Engineering Secure Devices (Early Access) © 2024 by Dominik Merli

SECURE DEVICE IDENTITY

| Fora long time, embedded systems ran

'y anonymously in the shadows and didn’t

i
72" care about remote access, digital business

models, or sharing their data with other de-
vices and cloud services. However, these days, those

scenarios have changed fundamentally.

Suddenly, maintenance staff are now logging into devices remotely and
can’t verify that they’re working with the correct device by looking at physi-
cal indicators. In addition, pay-per-use business models have become more
and more popular in industrial scenarios, and devices write their own bills.
Being able to prove the origin of usage data and mapping it to a specific cus-
tomer is essential in this case. Moreover, devices made by different manu-
facturers have started talking to one another and exchanging data. All these
trends have a strong requirement in common: every device needs a unique
identity, and every device must to be able to prove it.

The first part of this chapter investigates which properties contribute to
device uniqueness and can serve as a basis for identity, as well as the closely
linked processes of identification and authentication. Next, we’ll look at how
the implementation of device identity management is regarded from two
angles: the on-device storage of a cryptographic identity and the life-cycle
management on the manufacturer’s side. The chapter concludes with two
case studies that explore identity generation and provisioning.

o

Engineering Secure Devices (Early Access) © 2024 by Dominik Merli

Every Device Is Unique

Mass production of consumer goods and industrial components might con-
vey the impression that all the products rolling off the line are identical,
right up to every bit in their firmware. However, if that were the case, how
would you be able to tell one device from another? Of course, products
have had stickers with serial numbers on them for a long time, but what if

a sticker falls off or is removed on purpose or even replaced with a forged
version?

For modern devices, a unique identity should be an integral part of the
device itself, and the component should be able to actively prove its identity
to third-party devices, repair shops, and cloud services of the original manu-
facturer, just to name a few examples.

From a theoretical point of view, every single device— even with iden-
tical PCBs, microprocessors, and RAM—is clearly unique, because all these
units are subject to (if only small) individual differences in material, timely
behavior, power consumption, and so on. Academia is already working on
exploiting the uniqueness of these tiny physical features to establish device
identities. The corresponding research area is focused on physical unclon-
able functions (PUFs), which have recently even found their way into the first
commercial products.

The following sections explore what might be available in current de-
vices that makes them unique from a practical point of view and how these
unique identities can be proven to other parties.

Identification and Identifiers

Clearly, the term identification is closely related to the word identity. How-
ever, take a minute to think about its exact meaning.

If we want to define the process of identification, we could say it’s the
“claiming of a given identity.” For example, if you meet someone at a con-
ference, you could say, “Hi, my name is Joe!” You claim that you are Joe.
The same happens if your device collects some usage data—let’s say in the
course of one month—and then connects to your backend to provide the
data for customer billing. It will probably start with “Hi backend, my name is
XY1337-0815!” It claims to be a device with a certain “name.”

Unique Identifiers

Regarding uniqueness, telling somebody that you're Joe is clearly not enough.
Several Joes might exist, maybe even at the same conference. Adding your
last name might narrow it down, but your name still won’t be unique, at
least on a global scale. If you take place and date of birth into consideration,
you’ll be closer to having a set of data that uniquely identifies you. These
properties are called identifiers. Humans have many more of them: hair
color, eye color, size, weight, and so on.

Since devices usually don’t have human-like names, manufacturers have
to take another path for identification. For a long time, typical identifiers

102 Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

have been vendor-chosen values like model type, serial number, and date of
production.

With the advent of the internet, the need for world-wide identifiers be-
came clear. Back then, the concept of universally unique identifiers (UUIDs),
also known as globally unique identifiers (GUIDs), was proposed. It’s standard-
ized in RFC 4122, among others, and is meant to provide 128-bit unique
identifiers that don’t require a central registration process. Although the
probability of identifier collision is not zero, it’s regarded as very close to
zero in practice. The generation of UUIDs can, for example, be performed
by the Linux RNG, as shown in Chapter 3.

From a cryptographic point of view, public keys generated by asymmet-
ric crypto algorithms like RSA and ECDSA also can perfectly serve as iden-
tifiers. They might even be combined with a subject name and further at-
tributes to obtain a unique device certificate for identification—as, for exam-
ple, standardized in the network authentication standard IEEE 802.1AR.

System Identities

While some devices consist of a single central component that constitutes
the whole device and its identity, other product architectures are more mod-
ular and allow for partial replacements in case of defects or hardware up-
grades. Discussing which components contribute to the device’s identity
and which don’t is worthwhile for the latter cases. The physical parts of an
embedded system provide a multitude of identifiers like media access con-
trol (MAC) addresses of network cards, Bluetooth chipsets, and Wi-Fi con-
trollers, but also serial numbers and unique identifiers of CPUs, flash mem-
ories, and removable media.

Requiring a set of identifiers to be part of the system identity also means
that the system identity has to be regenerated or reapproved if one of those
parts changes. This requirement can be an advantage for manufacturers—
for example, to enforce users to purchase spare parts of the same brand—
because every exchange requires the acknowledgment of the manufacturer.
However, system identities and forced manufacturer approval can also cause
additional workload on the manufacturers’ side. Further, it could even bring
operators’ comfort to a minimum, if every little change requires a feedback
loop with the original manufacturer, which would significantly limit opera-
tors’ freedom to act in their daily business.

Sometimes a device’s veliability is the utmost goal, and if its hardware breaks, it has
to be immediately replaced by an operator. In such cases, allowing a device’s identity
to be transferable is reasonable—for example, with a removable memory card.

Avuthentication and Authenticators

In everyday language, identification and authentication are sometimes used
synonymously, but authentication means much more than merely claiming
an identity.

Secure Device Identity 103

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

If the validity and correctness of your identity is really important—for
example, if you have to apply for a passport or register to vote—and you tell
them “Hi, I'm Joe,” they’ll probably reply, “Hi Joe, please show me your ID
card.” They’ll make you prove your identity—the analog equivalent of a digi-
tal authentication process.

The term authentication means that you have to confirm the identity you
claimed during identification some seconds before. To do so, you need to
possess a valid authenticator corresponding to the given identity. For hu-
mans, authenticators can be ID cards, driver’s licenses, and so on. For all
these IDs, an authority at some point in time verified the human identity
and subsequently issued a corresponding authenticator that’s usually valid
for a certain amount of time. During this validity period, the authority and
others can use the provided authenticator to verify a specific identity.

For devices, typical authenticators are symmetric secret keys or asym-
metric private keys, (temporary) authentication tokens, or passwords (in
legacy cases). These authenticators were created and issued for a specific
device (for example, during production), and can be used to prove crypto-
graphically the identity of that same device at a later time.

Authentication Protocols

Depending on the type of authenticator, the authentication process is per-
formed in different ways. A common approach is a challenge-response authen-
tication protocol. Figure 6-1 shows one form of a challenge-response hand-

shake.
Verifier Device
0 Randomly choose
challenge C Send C
Process challenge C
2] Return R with a device-specific secret

to obtain the response R

Compare response R
® with the expected value and
defermine failure/success

Figure 6-1: The typical steps during challenge-response authentication

The challenge-response authentication process starts with the gener-
ation of a random challenge C @ on the verifier side that is subsequently
transmitted to the device. The device processes this unpredictable value
with its secret authenticator and yields a response R that’s returned to the
verifier @. In the final step ®, R is compared to its expected value to decide
whether authentication was successful.

For symmetric secrets, the on-device algorithm processing the given
challenge with the device-specific secret could be a hash function or an HMAC
construction. However, the disadvantage is that the secret also has to be

104 Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

available in the verifier’s database to compute the correct expected value
and is not solely stored within the device.

In contrast, asymmetric cryptography allows for device-only authentica-
tors that never leave the device, which is the most secure solution. Specif-
ically, digital signatures based on RSA or ECDSA, as explained in Chap-
ter 2, could be used to generate authentication responses from random chal-
lenges. In this case, the verifier would need only the corresponding public
key in order to check the validity of the returned signature.

In most cases, authentication is possible only with secrets. Therefore, confidentiality
is a natural protection goal for all kinds of authenticators. If broken, device imper-
sonation becomes a likely threat.

Dedicated Authentication Chips

As introduced in Chapter 5, semiconductor manufacturers offer a variety
of authentication chips that not only securely store authenticators but also
provide an algorithmic means to perform a challenge-response handshake
for authentication purposes.

This approach has two advantages. First, extracting the secret authen-
ticator from the chip is a pretty difficult task for attackers. Second, since
these chips usually come with integrated support for asymmetric cryptogra-
phy, mainly digital signatures based on elliptic curves, the secret never has to
leave the physical boundaries of the chip.

On the other hand, with this approach, you now have another compo-
nent on your BOM, you need space on the PCB, and necessary software in-
tegration efforts of these devices vary among vendors. In addition, an attack
vector is often overlooked—namely, the physical transfer of such an identity
chip to another device. The simple 8-pin packages could be desoldered and
integrated into a different original device or even into a custom attacker de-
vice. As in code-lifting attacks, adversaries might not care about the secret
inside the chip if they can move the whole chip to their desired location.

Multifactor Authentication

For the authentication of human users, multifactor authentication (MFA) has
gained a lot of attention over the last several years. Following the principle
of defense in depth, MFA requires attackers to capture not only one authen-
ticator, such as a password, but also at least a second factor, like a temporary
token generated in a mobile app or by a hardware token. Since passwords
are stored in human brains (or password managers) and additional authen-
ticators often originate from an additional hardware device or at least a dif-
ferent communication channel, the necessary effort for successful attacks is
significantly higher.

For device authentication, the situation is a little bit different, because
devices don’t use brains and mobile apps for authenticator storage and gen-
eration. However, you could still consider a multifactor approach—for ex-
ample, using one authenticator stored in firmware and a second one that

Secure Device Identity 105

106

Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

originates from a dedicated authentication chip. The authentication process
would then consist of two handshakes, one with the hardware component
and one based on the device software, forcing attackers to compromise two
different parts of your device if they want to get hold of its identity.

Besides additional explicit authenticators, you can use implicit, environ-
mental parameters to strengthen device authentication. A common example
is geographical limitations, also known as geo-fencing. In that scenario, device
authentication (or general operation) succeeds only if the device’s location
matches a predefined area. One way to determine this parameter is the pub-
lic IP the device uses for internet communication. Of course, the security
gain by these implicit authentication properties is maximized if an attacker
who has compromised a device can’t forge the parameters. They should be
observable from the outside and not just claimed by the device itself.

Trusted Third Parties

In the past, the main verifier of a device’s identity was the manufacturer of
the same device. Proprietary (and eventually insecure) authentication pro-
cesses did their job. However, in a multilateral digital ecosystem in IoT and
IToT scenarios, the need for cross-manufacturer device authentication be-
comes obvious.

This requirement means manufacturers have to trust authenticators of
other devices, including competitors. Since one-to-one trust relations be-
tween manufacturers would lead to enormous management overhead, the
concept of a trusted third party (TTP) is necessary, as shown in Figure 6-2.

Trusted third party

Authentication request ®

Device manufacturer Certificate and proof @ Verifying party

Figure 6-2: The role of a trusted third party in device authentication

In this approach, manufacturers register their device identities with the
TTP @. After verification, the TTP certifies the given identity and returns
a device-specific certificate @. Upon an authentication request in the field
®, the device can provide the issued certificate and cryptographically prove
that it is in possession of the corresponding authenticators @. However, at
this point, the verifying party can’t be sure that the given cryptographic data
corresponds to the actual device identity. The verifier finally has to check
the validity of the authentication @, either in direct communication with

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

the TTP or by using data like public keys provided by the TTP. Afterward, a
reliable trust relation with a previously unknown device can be established.

Certificates and Certificate Avthorities

I've been using the term certificate to describe a digital document that’s is-
sued by a TTP to confirm a device’s identity. Technically speaking, the most
common implementations of this concept are X.509 v3 certificates based on
asymmetric cryptography as specified in RFC 5280.

The purpose of these certificates is to bind a given public key to its cor-
responding subject, such as a device, and to a set of attributes including a
validity period and a certificate serial number. A certificate authority (CA)
digitally signs these values with its own private key. This CA is also included
in the certificate, in the Issuer field. The result is the smallest version of a
certificate chain, which means that a device certificate and its public key can
be cryptographically verified, and if successful, the next certificate (namely,
that of the CA) has to be verified. Authentication is trusted only if both veri-
fications succeed.

In practice, a manufacturer might have its own product CA, which is
certified by an intermediate CA of a TTP, which is again certified by an in-
ternationally recognized root CA. With that process, the rather complex
hierarchical certificate chains are established that have to be verified up to
their root, whenever a device needs to authenticate itself.

The root certificates aren’t certified by anybody; they’re self-signed and
have to be available in some kind of root store on the verifier’s side. This
means that verifying parties also must unconditionally trust all their root
certificates. Therefore, the root store requires strong integrity protection;
otherwise, attackers can inject new trust relations by manipulating the stored
certificates.

In several cases, a certificate can’t be trusted until its actual end of validity—
for example, because of a private-key compromise, device theft, or similar
issue. For such situations, CAs maintain a certificate revocation list (CRL) that
lists all certificates no longer trusted even though their validity period is not
yet over. The Online Certificate Status Protocol (OCSP) is a common protocol
for checking the revocation status of a certificate during authentication, as
standardized in RFC 6960.

The whole architecture of verification, certification, and revocation,
and the corresponding processes and services, are often referred to as the
public-key infrastructure (PKI). Since such a system demands significant main-
tenance and documentation efforts, small and medium-sized companies of-
ten hesitate to implement it themselves and rely on PKI service providers
instead, which means TTPs.

Identity Life Cycle and Management
Now that we’ve covered the basic concepts of device authentication, this sec-

tion establishes the need for reliable strategies for managing the life cycle of

Secure Device Identity 107

108

Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

device identities. Life-cycle management has four main steps, as depicted in
Figure 6-3: identity generation, its provisioning in manufacturer systems as
well as within the device, everyday usage in the field, and the often forgotten
exchange or destruction of the same identity.

.-» Generation

Exchange or

: Provisionin
destruction 9

Usage in

the field

Figure 6-3: The life cycle of device identity

Don'’t treat life-cycle management as optional. Even if you ve solved all the technical
challenges regarding identifiers, cryptography, and secure memory, make sure your
organization has answers regarding the organizational challenges ahead.

Generation

A device’s identity can be generated in various places and at various times.
The place and time you choose affects the security requirements and proce-
dures of your production process. If you use electronics manufacturing ser-
vices (EMS) to manufacture your product, a trustful and close cooperation
with your service provider is essential.

Generating the identity on the device itself during production can be
the most secure option of all, but only if the corresponding authentication
secrets never leave the device. Asymmetric cryptography enables this use
case because the generated private key might stay on the device, and its pub-
lic counterpart can be made available to potential verifiers. Of course, you
might also generate a symmetric secret on the device during the production
process, but in that case, the key has to be exported later to enable identity
verification.

While on-device generation has security advantages, it comes with op-
erational and practical challenges. Imagine that a device “loses” its identity,
because the memory that stores it gets broken. If that was the single storage
location, a new identity has to be generated after repair, which might lead to
a conflict because a new entry is generated in your product database, but the
hardware is actually old. Also, your customers would have to replace the old
device identity with the new one in their asset management systems. If you
as a manufacturer have an identity backup, this case could be handled easily,
but at the cost of security.

A second disadvantage of on-device generation can be the late availabil-
ity of product identities, because they are available only after a certain manu-
facturing step is completed. Sometimes that might be exactly what you want,

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

but if your device identities have to be populated in your own IT systems to
enable smooth operation from day one, you might want to prepare those
processes with your device identities even before actual production.

On-device identity generation based on RSA keys is a nondeterministic process and
takes a variable amount of time. This limitation has to be considered when planning
production processes, especially for low-performance devices.

Generating an identity outside the device provides more flexibility in
managing the device identity before production and in cases of repair. Au-
thentication secrets are prepared in advance within an identity management
system and provided to production in a second step. However, this means
that these identities exist before the real device is even assembled and, of
course, they already carry the protection goals of confidentiality and in-
tegrity. Information disclosure or data manipulation before production
could have severe consequences for the security of your product.

A last point that might influence your on-/off-device generation deci-
sion is the involvement of a TTP. If you generate identities during produc-
tion, they have to be registered, verified, and certified with a third party
within a tight schedule. Of course, that’s possible and desirable, and it’s
already implemented by leaders in this field, but it requires a significant
amount of infrastructure and process management efforts.

Provisioning

Depending on the identity generation phase, the following provisioning step
comes in two flavors with their own pros and cons. In both cases, the end re-
sult should be that the identity is provisioned on the device itself and within
the product-tracking and identity management system of the manufacturer
and the eventually involved EMS provider.

After on-device generation, all manufacturer systems have to be provi-
sioned with the new identity, which requires a read-out step during produc-
tion. For asymmetric crypto, only the public key or a corresponding certifi-
cate from a TTP has to be stored in the manufacturer’s identity database.
However, if backups of authentication secrets are desired, you can create
them by extracting the private key at this point.

The offline generation of identities requires information flow in the
other direction—namely, from an identity management system to the de-
vice to be produced. Clearly, a programming step is necessary, in which
the secret and the attributes of the pregenerated identity are written to spe-
cific memory locations or hardware resources within the product. This step
might be integrated in existing firmware programming procedures or simi-
lar processes.

In all these cases, when sensitive data is transferred to or from a device
during provisioning, at least the integrity and often also the confidentiality
of this communication should be guaranteed. Otherwise, authentication se-
crets might be disclosed, devices might end up with a manipulated identity,
or the manufacturer’s identity data might be corrupted.

Secure Device Identity 109

110

Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

If your device identities are generated before production and are then sent to your
EMS provider by email or on a USB stick by snail mail, consider carefully whether
this meets your protection goals. If you’re honest, it probably doesn'’t.

Usage in the Field

The previously generated and provisioned identities are used for authentica-
tion in the field. So far, so good. Can we take any other precautions during
everyday usage? Absolutely. An identity management system allows us to
perform sanity and plausibility checks whenever devices authenticate with
our systems.

Imagine your authentication logs show that the same device connects
from two locations within a short time. This might be an indicator that some-
body has stolen a device’s identity and is using it for their own purposes.

If such cases can be identified early and specific investigations follow in a
timely manner, damage can be significantly limited.

Exchange or Destruction

Even if some devices (especially in industrial, military, or space applica-
tions) are meant to last forever physically, their authentication secrets usu-
ally don’t. On the internet, a common validity period for web server certifi-
cates is 90 days (as, for example, implemented by Let’s Encrypt at https://
letsencrypt.org), which means that these identities have to be regenerated at
least every three months.

Clearly, identity renewal in IoT and IIoT scenarios is still far away from
such high frequencies. However, at least if X.509 certificates are used for au-
thentication purposes, a validity period is a mandatory parameter that has to
be specified, either by your company or by the TTP of your choice. Some
manufacturers issue device certificates with a validity period of 20 years
or more, but even if the chosen crypto is future-proof, it’s hard to estimate
whether such an identity will still be trustworthy after 15 years or more.

Some network products (for example, those from Cisco) support cer-
tificate management protocols like the Simple Certificate Enrollment Protocol
(SCEP) or its more recent alternative, Enrollment over Secure Transport (EST).
Since this is new ground for IoT and IIoT devices, no common standard has
been established yet, but it’s pretty clear that automation is key to continu-
ous and reliable identity and certificate management.

In 2022, manufacturers of security gateways for accessing the German health telem-
atics infrastructure claimed that devices had to be physically replaced because the
validity of their five-year cryptographic identities came to an end. Subsequently, the
Chaos Computer Club (CCC) proved the opposite and, by its own account, saved the
German healthcare system €400 million. This is just one example that emphasizes
the importance of robust identity-renewal processes.

The final step of an identity’s life cycle is literally its destruction. While
physical removal is not always possible, a manufacturer should at least be

https://letsencrypt.org
https://letsencrypt.org

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

prepared to revoke the trust relation for a specific device if it reaches its end
of life before the defined end of its validity period. A typical measure for
this purpose is a CRL maintained by a CA or a trust status flag in your own
manufacturer database.

Case Study: Identity Generation and Provisioning

In this case study, I investigate the availability of identifiers for an STM32MP157F-
DK2 and how to extract them in order to derive a system identity. Further,

we’ll see how to prepare a certificate signing request (CSR) on this device that

can subsequently be provided to a TTP, which in turn is able to issue a valid
device certificate.

Identifiers and System Identity

The STM32MP157F-DK2 evaluation kit is an embedded system that consists
of several components. Many of these components come with their own
identifiers that engineers might capture and use to create a comprehensive
device identity.

A common identifier is the serial number of a device’s main CPU. In
this regard, ST’s Reference Manual RM0436 for STM32MP157F devices states:
“The 96-bit unique device identifier provides a reference number, unique
for a given device and in any context. These bits cannot be altered by the
user.” This unique ID (UID) is immutably stored in the OTP memory of the
STM32MP157F chip. Listing 6-1 shows that this UID is split into three 32-
bit words that can be read from specific memory addresses.

Base address: 0x5C00 5000 (BSEC base address on APB5)
Address offset: 0x234 = UID[31:0]
Address offset: 0x238 = UID[63:32]
Address offset: 0x23C = UID[95:64]

Listing 6-1: The physical addresses of the UID in STM32MP157F devices

We can use the devmem2 command line tool to read physical memory ad-
dresses. As shown in Listing 6-2, the application outputs three 32-bit words
representing the chip’s identity, given a combination of base address and
UID offsets.

devmem2 0x5c005234

Read at address 0x5C005234 (0xb6fb0234): 0x0038003D
devmem2 0x5c005238

Read at address 0x5C005238 (0xb6fb9238): 0x34385114
devmem2 0x5c00523c

Read at address 0x5C00523C (0xb6f1423c): 0x36383238

Secure Device Identity m

112

Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

Listing 6-2: Reading the CPU UID of my STM32MP157F device from physical addresses

On Linux systems, the serial number is also available from /proc/cpuinfo.
The output shown in Listing 6-3 confirms that the serial number is the same
as that extracted from the raw memory locations before.

cat /proc/cpuinfo | grep Serial
Serial : 0038003D3438511436383238

Listing 6-3: Capturing the CPU serial number available in Linux

However, the STM32MP157F chip is not the only one on the PCB. ST’s
User Manual UM2637 describes a multitude of implemented communica-
tion interfaces. Besides classic Ethernet networking, the device includes an
IC that provides Wi-Fi and Bluetooth capabilities. All these interfaces have
unique MAC addresses that might be used to derive system identities. List-
ing 6-4 shows how to extract those values when running on Linux.

cat /sys/class/net/etho/address

10:e7:7a:€1:81:65

cat /sys/class/net/wlan0/address

48:eb:62:c4:0a:08

cat /sys/kernel/debug/bluetooth/hcio/identity

43:43:a1:12:1f:ac (‘type O) 00000000000000000000000000000000 00:00:00:00:00:00

Listing 6-4: Extracting Ethernet, Wi-Fi, and Bluetooth MAC addresses in Linux

Finally, one part of the system can be removed and replaced easily: the
removable media card. In my case, it’s a microSD card that contains a card
identification (CID). This 128-bit value uniquely identifies an SD card. Among
other information, it contains a manufacturer ID, a product serial number,
and the date of production. Again, Linux provides a corresponding entry in
its sysfs that can be read out as illustrated in Listing 6-5.

cat /sys/block/mmcblko/device/cid
275048534431364760dad3df9a013780

cat /sys/block/mmcblko/device/serial
Oxdad3df9a

Listing 6-5: Reading the unique CID of an SD card

Besides the cid value, Linux provides the serial value for an SD card,
which solely contains the memory card’s serial number.

For this case study, let’s assume your team has chosen to use the central
CPU ID and the Wi-Fi MAC address as the two relevant system identifiers.
They can be combined by a hash function, as shown in the next section.

Certificate Signing Request

A CSRis a data structure that requests a CA to certify that a given public
key is bound to a specific identity, a device identity in this case. Linux of-

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

fers several ways to generate a CSR and provide the necessary information.
Listing 6-6 shows the imports necessary to accomplish RSA key generation
and CSR creation with the help of the cryptography Python module. Also, the
subprocess module is included to get system identifiers by using the available
command line tools.

import subprocess

from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography import x509

from cryptography.x509.0id import NameOID

from cryptography.hazmat.primitives import hashes

Listing 6-6: The necessary imports from the cryptography and subprocess modules

The first part of the on-device identity generation is usually based on
asymmetric cryptography (RSA, in this case). As shown in Listing 6-7, a ran-
dom key pair can be created with a single line.

Generate RSA key
key = rsa.generate private key(public_exponent=65537, @ key size=4096)

Write key to disk
with open('dev.key', 'wb') as f:
f.write(key.private bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=
serialization.BestAvailableEncryption(® b'PrivateKeyPassphrase'),

))

Listing 6-7: An on-device generation of an RSA key pair

For this case study, I decided to use an RSA key length of 4,096 bits @
to account for an (I)IoT device’s lifetime of several years. To simplify this ex-
ample, the generated private key is stored in the dev.key file and is protected
by a standard passphrase ®. In an actual production environment, the key
should be stored in a secure way, as discussed in Chapter 5.

Listing 6-8 shows an example procedure of identifier collection and pro-
cessing.

Collect system data

output = subprocess.Popen('cat /proc/cpuinfo | grep Serial',
shell=True, stdout=subprocess.PIPE)

cpu_serial = output.stdout.read().split()[2]

output = subprocess.Popen('cat /sys/class/net/wlan0/address’,
shell=True, stdout=subprocess.PIPE)

wifi_mac = output.stdout.read().split()[0]

Hash collected system data

Secure Device Identity 113

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

® digest = hashes.Hash(hashes.SHA256())
digest.update(cpu_serial)
digest.update(wifi_mac)
system id = digest.finalize()

O system id = system id[:4].hex()

Listing 6-8: Collection and processing of an on-device identifier

In the first step, the CPU serial number @ and the Wi-Fi MAC address
® of the produced system are read by the means Linux provides. Subse-
quently, the hash function SHA-256 @ is used to process those values and
to derive a 4-byte system identifier @ that would change if the CPU or the
Wi-Fi chip is replaced in the future. The SD card ID is neglected on purpose,
because SD cards break every now and then, which would lead to a unneces-
sary high demand for identity regeneration.

For a device certificate and a CSR, respectively, you need to specify a
common name for the device, as shown in Listing 6-9.

Manufacturer data
manufacturer = 'IoT Devices Corp'
manufacturer_device serial no = 'IOTDEV-1337-08151234'

System name for CSR and certificate
@ cert_common_name = manufacturer device serial no + '-' + system id

Generate CSR and sign with private key
csr = x509.CertificateSigningRequestBuilder().subject_name(x509.Name([
x509.NameAttribute(NameOID.ORGANIZATION NAME, manufacturer),
@ x509.NameAttribute(NameOID.COMMON NAME, cert common_name),
®])).sign(key, hashes.SHA256())

Write CSR to disk
with open('dev.csr', 'wb') as f:
f.write(csr.public_bytes(serialization.Encoding.PEM))

Listing 6-9: An on-device CSR preparation

In this case study, the unique device name is the combination of the se-
rial number given by the manufacturer and the hardware-dependent sys-
tem identifier @. This string is used as an input to the CSR generation @,
together with the manufacturer’s name in the CSR’s organization field. Fi-
nally, the device signs the CSR with its unique confidential private key .
Afterward, the CSR is stored in the dev.csr file.

The saved CSR file has to be transmitted to the CA responsible for cer-
tifying the identity of produced devices. Also, the manufacturer or EMS
provider might extract the collected and generated device data in a database.
As an example, Listing 6-10 shows the data from a STM32MP157F device.

Collected CPU serial number: 0038003D3438511436383238
Collected Wi-Fi MAC address: 48:eb:62:c4:0a:08

114 Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

Derived system identifier: f30cf858
Given device serial number: IOTDEV-1337-08151234
Common name in certificate: IOTDEV-1337-08151234-f30cf858

Listing 6-10: Example output of identifier data from my STM32MP157F device

As you can see, a 4-byte system identifier is generated from the listed
individual identifiers and appended to the device serial number. This string
is subsequently used as the common name for the generated CSR.

Certificate Authority

Before we issue the final certificate, let’s look at what the CSR contains. List-
ing 6-11 shows how to display CSR contents with the openssl req command
line tool.

$ openssl req -in dev.csr -noout -text
Certificate Request:
Data:
Version: 1 (0x0)
@ Subject: 0 = IoT Devices Corp, CN = IOTDEV-1337-08151234-f30cf858
0 Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (4096 bit)
Modulus:
00:d3:a20:14:fb:e1:0e:d0:74:3d:26:d4:ef:al:ed:

€9:2a:f5:46:e4:b2:ad:a9:5e:ee:cb:79:85:d9:1e:
9f:3e:57
Exponent: 65537 (0x10001)
Attributes:
(none)
Requested Extensions:
Signature Algorithm: sha256WithRSAEncryption
® Signature Value:
81:98:b1:e8:c2:fe:3a:55:32:39:2e:27:ce:2c:a8:54:bd:04:

17:77:6c:al:5b:4a:a7:ed:22:55:33:23:26:55:05:90:26:d2:
90:7a:5€:34:65:80:32:4e

Listing 6-11: Example CSR for my specific STM32MP157F device

The subject @ is represented by an organization string (0) and a com-
mon name (CN) as specified in our CSR creation script in Listing 6-9, fol-
lowed by its corresponding RSA public key @. The device’s digital signature
® can be clearly identified at the end of the given request. The CA can use it
to verify whether the requesting subject actually has access to the private key
corresponding to the given public key in the CSR.

CA and PKI infrastructures usually consist of complex processes with a
variety of organizational and technical measures to ensure proper and trust-

Secure Device Identity 115

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

worthy functioning. As shown in Listing 6-12, we create a test CA that’s far
from production-ready but okay for educational purposes. The term quick
and dirty might be applicable here.

$ openssl genrsa -out ca.key 4096

$ openssl req -new -x509 -key ca.key \
-subj "/C=DE/L=Augsburg/0=Super Trusted Party/CN=CA 123" \
-out ca.crt

Listing 6-12: A quick generation of a test CA with openss1 tools

We can generate the test CA with the help of the openssl genrsa tool.
The first command in Listing 6-12 generates a 4,096-bit RSA key pair for the
CA and stores it as ca.key. Since, in this case study, this is the root of the CA,
the corresponding certificate has to be self-signed. The ca.crt certificate can
be obtained by using the openssl req tool and telling it the CA’s attributes—
for example, the country (DE for Germany) and city (Augsburg) it’s located in,
its organization’s name (Super Trusted Party), and its common name (CA 123).

After the CA has registered and successfully verified the certificate re-
quest at hand, it takes the CSR data and adds attributes like the validity pe-
riod. In Listing 6-13, you can see that the -days parameter is set to 3650, which
means that the issued certificate is valid for 10 years.

$ openssl x509 -req -in dev.csr -CA ca.crt -CAkey ca.key -CAcreateserial \
-days 3650 -out dev.crt

Listing 6-13: Generating a certificate from a CSR with the openss1 tool

In the device certificate generation process, the CA decides on the length
of the validity period, but of course that has an influence on your device
identity life cycle. Make sure to choose this value deliberately.

Let’s look at the final result of this demanding process. The openssl x509

tool is able to output the device certificate contents, as shown in Listing 6-
14.

$ openssl x509 -in dev.crt -noout -text
Certificate:
Data:
Version: 1 (0x0)
Serial Number:
@ 45:3c:c3:30:c1:€3:€2:a9:49:5C:14:d6:16:5d:79:69:24:6C:31:66
Signature Algorithm: sha256WithRSAEncryption
® Issuer: C = DE, L = Augsburg, O = Super Trusted Party, CN = CA 123
Validity
Not Before: Apr 5 11:18:13 2024 GMT
® Not After : Apr 2 11:18:13 2034 GMT
Subject: 0 = IoT Devices Corp, CN = IOTDEV-1337-08151234-f30cf858
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (4096 bit)

116 Chapter 6

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

Modulus:
00:d3:a0:14:fb:e1:0e:d0:74:3d:26:d4:ef:a1:ed:

€9:2a:f5:46:e4:b2:ad:a9:5e:ee:cb:79:85:d9:1e:
9f:3e:57
Exponent: 65537 (0x10001)
Signature Algorithm: sha256WithRSAEncryption
® signature Value:
75:d5:07:71:ec:fe:c6:27:fd:e2:a7:1c:fa:b9:89:b3:9c:0f:

8d:fa:f6:f1:53:79:32:1e:a8:ec:6f:f7:03:57:2F:7b:f4:fb:
45:77:6a:f8:c6:70:72:41

Listing 6-14: The certificate contents of a sample device

In comparison to the original CSR, you can see that the CA added a cer-
tificate serial number @ and its own data at the Issuer field @. The validity
period @ is set to be 10 years from the moment of issuance. And, finally, all
these attributes are signed by the CA @ together with the device’s informa-
tion and its public key. Now, every entity that trusts the used CA is able to
authenticate the produced device.

After issuing the certificate, it has to be provided to the device itself,
but also to the manufacturer’s identity management system. During produc-
tion, this whole process of generation, certificate issuance, and provisioning
should run with a high degree of automation and with precautions taken to
minimize threats for confidentiality and integrity.

Case Study: RSA Key Generation in Production

Although ECDSA has some advantages over RSA, as discussed in Chapter 2,
it’s still widely used in certificates. However, if you work with RSA, be aware
that RSA key generation is a nondeterministic process and might take vary-
ing amounts of time.

This second, brief case study investigates how much time is required
during the production process to generate RSA keys of a given length. List-
ing 6-15 shows a simple way to analyze RSA key-generation times.

import time
from cryptography.hazmat.primitives.asymmetric import rsa

time_data = []
for n in range(16):
start_time = time.time()
key = rsa.generate private key(public_exponent=65537, key size=4096)
elapsed_time = time.time() - start time
print('Try', n, ': RSA 4096-bit key generation took',
"{:.3f}" . format(elapsed_time), 'seconds!")
time_data.append(elapsed_time)
print('MIN:", '{:.3f}"'.format(min(time_data)), 'seconds')

Secure Device Identity 117

118

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

print('MAX:", '{:.3f}".format(max(time_data)), 'seconds')
print('AVG:", '{:.3f}'.format(sum(time_data)/len(time_data)), 'seconds"')

Listing 6-15: An RSA key-generation timing analysis

This example uses the cryptography Python module and the parameters
from the previous case study. It performs 16 tries for simplicity, but a sound
statistical analysis would require a larger number of test runs. Listing 6-16
shows exemplary results of RSA 4,096-bit key-generation times obtained by
running the code from Listing 6-15 on my STM32MP157F device.

python3 rsa_key gen_time.py

Try O : RSA 4096-bit key generation took 59.920 seconds!
Try 1 : RSA 4096-bit key generation took 28.696 seconds!
Try 2 : RSA 4096-bit key generation took 72.872 seconds!
Try 3 : RSA 4096-bit key generation took 109.765 seconds!

Try 12 : RSA 4096-bit key generation took 48.925 seconds!
Try 13 : RSA 4096-bit key generation took 50.885 seconds!
Try 14 : RSA 4096-bit key generation took 90.907 seconds!
Try 15 : RSA 4096-bit key generation took 40.634 seconds!
MIN: 28.696 seconds
MAX: 109.765 seconds
AVG: 62.768 seconds

Listing 6-16: RSA key-generation timing results on STM32MP157F device

The variation of generation times is not negligible. The RSA key gener-
ation may finish within 30 seconds but might also take 110 seconds or even
more. This variation has to be considered in production scheduling, and
since an upper bound doesn’t exist for the generation time, you have to ex-
pect outliers that might take significantly longer.

Summary

Chapter 6

There’s no doubt that every single device is a physically unique object. With
the help of identifiers like CPU serial numbers, MAC addresses, and values
chosen by the manufacturer, we’re able to represent this uniqueness in the
digital space and provide a base for device identities.

However, merely claiming an identity isn’t enough for most applications.
Devices have to be able to cryptographically prove their identity with the
help of unique and confidential authenticators like cryptographic keys. This
process is called authentication. The secure storage of those authentication
secrets is essential to prevent impersonation attacks. Chapter 5 provided
some ideas for confidential data storage in hardware or software.

A common concept to establish trust in device identities is the registra-
tion of devices at third parties that verify their identities and issue digital
device certificates. These can be used by anybody trusting the issuer to au-
thenticate a device.

Engineering Secure Devices (Sample Chapter) © 2024 by Dominik Merli

Besides the technical challenges of binding a digital identity to a device,
a much broader field of organizational processes have to be specified to pro-
vide secure and reliable identity life-cycle management. These processes of-
ten involve EMS providers, TTPs, and your custom process specifics, which
leads to a complexity that should never be underestimated.

The more you dive into this topic, the more “interesting” problems you
will discover. For several years, researchers have been working on PUF im-
plementations to exploit manufacturing process variations in order to derive
implicit chip identities, and the first products on the market already contain
such circuits. Further, identity management automation in on- and offline
scenarios and corresponding protocols like SCEP and EST will certainly gain
more attention in the future, providing a major step forward for managing
secure device identities.

Secure Device Identity 119

