FUNCTIONS

We have already used several functions in the previous
chapter—things such as alert and print—to order the
machine to perform a specific operation. In this chap-
ter, we will start creating our own functions, making it
possible to extend the vocabulary that we have avail-
able. In a way, this resembles defining our own words
inside a story we are writing to increase our expressive-
ness. Although such a thing is considered rather bad
style in prose, in programming it is indispensable.

The Anatomy of a Function Definition

In its most basic form, a function definition looks like this:

function square(x) {
return x * Xx;

}

square(12);
— 144

Eloquent JavaScript
© 2011 by Marijn Haverbeke

30

Chapter 2

Here, square is the name of the function. x is the name of its (first and
only) argument. return x * x; is the body of the function.

The keyword function is always used when creating a new function. When
it is followed by a variable name, the new function will be stored under this
name. After the name comes a list of argument names and finally the body
of the function. Unlike those around the body of while loops or if state-
ments, the braces around a function body are obligatory.

The keyword return, followed by an expression, is used to determine the
value the function returns. When control comes across a return statement, it
immediately jumps out of the current function and gives the returned value
to the code that called the function. A return statement without an expres-
sion after it will cause the function to return undefined.

A body can, of course, have more than one statement in it. Here is a
function for computing powers (with positive, integer exponents):

function power(base, exponent) {
var result = 1;
for (var count = 0; count < exponent; count++)
result *= base;
return result;

}

power(2, 10);
— 1024

The arguments to a function behave like variables—but ones that are
given a value by the caller of the function, not the function itself. The func-
tion is free to give them a new value though, just like normal variables.

Definition Order

Even though function definitions occur as statements between the rest of the
program, they are not part of the same timeline. In the following example,
the first statement can call the future function, even though its definition
comes later:

print("The future says: ", future());

function future() {
return "We STILL have no flying cars.";

}

What is happening is that the computer looks up all function defini-
tions, and stores the associated functions, before it starts executing the rest of
the program. The nice thing about this is that we do not have to think about
the order in which we define and use our functions—they are all allowed to
call each other, regardless of which one is defined first.

Eloquent JavaScript
© 2011 by Marijn Haverbeke

Local Variables

A very important property of functions is that the variables created inside
of them are local to the function. This means, for example, that the result
variable in the power example will be newly created every time the function
is called and will no longer exist after the function returns. In fact, if power
were to call itself, that call would cause a new, distinct result variable to be
created and used by the inner call and would leave the variable in the outer
call untouched.

This “localness” of variables applies only to the arguments of the func-
tion and those variables that are declared with the var keyword inside the
function. It is possible to access global (nonlocal) variables inside a function,
as long as you haven’t declared a local variable with the same name.

The following code demonstrates this. It defines (and calls) two func-
tions that both change the value of the variable x. The first one does not de-
clare the variable as local and thus changes the global variable defined at the
start of the example. The second does declare it and ends up changing only
the local variable.

var x = "A";

function setVarToB() {
x = "B";

}

setVarToB();

X3

— "B";

function setVarToC() {
var x;
x ="C";

}

setVarToC();

X5

— "B";

As an aside, note that these functions contain no return statements, be-
cause they are called for their side effects, not to create a value. The actual
return value of such functions is undefined.

Nested Scope

In JavaScript, it is not enough to simply distinguish between global and local
variables. In fact, there can be any number of stacked (or nested) variable
scopes. Functions defined inside other functions can refer to the local vari-
ables in their parent function, functions defined inside those inner func-
tions can refer to variables in both their parent and their grandparent func-
tions, and so on.

Functions 31

Eloquent JavaScript
© 2011 by Marijn Haverbeke

32

Chapter 2

Take a look at this example. It defines a function that takes the absolute
(positive) value of number and multiplies that by factor.

function multiplyAbsolute(number, factor) {
function multiply(number) {
return number * factor;
}
if (number < 0)
return multiply(-number);
else
return multiply(number);

The example is intentionally confusing in order to demonstrate a subtle-
ty—it contains two separate variables named number. When the body of the
function multiply runs, it uses the same factor variable as the outer func-
tion but has its own number variable (created for the argument of that name).
Thus, it multiplies its own argument by the factor passed to multiplyAbsolute.

What this comes down to is that the set of variables visible inside a func-
tion is determined by the place of that function in the program text. All var-
iables that were defined “above” a function’s definition are visible, which
means both those in function bodies that enclose it and those at the top lev-
el of the program. This approach to variable visibility is called lexical scoping.

People who have experience with other programming languages might
expect that a block of code (between braces) also produces a new local envi-
ronment. Not in JavaScript. Functions are the only things that create a new
scope. You are allowed to use free-standing blocks:

var something = 1;
{
var something = 2;
// Do stuff with variable something...

}
// Outside of the block again...

But the something inside the block refers to the same variable as the one
outside the block. In fact, although blocks like this are allowed, they are only
useful to group the body of an if statement or a loop. (Most people agree
that this is a bit of a design blunder by the designers of JavaScript, and later
versions of the language will add some way to define variables that stay inside
blocks.)

Eloquent JavaScript
© 2011 by Marijn Haverbeke

The Stack

To understand how functions are called and how they return, it is useful
to be aware of a thing called the stack. When a function is called, control is
given to the body of that function. When that body returns, the code that
called the function is resumed. Thus, while the body is running, the com-
puter must remember the context from which the function was called so
that it knows where to continue afterward. The place where this context is
stored is the stack.

The reason that it is called a stack has to do with the fact that, as we saw,
a function body can again call a function. Every time a function is called, an-
other context has to be stored. One can visualize this as a stack of contexts.
Every time a function is called, the current context is thrown on top of the
stack. When a function returns, the context on top is taken off the stack and
resumed.

This stack requires space in the computer’s memory to be stored. When
the stack grows too big, the computer will give up with a message like “out of
stack space” or “too much recursion.” The following code illustrates that—it
asks the computer a really hard question, which causes an infinite back-and-
forth between two functions. Or rather, it would be infinite, if we had an
infinite stack. As it is, it will run out of space, or “blow the stack.”

function chicken() {
return egg();

}

function egg() {
return chicken();

}
print(chicken() +

came first.");

Function Valves

As I mentioned in the previous chapter, everything in JavaScript is a value,
including functions. This means that the names of defined functions can
be used like normal variables, and their content can be passed around and
used in bigger expressions. The following example will call the function in
variable a, unless that is a “false” value (like null), in which case it chooses
and calls b instead.

var a = null;
function b() {return "B";}
(a [l b)();

—, "

Functions 33

Eloquent JavaScript
© 2011 by Marijn Haverbeke

The bizarre-looking expression (a || b)() applies the “call without ar-
guments” operation represented by () to the expression (a || b). If that ex-
pression does not produce a function value, this will of course produce an
error. But when it does, as in the example, the resulting value is called, and
all is well.

When we simply need an unnamed function value, the function keyword
can be used as an expression, like this:

var a = null;
(a || function(){return "B";})();

— "g"

This produces the same effect as the previous example, except that this
time no function named b is defined. The “nameless” (or “anonymous”)
function expression function(){return "B";} simply creates a function value.
It is possible to specify arguments or multistatement bodies in such defini-
tions as well.

In Chapter 5, the first-class nature of functions (which is the usual term
used for the “functions are values” concept) will be further explored and
used to write some very clever code.

Closure

The nature of the function stack, combined with the ability to treat func-
tions as values, brings up an interesting question. What happens to local
variables when the function call that created them is no longer on the stack?
The following code illustrates this:

function createFunction() {
var local = 100;
return function(){return local;};

}

When createFunction is called, it creates a local variable and then re-
turns a function that returns this local variable. The question of how to
treat this situation is known as the “upwards Funarg problem,” and many
old programming languages simply forbid it. JavaScript, fortunately, is from
a generation of languages that solve this problem by going out of their way
to preserve the local variable as long as it is in any way reachable. Doing
createFunction()() (creating the function and then calling it) results in the
value 100 being returned, as hoped.

This feature is called closure, and a function that “closes over” some local
variables is called a closure. This behavior not only frees you from having to
worry about variables still being “alive” but also allows for some creative use
of function values.

34 Chapter 2

Eloquent JavaScript
© 2011 by Marijn Haverbeke

For example, the following function makes it possible to dynamically
create function values that add a certain number to their argument:

function makeAdder(amount) {
return function(number) {
return number + amount;

b
}
var addTwo = makeAdder(2);
addTwo(3);
— 5
Optional Arguments

It turns out we can execute the following code:

alert("Hello", "Good Evening", "How do you do?", "Good-bye");

The function alert officially accepts only one argument. Yet when you
call it like this, it does not complain. It simply ignores the other arguments
and shows you Hello.

JavaScript is notoriously nonstrict about the amount of arguments you
pass to a function. If you pass too many, the extra ones are ignored. If you
pass too few, the missing ones get the value undefined. The downside of this is
that it is possible—even likely—that you’ll accidentally pass the wrong num-
ber of arguments to functions, and no one will tell you about it.

The upside of this is that it can be used to have a function take “optional
arguments.” For example, this version of power can be called with only a sin-
gle argument, in which case it behaves like square:

function power(number, exponent) {
var result = 1;
if (exponent === undefined)
exponent = 2;
for (var count = 0; count < exponent; count++)
result *= base;
return result;

}

In the next chapter, we will see a way in which a function body can get at
the exact list of arguments that were passed to it. This can be useful, because
it makes it possible to have a function accept any number of arguments.
print makes use of this—the following prints R2D2:

print("R", 2, "D", 2);

Functions 35

Eloquent JavaScript
© 2011 by Marijn Haverbeke

36

Techniques

Chapter 2

Now that we have a rather good idea of what JavaScript functions are and
how they function, we will look at some considerations that come into play
when designing and writing them.

Avoiding Repetition

The reason functions were invented is to reuse pieces of code. Programs
typically need to perform the same operation (such as exponentiation) mul-
tiple times, and when you repeat the full code needed to perform the opera-
tion every time you need it, your program is going to be a lot longer.

Not only will it be longer, but it will also be more boring to read and
more likely to contain errors. For example, the power function we defined
does not work with negative exponents. If you find out that those are also
needed, you’d have to update all the places where you take the power of
anumber and fix them. If you defined a function, all it takes is fixing the
function, and all uses of it will suddenly work correctly.

When finding you need the same piece of code more than once and
deciding to move it into a function, you need to determine how much of
the code should go into the function and what the interface to the function
should look like. For example, say we have some code to print a zero-padded
number, like this:

var number = 5;
if (number < 10)
print("0", number);
else
print(number);

But it turns out we need to print padded numbers in other places as
well. We now have several choices to make.

Do we make a function at all? The occurrences of the code might be
in different projects, making it more work to share functions. Usually, the
answer to this is “yes,” regardless.

Does the function include the printing action, or does it just produce
a zero-padded string? The best functions are those that perform a single,
simple action, since they are easier to name (and thus easier to understand)
and can be used in a wider variety of situations. So, write a zeroPad function,
rather than a printZeroPadded function. print(zeroPad(5)) is no harder to type
than printZeroPadded(5), after all.

How smart and versatile should the function be? We could write any-
thing from a terribly simple “pad this number with a single zero” function
to an involved formatted-output system that handles fractional numbers,
rounding, and table layout. A good principle is to not add cleverness unless
you are absolutely sure you are going to need it. It is tempting to fall into
the trap of writing complicated “frameworks” for every little bit of function-
ality you need and never getting any actual work done. In this case, a second

Eloquent JavaScript
© 2011 by Marijn Haverbeke

argument that specifies the width of the resulting number sounds like a use-
ful, simple addition.

function zeroPad(number, width) {
var string = String(Math.round(number));
while (string.length < width)
string = "0" + string;
return string;

}

Math.round is a function that rounds a number; String is a function that
converts its argument to a string.

Purity

“Purity,” when applied to functions, is not about their lack of contaminants
or their sexual behavior, but about whether they have side effects. Pure func-
tions are the things that mathematicians mean when they say “function.”
They always return the same value when given the same arguments and do
not have side effects.

The distinction between pure and nonpure functions is interesting mostly
in terms of good code design and mental overhead. If a function is pure, a
call to it can be mentally substituted by its result without changing the mean-
ing of the code. When you are not sure that it is working correctly, you can
test it by simply calling it and know that if it works in that context, it will
work in any context. Nonpure functions might return different values based
on all kinds of factors and have side effects that might be hard to test and
think about.

Because pure functions are self-sufficient, they are likely to be useful and
relevant in a wider range of situations than nonpure ones. Take the zeroPad
function that we wrote earlier, for example. Had we written printZeroPadded
instead, the function would have been useful only in situations where a print
function had been defined and where we wanted to directly print our padded
number. When defined as a pure function from a number to a string, the
function depends on less context and is more generally applicable.

Of course, zeroPad solves a different problem than print, and no pure
function is going to be able to do what print does, because it requires a side
effect. In many cases, nonpure functions are precisely what you need. In
other cases, a problem can be solved with a pure function, but the nonpure
variant is much more convenient or efficient. Generally, when something
can naturally be expressed as a pure function, write it that way. You’ll thank
yourself later. If not, don’t feel dirty for writing nonpure functions.

Recursion

As mentioned earlier, it is valid for a function to call itself. A function that
calls itself is called recursive. Recursion allows for some interesting function
definitions. Look at this alternate implementation of power:

Functions 37

Eloquent JavaScript
© 2011 by Marijn Haverbeke

38

Chapter 2

function power(base, exponent) {
if (exponent == 0)
return 1;
else
return base * power(base, exponent - 1);

This is rather close to the way mathematicians define exponentiation,
and conceptually it looks a lot nicer than the earlier version. It sort of loops,
but there is no while, for, or even a local side effect to be seen. By calling
itself, the function produces the same effect that was produced with a for
loop before.

There is one important problem: In most JavaScript implementations,
this second version is about 10 times slower than the first one. In JavaScript,
running through a simple loop is a lot cheaper than calling a function multi-
ple times. On top of that, using a sufficiently large exponent to this function
might cause the stack to overflow.

The dilemma of speed versus elegance is an interesting one and is not
limited to debates about recursion. In many situations, an elegant, intuitive,
and often short solution can be replaced by a more convoluted but faster
solution.

In the case of the earlier power function, the inelegant version is still suf-
ficiently simple and easy to read. It does not make much sense to replace it
with the recursive version. Often, though, the concepts a program is deal-
ing with get so complex that giving up some efficiency in order to make the
program more straightforward becomes an attractive choice.

The basic rule, which has been repeated by many programmers and with
which I wholeheartedly agree, is to not worry about efficiency until your pro-
gram is provably too slow. When it is, find out which parts are taking up the
most time, and start exchanging elegance for efficiency in those parts.

Of course, the previous rule doesn’t mean one should start ignoring
performance altogether. In many cases, like the power function, not much
simplicity is gained by the “elegant” approach. In other cases, an experi-
enced programmer can see right away that a simple approach is never going
to be fast enough.

The reason I am making a big deal out of this is that surprisingly many
programmers focus fanatically on efficiency, even in the smallest details. The
result is bigger, more complicated, and often less correct programs, which
take longer to write than their more straightforward equivalents and often
run only marginally faster.

Recursion is not always just a less-efficient alternative to looping. Some
problems are much easier to solve with recursion than with loops. Most
often these are problems that require exploring or processing several
“branches,” each of which might branch out again into more branches.

Consider this puzzle: By starting from the number 1 and repeatedly ei-
ther adding 5 or multiplying by 3, an infinite amount of new numbers can

Eloquent JavaScript
© 2011 by Marijn Haverbeke

be produced. How would you write a function that, given a number, tries to
find a sequence of additions and multiplications that produce that number?
For example, the number 13 could be reached by first multiplying 1 by 3
and then adding 5 twice. The number 15 cannot be reached at all.
Here is the solution:

function findSequence(goal) {
function find(start, history) {
if (start == goal)
return history;
else if (start > goal)
return null;
else
return find(start + 5, "(" + history + " + 5)") ||
find(start = 3, "(" + history + " * 3)");
}
return find(1, "1");

}

findSequence(24);
— (((1 %3) +5) *3)

Note that it doesn’t necessarily find the shortest sequence of operations—
it is satisfied when it finds any sequence at all.

How does it work? The inner find function, by calling itself in two dif-
ferent ways, explores both the possibility of adding 5 to the current number
and of multiplying it by 3. When it finds the number, it returns the history
string, which is used to record all the operators that were performed to get
to this number. It also checks whether the current number is bigger than
goal. If it is, we should stop exploring this branch, since it is not going to
give us our number.

The use of the || operator in the example can be read as “return the so-
lution found by adding 5 to start, and if that fails, return the solution found
by multiplying start by 3.” Equivalent (but more wordy) code would look
like this:

else {
var found = find(start + 5, "(" + history + " + 5)");
if (found == null)
found = find(start * 3, "(" + history + " % 3)");
return found;

}

Functions 39

Eloquent JavaScript
© 2011 by Marijn Haverbeke

Eloquent JavaScript
© 2011 by Marijn Haverbeke

