
5
HIGHER-ORDER FUNCT IONS

A large program is a costly program, and not just be-
cause of the time it takes to build. Size almost always
involves complexity, and complexity confuses pro-
grammers. Confused programmers, in turn, intro-
duce mistakes (bugs) into programs. A large program
then provides a lot of space for these bugs to hide,
making them hard to find.

Let’s briefly go back to the final two example programs in the introduc-
tion. The first is self-contained and six lines long.

let total = 0, count = 1;

while (count <= 10) {

total += count;

count += 1;

}

console.log(total);

The second relies on two external functions and is one line long.

console.log(sum(range(1, 10)));

Which one is more likely to contain a bug?

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

If we count the size of the definitions of sum and range, the second pro-
gram is also big—even bigger than the first. But still, I’d argue that it is more
likely to be correct.

This is because the solution is expressed in a vocabulary that corre-
sponds to the problem being solved. Summing a range of numbers isn’t
about loops and counters. It is about ranges and sums.

The definitions of this vocabulary (the functions sum and range) will still
involve loops, counters, and other incidental details. But because they are
expressing simpler concepts than the program as a whole, they are easier to
get right.

Abstraction
In the context of programming, these kinds of vocabularies are usually called
abstractions. Abstractions give us the ability to talk about problems at a higher
(or more abstract) level, without getting sidetracked by uninteresting details.

As an analogy, compare these two recipes for pea soup. The first goes
like this:

Put 1 cup of dried peas per person into a container. Add water
until the peas are well covered. Leave the peas in water for at least
12 hours. Take the peas out of the water and put them in a cook-
ing pan. Add 4 cups of water per person. Cover the pan and keep
the peas simmering for two hours. Take half an onion per person.
Cut it into pieces with a knife. Add it to the peas. Take a stalk of
celery per person. Cut it into pieces with a knife. Add it to the
peas. Take a carrot per person. Cut it into pieces. With a knife!
Add it to the peas. Cook for 10 more minutes.

And this is the second recipe:

Per person: 1 cup dried split peas, 4 cups of water, half a chopped
onion, a stalk of celery, and a carrot.
Soak peas for 12 hours. Simmer for 2 hours. Chop and add veg-
etables. Cook for 10 more minutes.

The second is shorter and easier to interpret. But you do need to un-
derstand a few more cooking-related words such as soak, simmer, chop, and, I
guess, vegetable.

When programming, we can’t rely on all the words we need to be wait-
ing for us in the dictionary. Thus, we might fall into the pattern of the first
recipe—work out the precise steps the computer has to perform, one by one,
blind to the higher-level concepts they express.

It is a useful skill, in programming, to notice when you are working at
too low a level of abstraction.

Abstracting Repetition
Plain functions, as we’ve seen them so far, are a good way to build abstrac-
tions. But sometimes they fall short.

82 Chapter 5

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

It is common for a program to do something a given number of times.
You can write a for loop for that, like this:

for (let i = 0; i < 10; i++) {

console.log(i);

}

Can we abstract “doing something N times” as a function? Well, it’s easy
to write a function that calls console.log N times.

function repeatLog(n) {

for (let i = 0; i < n; i++) {

console.log(i);

}

}

But what if we want to do something other than logging the numbers?
Since “doing something” can be represented as a function and functions are
just values, we can pass our action as a function value.

function repeat(n, action) {

for (let i = 0; i < n; i++) {

action(i);

}

}

repeat(3, console.log);

// → 0

// → 1

// → 2

We don’t have to pass a predefined function to repeat. Often, it is easier
to create a function value on the spot instead.

let labels = [];

repeat(5, i => {

labels.push(`Unit ${i + 1}`);

});

console.log(labels);

// → ["Unit 1", "Unit 2", "Unit 3", "Unit 4", "Unit 5"]

This is structured a little like a for loop—it first describes the kind of
loop and then provides a body. However, the body is now written as a func-
tion value, which is wrapped in the parentheses of the call to repeat. This
is why it has to be closed with the closing brace and closing parenthesis.
In cases like this example, where the body is a single small expression, you
could also omit the braces and write the loop on a single line.

Higher-Order Functions 83

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

Higher-Order Functions
Functions that operate on other functions, either by taking them as argu-
ments or by returning them, are called higher-order functions. Since we have
already seen that functions are regular values, there is nothing particularly
remarkable about the fact that such functions exist. The term comes from
mathematics, where the distinction between functions and other values is
taken more seriously.

Higher-order functions allow us to abstract over actions, not just values.
They come in several forms. For example, we can have functions that create
new functions.

function greaterThan(n) {

return m => m > n;

}

let greaterThan10 = greaterThan(10);

console.log(greaterThan10(11));

// → true

We can also have functions that change other functions.

function noisy(f) {

return (...args) => {

console.log("calling with", args);

let result = f(...args);

console.log("called with", args, ", returned", result);

return result;

};

}

noisy(Math.min)(3, 2, 1);

// → calling with [3, 2, 1]

// → called with [3, 2, 1] , returned 1

We can even write functions that provide new types of control flow.

function unless(test, then) {

if (!test) then();

}

repeat(3, n => {

unless(n % 2 == 1, () => {

console.log(n, "is even");

});

});

// → 0 is even

// → 2 is even

There is a built-in array method, forEach, that provides something like a
for/of loop as a higher-order function.

84 Chapter 5

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

["A", "B"].forEach(l => console.log(l));

// → A

// → B

Script Dataset
One area where higher-order functions shine is data processing. To process
data, we’ll need some actual example data. This chapter will use a dataset
about scripts—writing systems such as Latin, Cyrillic, or Arabic.

Remember Unicode, the system that assigns a number to each character
in written language, from Chapter 1? Most of these characters are associated
with a specific script. The standard contains 140 different scripts, of which
81 are still in use today and 59 are historic.

Though I can fluently read only Latin characters, I appreciate the fact
that people are writing texts in at least 80 other writing systems, many of
which I wouldn’t even recognize. For example, here’s a sample of Tamil
handwriting:

The example dataset contains some pieces of information about the
140 scripts defined in Unicode. It is available in the coding sandbox for
this chapter (https://eloquentjavascript.net/code#5) as the SCRIPTS binding. The
binding contains an array of objects, each of which describes a script.

{

name: "Coptic",

ranges: [[994, 1008], [11392, 11508], [11513, 11520]],

direction: "ltr",

year: -200,

living: false,

link: "https://en.wikipedia.org/wiki/Coptic_alphabet"

}

Such an object tells us the name of the script, the Unicode ranges as-
signed to it, the direction in which it is written, the (approximate) origin
time, whether it is still in use, and a link to more information. The direc-
tion may be "ltr" for left to right, "rtl" for right to left (the way Arabic and
Hebrew text are written), or "ttb" for top to bottom (as with Mongolian
writing).

The ranges property contains an array of Unicode character ranges, each
of which is a two-element array containing a lower bound and an upper
bound. Any character codes within these ranges are assigned to the script.

Higher-Order Functions 85

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

https://eloquentjavascript.net/code#5
https://eloquentjavascript.net/code#5

The lower bound is inclusive (code 994 is a Coptic character) and the upper
bound is noninclusive (code 1008 isn’t).

Filtering Arrays
If we want to find the scripts in the dataset that are still in use, the following
function might be helpful. It filters out elements in an array that don’t pass
a test.

function filter(array, test) {

let passed = [];

for (let element of array) {

if (test(element)) {

passed.push(element);

}

}

return passed;

}

console.log(filter(SCRIPTS, script => script.living));

// → [{name: "Adlam", ...}, ...]

The function uses the argument named test, a function value, to fill a
“gap” in the computation—the process of deciding which elements to collect.

Note how the filter function, rather than deleting elements from the
existing array, builds up a new array with only the elements that pass the
test. This function is pure. It does not modify the array it is given.

Like forEach, filter is a standard array method. The example defined
the function only to show what it does internally. From now on, we’ll use it
like this instead:

console.log(SCRIPTS.filter(s => s.direction == "ttb"));

// → [{name: "Mongolian", ...}, ...]

Transforming with map
Say we have an array of objects representing scripts, produced by filtering
the SCRIPTS array somehow. We want an array of names instead, which is eas-
ier to inspect.

The map method transforms an array by applying a function to all of its
elements and building a new array from the returned values. The new array
will have the same length as the input array, but its content will have been
mapped to a new form by the function.

function map(array, transform) {

let mapped = [];

for (let element of array) {

mapped.push(transform(element));

86 Chapter 5

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

}

return mapped;

}

let rtlScripts = SCRIPTS.filter(s => s.direction == "rtl");

console.log(map(rtlScripts, s => s.name));

// → ["Adlam", "Arabic", "Imperial Aramaic", ...]

Like forEach and filter, map is a standard array method.

Summarizing with reduce
Another common thing to do with arrays is to compute a single value from
them. Our recurring example, summing a collection of numbers, is an in-
stance of this. Another example is finding the script with the most characters.

The higher-order operation that represents this pattern is called reduce
(sometimes also called fold). It builds a value by repeatedly taking a single
element from the array and combining it with the current value. When sum-
ming numbers, you’d start with the number zero and, for each element, add
that to the sum.

The parameters to reduce are, apart from the array, a combining func-
tion and a start value. This function is a little less straightforward than filter

and map, so take a close look at it:

function reduce(array, combine, start) {

let current = start;

for (let element of array) {

current = combine(current, element);

}

return current;

}

console.log(reduce([1, 2, 3, 4], (a, b) => a + b, 0));

// → 10

The standard array method reduce, which of course corresponds to this
function, has an added convenience. If your array contains at least one ele-
ment, you are allowed to leave off the start argument. The method will take
the first element of the array as its start value and start reducing at the sec-
ond element.

console.log([1, 2, 3, 4].reduce((a, b) => a + b));

// → 10

To use reduce (twice) to find the script with the most characters, we can
write something like this:

function characterCount(script) {

return script.ranges.reduce((count, [from, to]) => {

Higher-Order Functions 87

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

return count + (to - from);

}, 0);

}

console.log(SCRIPTS.reduce((a, b) => {

return characterCount(a) < characterCount(b) ? b : a;

}));

// → {name: "Han", ...}

The characterCount function reduces the ranges assigned to a script by
summing their sizes. Note the use of destructuring in the parameter list of
the reducer function. The second call to reduce then uses this to find the lar-
gest script by repeatedly comparing two scripts and returning the larger one.

The Han script has more than 89,000 characters assigned to it in the
Unicode standard, making it by far the biggest writing system in the dataset.
Han is a script sometimes used for Chinese, Japanese, and Korean text.
Those languages share a lot of characters, though they tend to write them
differently. The (US-based) Unicode Consortium decided to treat them as a
single writing system to save character codes. This is called Han unification
and still makes some people very angry.

Composability
Consider how we would have written the previous example (finding the
biggest script) without higher-order functions. The code is not that much
worse.

let biggest = null;

for (let script of SCRIPTS) {

if (biggest == null ||

characterCount(biggest) < characterCount(script)) {

biggest = script;

}

}

console.log(biggest);

// → {name: "Han", ...}

There are a few more bindings, and the program is four lines longer, but
it is still very readable.

The abstractions these functions provide really shine when you need to
compose operations. As an example, let’s write code that finds the average
year of origin for living and dead scripts in the dataset.

function average(array) {

return array.reduce((a, b) => a + b) / array.length;

}

console.log(Math.round(average(

SCRIPTS.filter(s => s.living).map(s => s.year))));

88 Chapter 5

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

// → 1165

console.log(Math.round(average(

SCRIPTS.filter(s => !s.living).map(s => s.year))));

// → 204

As you can see, the dead scripts in Unicode are, on average, older than
the living ones. This is not a terribly meaningful or surprising statistic. But
I hope you’ll agree that the code used to compute it isn’t hard to read. You
can see it as a pipeline: we start with all scripts, filter out the living (or dead)
ones, take the years from those, average them, and round the result.

You could definitely also write this computation as one big loop.

let total = 0, count = 0;

for (let script of SCRIPTS) {

if (script.living) {

total += script.year;

count += 1;

}

}

console.log(Math.round(total / count));

// → 1165

However, it is harder to see what was being computed and how. And
because intermediate results aren’t represented as coherent values, it’d be a
lot more work to extract something like average into a separate function.

In terms of what the computer is actually doing, these two approaches
are also quite different. The first will build up new arrays when running
filter and map, whereas the second computes only some numbers, doing less
work. You can usually afford the readable approach, but if you’re processing
huge arrays and doing so many times, the less abstract style might be worth
the extra speed.

Strings and Character Codes
One interesting use of this dataset would be figuring out what script a piece
of text is using. Let’s go through a program that does this.

Remember that each script has an array of character code ranges associ-
ated with it. Given a character code, we could use a function like this to find
the corresponding script (if any):

function characterScript(code) {

for (let script of SCRIPTS) {

if (script.ranges.some(([from, to]) => {

return code >= from && code < to;

})) {

return script;

}

}

return null;

Higher-Order Functions 89

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

}

console.log(characterScript(121));

// → {name: "Latin", ...}

The some method is another higher-order function. It takes a test func-
tion and tells you whether that function returns true for any of the elements
in the array.

But how do we get the character codes in a string?
In Chapter 1, I mentioned that JavaScript strings are encoded as a se-

quence of 16-bit numbers. These are called code units. A Unicode character
code was initially supposed to fit within such a unit (which gives you a lit-
tle over 65,000 characters). When it became clear that wasn’t going to be
enough, many people balked at the need to use more memory per charac-
ter. To address these concerns, UTF-16, the format also used by JavaScript
strings, was invented. It describes most common characters using a single
16-bit code unit but uses a pair of two such units for others.

UTF-16 is generally considered a bad idea today. It seems almost inten-
tionally designed to invite mistakes. It’s easy to write programs that pretend
code units and characters are the same thing. And if your language doesn’t
use two-unit characters, that will appear to work just fine. But as soon as
someone tries to use such a program with some less common Chinese char-
acters, it breaks. Fortunately, with the advent of emoji, everybody has started
using two-unit characters, and the burden of dealing with such problems is
more fairly distributed.

Unfortunately, obvious operations on JavaScript strings, such as getting
their length through the length property and accessing their content using
square brackets, deal only with code units.

// Two emoji characters, horse and shoe

let horseShoe = "🐴👟";

console.log(horseShoe.length);

// → 4

console.log(horseShoe[0]);

// → (Invalid half-character)

console.log(horseShoe.charCodeAt(0));

// → 55357 (Code of the half-character)

console.log(horseShoe.codePointAt(0));

// → 128052 (Actual code for horse emoji)

JavaScript’s charCodeAt method gives you a code unit, not a full character
code. The codePointAt method, added later, does give a full Unicode charac-
ter, so we could use that to get characters from a string. But the argument
passed to codePointAt is still an index into the sequence of code units. To
run over all characters in a string, we’d still need to deal with the question
of whether a character takes up one or two code units.

In Chapter 4, I mentioned that a for/of loop can also be used on strings.
Like codePointAt, this type of loop was introduced at a time when people

90 Chapter 5

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

were acutely aware of the problems with UTF-16. When you use it to loop
over a string, it gives you real characters, not code units.

let roseDragon = "🌹🐉";

for (let char of roseDragon) {

console.log(char);

}

// → 🌹
// → 🐉

If you have a character (which will be a string of one or two code units),
you can use codePointAt(0) to get its code.

Recognizing Text
We have a characterScript function and a way to correctly loop over charac-
ters. The next step is to count the characters that belong to each script. The
following counting abstraction will be useful there:

function countBy(items, groupName) {

let counts = [];

for (let item of items) {

let name = groupName(item);

let known = counts.find(c => c.name == name);

if (!known) {

counts.push({name, count: 1});

} else {

known.count++;

}

}

return counts;

}

console.log(countBy([1, 2, 3, 4, 5], n => n > 2));

// → [{name: false, count: 2}, {name: true, count: 3}]

The countBy function expects a collection (anything that we can loop
over with for/of) and a function that computes a group name for a given el-
ement. It returns an array of objects, each of which names a group and tells
you the number of elements that were found in that group.

It uses another array method, find, which goes over the elements in the
array and returns the first one for which a function returns true. It returns
undefined when it finds no such element.

Using countBy, we can write the function that tells us which scripts are
used in a piece of text.

function textScripts(text) {

let scripts = countBy(text, char => {

let script = characterScript(char.codePointAt(0));

Higher-Order Functions 91

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

return script ? script.name : "none";

}).filter(({name}) => name != "none");

let total = scripts.reduce((n, {count}) => n + count, 0);

if (total == 0) return "No scripts found";

return scripts.map(({name, count}) => {

return `${Math.round(count * 100 / total)}% ${name}`;

}).join(", ");

}

console.log(textScripts('英国的狗说"woof", 俄罗斯的狗说"тяв"'));
// → 61% Han, 22% Latin, 17% Cyrillic

The function first counts the characters by name, using characterScript

to assign them a name and falling back to the string "none" for characters
that aren’t part of any script. The filter call drops the entry for "none" from
the resulting array, since we aren’t interested in those characters.

To be able to compute percentages, we first need the total number of
characters that belong to a script, which we can compute with reduce. If we
find no such characters, the function returns a specific string. Otherwise,
it transforms the counting entries into readable strings with map and then
combines them with join.

Summary
Being able to pass function values to other functions is a deeply useful as-
pect of JavaScript. It allows us to write functions that model computations
with “gaps” in them. The code that calls these functions can fill in the gaps
by providing function values.

Arrays provide a number of useful higher-order methods. You can use
forEach to loop over the elements in an array. The filter method returns
a new array containing only the elements that pass the predicate function.
You can transform an array by putting each element through a function
using map. You can use reduce to combine all the elements in an array into
a single value. The some method tests whether any element matches a
given predicate function, while find finds the first element that matches
a predicate.

Exercises

Flattening
Use the reduce method in combination with the concat method to “flatten”
an array of arrays into a single array that has all the elements of the original
arrays.

92 Chapter 5

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

Your Own Loop
Write a higher-order function loop that provides something like a for loop
statement. It should take a value, a test function, an update function, and
a body function. Each iteration, it should first run the test function on the
current loop value and stop if that returns false. It should then call the body
function, giving it the current value, and finally call the update function to
create a new value and start over from the beginning.

When defining the function, you can use a regular loop to do the actual
looping.

Everything
Arrays have an every method analogous to the some method. This method
returns true when the given function returns true for every element in the
array. In a way, some is a version of the || operator that acts on arrays, and
every is like the && operator.

Implement every as a function that takes an array and a predicate func-
tion as parameters. Write two versions, one using a loop and one using the
some method.

Dominant Writing Direction
Write a function that computes the dominant writing direction in a string of
text. Remember that each script object has a direction property that can be
"ltr" (left to right), "rtl" (right to left), or "ttb" (top to bottom).

The dominant direction is the direction of a majority of the characters
that have a script associated with them. The characterScript and countBy func-
tions defined earlier in the chapter are probably useful here.

Higher-Order Functions 93

Eloquent JavaScript, 4th Edition (Sample Chapter) © 2024 by Marijn Haverbeke

