operation callbacks, control is passed up the filter stack to the filter 
manager. The filter manager then invokes the post-operation callbacks 
of all minifilters for the request type, beginning with the lowest altitude. 
These post-operation callbacks have a similar definition to the pre-operation 
routines, as shown in Listing 6-5.

PFLT_POST_OPERATION_CALLBACK PfltPostOperationCallback;

FLT_POSTOP_CALLBACK_STATUS PfltPostOperationCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in]  PCFLT_RELATED_OBJECTS FltObjects,
 [in, optional] PVOID CompletionContext,
 [in]  FLT_POST_OPERATION_FLAGS Flags
)
{...}

Listing 6-5: Post-operation callback routine definitions

Two notable differences here are the addition of the Flags parameter 
and the different return type. The only documented flag that a minifilter 
can pass is FLTFL_POST_OPERATION_DRAINING, which indicates that the minifilter 
is in the process of unloading. Additionally, post-operation callbacks can 
return different statuses. If the callback returns FLT_POSTOP_FINISHED _PROCESSING 
(0), the minifilter has completed its post-operation callback routine and is 
passing control back to the filter manager to continue processing the I/O 
request. If it returns FLT_POSTOP_MORE_PROCESSING_REQUIRED (1), the minifilter has 
posted the IRP-based I/O operation to a work queue and halted completion 
of the request until the work item completes, and it calls fltmgr!FltComplete 
PendedPostOperation(). Lastly, if it returns FLT_POSTOP _DISALLOW_FSFILTER_IO (2), 
the minifilter is disallowing a fast QueryOpen operation and forcing the opera-
tion down the slower path. This is the same as FLT_PREOP_DISALLOW_FSFILTER_IO.

Post-operation callbacks have some notable limitations that reduce 
their viability for security monitoring. The first is that they’re invoked in 
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an arbitrary thread unless the pre-operation callback passes the FLT_PREOP 
_SYNCHRONIZE flag, preventing the system from attributing the operation to  
the requesting application. Next is that post-operation callbacks are invoked 
at IRQL ≤ DISPATCH_LEVEL. This means that certain operations are 
restricted, including accessing most synchronization primitives (for example, 
mutexes), calling kernel APIs that require an IRQL ≤ DISPATCH_LEVEL, 
and accessing paged memory. One workaround to these limitations involves 
delaying the execution of the post-operation callback via the use of fltmgr!Flt 
DoCompletionProcessingWhenSafe(), but this solution has its own challenges.

The array of these FLT_OPERATION_REGISTRATION structures passed in the 
OperationRegistration member of FLT_REGISTRATION may look like Listing 6-6.

const FLT_OPERATION_REGISTRATION Callbacks[] = {
 {IRP_MJ_CREATE, 0, MyPreCreate, MyPostCreate},
 {IRP_MJ_READ, 0, MyPreRead, NULL},
 {IRP_MJ_WRITE, 0, MyPreWrite, NULL},
 {IRP_MJ_OPERATION_END}
};

Listing 6-6: An array of operation registration callback structures

This array registers pre- and post-operation callbacks for IRP_MJ_CREATE 
and only pre-operation callbacks for IRP_MJ_READ and IRP_MJ_WRITE. No flags 
are passed in for any of the target operations. Also note that the final ele-
ment in the array is IRP_MJ_OPERATION_END. Microsoft requires this value to be 
present at the end of the array, and it serves no functional purpose in the 
context of monitoring.

Defining Optional Callbacks
The last section in the FLT_REGISTRATION structure contains the optional call-
backs. The first three callbacks, FilterUnloadCallback, InstanceSetupCallback, 
and InstanceQueryTeardownCallback, may all technically be null, but this will 
impose some restrictions on the minifilter and system behavior. For example, 
the system won’t be able to unload the minifilter or attach to new filesystem 
volumes. The rest of the callbacks in this section of the structure relate to 
various functionality provided by the minifilter. These include things such as 
the interception of filename requests (GenerateFileNameCallback) and filename 
normalization (NormalizeNameComponentCallback). In general, only the first three 
semi-optional callbacks are registered, and the rest are rarely used.

Activating the Minifilter
After all callback routines have been set, a pointer to the created  
FLT_REGISTRATION structure is passed as the second parameter to fltmgr!
FltRegisterFilter(). Upon completion of this function, an opaque filter 
pointer (PFLT_FILTER) is returned to the caller in the RetFilter parameter. 
This pointer uniquely identifies the minifilter and remains static as long as 
the driver is loaded on the system. This pointer is typically preserved as a 
global variable.
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When the minifilter is ready to start processing events, it passes the 
PFLT_FILTER pointer to fltmgr!FltStartFilter(). This notifies the filter man-
ager that the driver is ready to attach to filesystem volumes and start 
filtering I/O requests. After this function returns, the minifilter will be 
considered active and sit inline of all relevant filesystem operations. The 
callbacks registered in the FLT_REGISTRATION structure will be invoked for 
their associated major functions. Whenever the minifilter is ready to unload 
itself, it passes the PFLT_FILTER pointer to fltmgr!FltUnregisterFilter() to 
remove any contexts that the minifilter has set on files, volumes, and other 
components and calls the registered InstanceTeardownStartCallback and 
InstanceTeardownCompleteCallback functions.

Managing a Minifilter
Compared to working with other drivers, the process of installing, load-
ing, and unloading a minifilter requires special consideration. This is 
because minifilters have specific requirements related to the setting of 
registry values. To make the installation process easier, Microsoft recom-
mends installing minifilters through a setup information (INF) file. The 
format of these INF files is beyond the scope of this book, but there are 
some interesting details relevant to how minifilters work that are worth 
mentioning.

The ClassGuid entry in the Version section of the INF file is a GUID that 
corresponds to the desired load-order group (for example, FSFilter Activity 
Monitor). In the AddRegistry section of the file, which specifies the registry 
keys to be created, you’ll find information about the minifilter’s altitude. 
This section may include multiple similar entries to describe where the sys-
tem should load various instances of the minifilter. The altitude can be set 
to the name of a variable (for example, %MyAltitude%) defined in the Strings 
section of the INF file. Lastly, the ServiceType entry under the ServiceInstall 
section is always set to SERVICE_FILE_SYSTEM_DRIVER (2).

Executing the INF installs the driver, copying files to their specified 
locations and setting up the required registry keys. Listing 6-7 shows an 
example of what this looks like in the registry keys for WdFilter, Microsoft 
Defender’s minifilter driver.

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\WdFilter\" | Select * 
-Exclude PS* | fl

DependOnService : {FltMgr}
Description : @%ProgramFiles%\Windows Defender\MpAsDesc.dll,-340
DisplayName : @%ProgramFiles%\Windows Defender\MpAsDesc.dll,-330
ErrorControl : 1
Group  : FSFilter Anti-Virus
ImagePath  : system32\drivers\wd\WdFilter.sys
Start  : 0
SupportedFeatures : 7
Type  : 2
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PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\WdFilter\Instances\
WdFilter Instance" | Select * -Exclude PS* | fl

Altitude : 328010
Flags : 0

Listing 6-7: Viewing WdFilter’s altitude with PowerShell

The Start key dictates when the minifilter will be loaded. The service 
can be started and stopped using the Service Control Manager APIs, as 
well as through a client such as sc.exe or the Services snap-in. In addition, 
we can manage minifilters with the filter manager library, FltLib, which 
is leveraged by the fltmc.exe utility included by default on Windows. This 
setup also includes setting the altitude of the minifilter, which for WdFilter 
is 328010.

Detecting Adversary Tradecraft with Minifilters
Now that you understand the inner workings of minifilters, let’s explore 
how they contribute to the detection of attacks on a system. As discussed 
in “Writing a Minifilter” on page 108, a minifilter can register pre- or post-
operation callbacks for activities that target any filesystem, including NTFS, 
named pipes, and mailslots. This provides an EDR with an extremely pow-
erful sensor for detecting adversary activity on the host.

File Detections
If an adversary interacts with the filesystem, such as by creating new files or 
modifying the contents of existing files, the minifilter has an opportunity 
to detect the behavior. Modern attacks have tended to avoid dropping arti-
facts directly onto the host filesystem in this way, embracing the “disk is 
lava” mentality, but many hacking tools continue to interact with files  
due to limitations of the APIs being leveraged. For example, consider  
dbghelp!MiniDumpWriteDump(), a function used to create process memory 
dumps. This API requires that the caller pass in a handle to a file for the 
dump to be written to. The attacker must work with files if they want to use 
this API, so any minifilter that processes IRP_MJ_CREATE or IRP_MJ_WRITE I/O 
operations can indirectly detect those memory-dumping operations.

Additionally, the attacker has no control over the format of the data 
being written to the file, allowing a minifilter to coordinate with a scanner 
to detect a memory-dump file without using function hooking. An attacker 
might try to work around this by opening a handle to an existing file and 
overwriting its content with the dump of the target process’s memory, but 
a minifilter monitoring IRP_MJ_CREATE could still detect this activity, as both 
the creation of a new file and the opening of a handle to an existing file 
would trigger it.

Some defenders use these concepts to implement filesystem canaries. 
These are files created in key locations that users should seldom, if ever, 
interact with. If an application other than a backup agent or the EDR 
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requests a handle to a canary file, the minifilter can take immediate 
action, including crashing the system. Filesystem canaries provide strong 
(though at times brutal) anti-ransomware control, as ransomware tends 
to indiscriminately encrypt files on the host. By placing a canary file in a 
directory nested deep in the filesystem, hidden from the user but still in 
one of the paths typically targeted by ransomware, an EDR can limit the 
damage to the files that the ransomware encountered before reaching the 
canary.

Named Pipe Detections
Another key piece of adversary tradecraft that minifilters can detect highly 
effectively is the use of named pipes. Many command-and-control agents, 
like Cobalt Strike’s Beacon, make use of named pipes for tasking, I/O, and 
linking. Other offensive techniques, such as those that use token imper-
sonation for privilege escalation, revolve around the creation of a named 
pipe. In both cases, a minifilter monitoring IRP_MJ_CREATE_NAMED_PIPE requests 
would be able to detect the attacker’s behavior, in much the same way as 
those that detect file creation via IRP_MJ_CREATE.

Minifilters commonly look for the creation of anomalously named pipes, 
or those originating from atypical processes. This is useful because many 
tools used by adversaries rely on the use of named pipes, so an attacker who 
wants to blend in should pick pipe and host process names that are typical 
in the environment. Thankfully for attackers and defenders alike, Windows 
makes enumerating existing named pipes easy, and we can straightforwardly 
identify many of the common process-to-pipe relationships. One of the most 
well-known named pipes in the realm of security is mojo. When a Chromium 
process spawns, it creates several named pipes with the format mojo.PID.TID 
.VALUE for use by an IPC abstraction library called Mojo. This named pipe 
became popular after its inclusion in a well-known repository for document-
ing Cobalt Strike’s Malleable profile options.

There are a few problems with using this specific named pipe that a 
minifilter can detect. The main one is related to the structured format-
ting used for the name of the pipe. Because Cobalt Strike’s pipe name is a 
static attribute tied to the instance of the Malleable profile, it is immutable 
at runtime. This means that an adversary would need to accurately predict 
the process and thread IDs of their Beacon to ensure the attributes of their 
process match those of the pipe name format used by Mojo. Remember that 
minifilters with pre-operation callbacks for monitoring IRP_MJ_CREATE_NAMED 
_PIPE requests are guaranteed to be invoked in the context of the calling 
thread. This means that when a Beacon process creates the “mojo” named 
pipe, the minifilter can check that its current context matches the informa-
tion in the pipe name. Pseudocode to demonstrate this would look like that 
shown in Listing 6-8.

DetectMojoMismatch(string mojoPipeName)
{
 pid = GetCurrentProcessId();
 tid = GetCurrentThreadId();
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1 if (!mojoPipeName.beginsWith("mojo. " + pid + "." + tid + "."))

 {
 // Bad Mojo pipe found
 }

}

Listing 6-8: Detecting anomalous Mojo named pipes

Since the format used in Mojo named pipes is known, we can simply 
concatenate the PID and TID 1 of the thread creating the named pipe and 
ensure that it matches what is expected. If not, we can take some defensive 
action.

Not every command inside Beacon will create a named pipe. There are 
certain functions that will create an anonymous pipe (as in, a pipe without 
a name), such as execute-assembly. These types of pipes have limited opera-
tional viability, as their name can’t be referenced and code can interact 
with them through an open handle only. What they lose in functionality, 
however, they gain in evasiveness.

Riccardo Ancarani’s blog post “Detecting Cobalt Strike Default 
Modules via Named Pipe Analysis” details the OPSEC considerations 
related to Beacon’s usage of anonymous pipes. In his research, he found 
that while Windows components rarely used anonymous pipes, their cre-
ation could be profiled, and their creators could be used as viable spawnto 
binaries. These included ngen.exe, wsmprovhost.exe, and firefox.exe, among oth-
ers. By setting their sacrificial processes to one of these executables, attack-
ers could ensure that any actions resulting in the creation of anonymous 
pipes would likely remain undetected.

Bear in mind, however, that activities making use of named pipes would 
still be vulnerable to detection, so operators would need to restrict their 
tradecraft to activities that create anonymous pipes only.

Evading Minifilters
Most strategies for evading an EDR’s minifilters rely on one of three tech-
niques: unloading, prevention, or interference. Let’s walk through exam-
ples of each to demonstrate how we can use them to our advantage.

Unloading
The first technique is to completely unload the minifilter. While you’ll need 
administrator access to do this (specifically, the SeLoadDriverPrivilege token 
privilege), it’s the most surefire way to evade the minifilter. After all, if the 
driver is no longer on the stack, it can’t capture events.

Unloading the minifilter can be as simple as calling fltmc.exe unload, but 
if the vendor has put a lot of effort into hiding the presence of their mini-
filter, it might require complex custom tooling. To explore this idea further, 
let’s target Sysmon, whose minifilter, SysmonDrv, is configured in the regis-
try, as shown in Listing 6-9.
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PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv" | Select * 
-Exclude PS* | fl

Type  : 1
Start  : 0
ErrorControl : 1
ImagePath : SysmonDrv.sys
DisplayName : SysmonDrv
Description : System Monitor driver

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv\Instances\
Sysmon Instance\" | Select * -Exclude PS* | fl

Altitude : 385201
Flags : 0

Listing 6-9: Using PowerShell to view SysmonDrv’s configuration

By default, SysmonDrv has the altitude 385201, and we can easily 
unload it via a call to fltmc.exe unload SysmonDrv, assuming the caller has 
the required privilege. Doing so would create a FilterManager event ID of 1, 
which indicates that a filesystem filter was unloaded, and a Sysmon event ID 
of 255, which indicates a driver communication failure. However, Sysmon 
will no longer receive events.

To complicate this process for attackers, the minifilter sometimes uses 
a random service name to conceal its presence on the system. In the case of 
Sysmon, an administrator can implement this approach during installation 
by passing the -d flag to the installer and specifying a new name. This pre-
vents an attacker from using the built-in fltmc.exe utility unless they can also 
identify the service name.

However, an attacker can abuse another feature of production mini-
filters to locate the driver and unload it: their altitudes. Because Microsoft 
reserves specific altitudes for certain vendors, an attacker can learn these 
values and then simply walk the registry or use fltlib!FilterFindNext() to 
locate any driver with the altitude in question. We can’t use fltmc.exe to 
unload minifilters based on an altitude, but we can either resolve the driver’s 
name in the registry or pass the minifilter’s name to fltlib!FilterUnload() for 
tooling that makes use of fltlib!FilterFindNext(). This is how the Shhmon 
tool, which hunts and unloads SysmonDrv, works under the hood.

Defenders could further thwart attackers by modifying the minifilter’s 
altitude. This isn’t recommended in production applications, however, 
because another application might already be using the chosen value. EDR 
agents sometimes operate across millions of devices, raising the odds of 
an altitude collision. To mitigate this risk, a vendor might compile a list of 
active minifilter allocations from Microsoft and choose one not already in 
use, although this strategy isn’t bulletproof.

In the case of Sysmon, defenders could either patch the installer to 
set the altitude value in the registry to a different value upon installation 
or manually change the altitude after installation by directly modifying 
the registry value. Since Windows doesn’t place any technical controls on 

Evading EDR (Sample Chapter) © 8/31/23 by Matt Hand



120   Chapter 6

altitudes, the engineer could move SysmonDrv to any altitude they wish. 
Bear in mind, however, that the altitude affects the minifilter’s position in 
the stack, so choosing too low a value could have unintended implications 
for the efficacy of the tool.

Even with all these obfuscation methods applied, an attacker could 
still unload a minifilter. Starting in Windows 10, both the vendor and 
Microsoft must sign a production driver before it can be loaded onto 
the system, and because these signatures are meant to identify the driv-
ers, they include information about the vendor that signed them. This 
information is often enough to tip an adversary off to the presence of the 
target minifilter. In practice, the attacker could walk the registry or use 
the fltlib!FilterFindNext() approach to enumerate minifilters, extract 
the path to the driver on disk, and parse the digital signatures of all 
enumerated files until they’ve identified a file signed by an EDR. At that 
point, they can unload the minifilter using one of the previously covered 
methods.

As you’ve just learned, there are no particularly great ways to hide a 
minifilter on the system. This doesn’t mean, however, that these obfusca-
tions aren’t worthwhile. An attacker might lack the tooling or knowledge 
to counter the obfuscations, providing time for the EDR’s sensors to detect 
their activity without interference.

Prevention
To prevent filesystem operations from ever passing through an EDR’s 
minifilter, attackers can register their own minifilter and use it to force the 
completion of I/O operations. As an example, let’s register a malicious pre-
operation callback for IRP_MJ_WRITE requests, as shown in Listing 6-10.

PFLT_PRE_OPERATION_CALLBACK EvilPreWriteCallback;

FLT_PREOP_CALLBACK_STATUS EvilPreWriteCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{
 --snip--
}

Listing 6-10: Registering a malicious pre-operation callback routine

When the filter manager invokes this callback routine, it must return 
an FLT_PREOP_CALLBACK_STATUS value. One of the possible values, FLT_PREOP 
_COMPLETE, tells the filter manager that the current minifilter is in the pro-
cess of completing the request, so the request shouldn’t be passed to any 
minifilters below the current altitude. If a minifilter returns this value, it 
must set the NTSTATUS value in the Status member of the I/O status block to 
the operation’s final status. Antivirus engines whose minifilters communi-
cate with user-mode scanning engines commonly use this functionality to 
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determine whether malicious content is being written to a file. If the scan-
ner indicates to the minifilter that the content is malicious, the minifilter 
completes the request and returns a failure status, such as STATUS_VIRUS 
_INFECTED, to the caller.

But attackers can abuse this feature of minifilters to prevent the secu-
rity agent from ever intercepting their filesystem operations. Using the ear-
lier callback we registered, this would look something like what’s shown in 
Listing 6-11.

FLT_PREOP_CALLBACK_STATUS EvilPreWriteCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{
  --snip--
  if (IsThisMyEvilProcess(PsGetCurrentProcessId())
  {
   --snip--
  1 Data->IoStatus.Status = STATUS_SUCCESS;
   return FLT_PREOP_COMPLETE
  }
   --snip--
}

Listing 6-11: Intercepting write operations and forcing their completion

The attacker first inserts their malicious minifilter at an altitude higher 
than the minifilter belonging to the EDR. Inside the malicious minifilter’s 
pre-operation callback would exist logic to complete the I/O requests com-
ing from the adversary’s processes in user mode 1, preventing them from 
being passed down the stack to the EDR.

Interference
A final evasion technique, interference, is built around the fact that a mini-
filter can alter members of the FLT_CALLBACK_DATA structure passed to its call-
backs on a request. An attacker can modify any members of this structure 
except the RequestorMode and Thread members. This includes the file pointer 
in the FLT_IO_PARAMETER_BLOCK structure’s TargetFileObject member. The only 
requirement of the malicious minifilter is that it calls fltmgr!FltSetCallback 
DataDirty(), which indicates that the callback data structure has been mod-
ified when it is passing the request to minifilters lower in the stack.

An adversary can abuse this behavior to pass bogus data to the mini-
filter associated with an EDR by inserting itself anywhere above it in the 
stack, modifying the data tied to the request and passing control back to 
the filter manager. A minifilter that receives the modified request may 
evaluate whether FLTFL_CALLBACK_DATA_DIRTY, which is set by fltmgr!FltSet 
CallbackDataDirty(), is present and act accordingly, but the data will still 
be modified.
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Conclusion
Minifilters are the de facto standard for monitoring filesystem activity on 
Windows, whether it be for NTFS, named pipes, or even mailslots. Their 
implementation is somewhat more complex than the drivers discussed ear-
lier in this book, but the way they work is very similar; they sit inline of some 
system operation and receive data about the activity. Attackers can evade 
minifilters by abusing some logical issue in the sensor or even unloading 
the driver entirely, but most adversaries have adapted their tradecraft to 
drastically limit creating new artifacts on disk to reduce the chances of a 
minifilter picking up their activity.
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