
In this chapter, you’ll learn about objects,
functions, and types. We’ll examine how

to declare variables (objects with named
identifiers) and functions, take the addresses

of objects, and dereference those object pointers. Each
object or function instance has a type. You’ve already
seen some types that are available to C programmers.
The first thing you’ll learn in this chapter is one of the
last things that I learned: every type in C is either an
object type or a function type.

Entities
An object is storage in which you can represent values. To be precise, an
object is defined by the C standard (ISO/IEC 9899:2024) as a “region of

2
O B J E C T S , F U N C T I O N S ,

A N D T Y P E S

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

14 Chapter 2

data storage in the execution environment, the contents of which can repre-
sent values,” with the added note, “when referenced, an object can be inter-
preted as having a particular type.” A variable is an example of an object.

Variables have a declared type that tells you the kind of object its value
represents. For example, an object with type int contains an integer value.
Type is important because the collection of bits that represent one type
of object can have a different value if interpreted as a different type of
object. For example, the number 1 is represented in the IEEE Standard for
Floating-Point Arithmetic by the bit pattern 0x3f800000 (IEEE 754-2019).
But if you were to interpret this same bit pattern as an integer, you’d get the
value 1,065,353,216 instead of 1.

Functions are not objects but do have types. A function type is character-
ized by both its return type and the number and types of its parameters.

The C language also has pointers, which can be thought of as an address—
a location in memory where an object or function is stored.

Just like objects and functions, object pointers and function pointers
are different things and must not be interchanged. In the following section,
you’ll write a simple program that attempts to swap the values of two vari-
ables to help you better understand objects, functions, pointers, and types.

Declaring Variables
When you declare a variable, you assign it a type and provide it a name, or
identifier, by which the variable is referenced. Optionally, you can also initial-
ize the variable.

Listing 2-1 declares two integer objects with initial values. This simple
program also declares, but doesn’t define, a swap function to swap those
values.

#include <stdio.h>
#include <stdlib.h>

1 void swap(int, int); // defined in Listing 2-2

int main() {
 int a = 21;
 int b = 17;
2 swap(a, b);
 printf("main: a = %d, b = %d\n", a, b);
 return EXIT_SUCCESS;
}

Listing 2-1: A program meant to swap two integers

This example program shows a main function with a single compound
statement that includes the { } characters and all the statements between
them (also referred to as a block). We define two variables, a and b, within
the main function. We declare the variables as having the type int and
initialize them to 21 and 17, respectively. Each variable must have a

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 15

declaration. The main function then calls the swap function 2 to try to
swap the values of the two integers. The swap function is declared in this
program 1 but not defined. We’ll look at some possible implementations
of this function later in this section.

DECL A R ING MULT IPL E VA R I A BL ES

You can declare multiple variables in any single declaration, but doing so can
become confusing if the variables are pointers or arrays or if the variables are
of different types . For example, the following declarations are all correct:

char *src, c;
int x, y[5];
int m[12], n[15][3], o[21];

The first line declares two variables, src and c, which have different types .
The src variable has a type of char *, and c has a type of char . The second
line again declares two variables, x and y, with different types . The variable
x has a type int, and y is an array of five elements of type int . The third line
declares three arrays (m, n, and o) with different dimensions and numbers of
elements .

These declarations are easier to understand if each is on its own line:

char *src; // src has a type of char *
char c; // c has a type of char
int x; // x has a type int
int y[5]; // y is an array of 5 elements of type int
int m[12]; // m is an array of 12 elements of type int
int n[15][3]; // n is an array of 15 arrays of 3 elements of type int
int o[21]; // o is an array of 21 elements of type int

Readable and understandable code is less likely to have defects .

Swapping Values, First Attempt
Each object has a storage duration that determines its lifetime, which is the
time during program execution for which the object exists, has storage, has
a constant address, and retains its last-stored value. Objects must not be ref-
erenced outside their lifetime.

Local variables such as a and b from Listing 2-1 have automatic storage
duration, meaning that they exist until execution leaves the block in which
they’re declared. We’re going to try to swap the values stored in these two
variables. Listing 2-2 shows our first attempt to implement the swap function.

void swap(int a, int b) {
 int t = a;
 a = b;

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

16 Chapter 2

 b = t;
 printf("swap: a = %d, b = %d\n", a, b);
}

Listing 2-2: A first attempt at implementing the swap function

The swap function is declared with two parameters, a and b, that we
use to pass arguments to this function. C distinguishes between parameters,
which are objects declared as part of the function declaration that acquire a
value on entry to the function, and arguments, which are comma-separated
expressions we include in the function call expression. We also declare a
temporary variable t of type int in the swap function and initialize it to the
value of a. This variable is used to temporarily save the value stored in a so
that it’s not lost during the swap.

We can now run the generated executable to test the program:

% ./a.out
swap: a = 17, b = 21
main: a = 21, b = 17

This result may be surprising. The variables a and b were initialized to
21 and 17, respectively. The first call to printf within the swap function shows
that these two values were swapped, but the second call to printf in main
shows the original values unchanged. Let’s examine what happened.

C is a call-by-value (also called a pass-by-value) language, which means
that when you provide an argument to a function, the value of that argu-
ment is copied into a distinct variable for use within the function. The swap
function assigns the values of the objects you pass as arguments to their
respective parameters. When the parameter values in the function are
changed, the argument values in the caller are unaffected because they are
distinct objects. Consequently, the variables a and b retain their original val-
ues in main during the second call to printf. The goal of the program was to
swap the values of these two objects. By testing the program, we’ve discov-
ered it has a bug, or defect.

Swapping Values, Second Attempt
To repair this bug, we can use pointers to rewrite the swap function. We use
the indirection (*) operator to both declare pointers and dereference them,
as shown in Listing 2-3.

void swap(int *pa, int *pb) {
 int t = *pa;
 *pa = *pb;
 *pb = t;
}

Listing 2-3: The revised swap function using pointers

When used in a function declaration or definition, * acts as part of a
pointer declarator indicating that the parameter is a pointer to an object

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 17

or function of a specific type. In the rewritten swap function, we declare two
parameters, pa and pb, both having the type pointer to int.

The unary * operator denotes indirection. If its operand has type
pointer to T, the result of the operation has type T. For example, consider
the following assignment:

pa = pb;

This replaces the value of the pointer pa with the value of the pointer
pb. Now consider the assignment in the swap function:

*pa = *pb;

The *pb operation reads the value referenced by pb, while the *pa opera-
tion reads the location referenced by pa. The value referenced by pb is then
written to the location referenced by pa.

When you call the swap function in main, you must also place an amper-
sand (&) character before each variable name:

swap(&a, &b);

The unary & (address-of) operator generates a pointer to its operand.
This change is necessary because the swap function now accepts arguments
of type pointer to int instead of type int.

Listing 2-4 shows the entire swap program with comments describing
the objects created during execution of this code and their values.

#include <stdio.h>
#include <stdlib.h>

void swap(int *pa, int *pb) { // pa → a: 21 pb → b: 17
 int t = *pa; // t: 21
 *pa = *pb; // pa → a: 17 pb → b: 17
 *pb = t; // pa → a: 17 pb → b: 21
}

int main() {
 int a = 21; // a: 21
 int b = 17; // b: 17
 swap(&a, &b);
 printf("a = %d, b = %d\n", a, b); // a: 17 b: 21
 return EXIT_SUCCESS;
}

Listing 2-4: A simulated call by reference

Upon entering the main function block, the variables a and b are initial-
ized to 21 and 17, respectively. The code then takes the addresses of these
objects and passes them to the swap function as arguments.

Within the swap function, the parameters pa and pb are now both
declared as type pointer to int and contain copies of the arguments passed

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

18 Chapter 2

to swap from the calling function (in this case, main). These address copies
still refer to the exact same objects, so when the values of their referenced
objects are swapped in the swap function, the contents of the original
objects declared in main are also swapped. This approach simulates call by
reference (also known as pass by reference) by generating object addresses,
passing those by value, and then dereferencing the copied addresses to
access the original objects.

Object Types
This section introduces object types in C. Specifically, we’ll cover the Boolean
type, character types, and arithmetic types (including both integer and float-
ing types).

Boolean
A Boolean data type has one of two possible values (true or false) that rep-
resent the two truth values of logic and Boolean algebra. Objects declared
as bool can store only the values true and false.

R ESERV ED IDEN T IF IERS

A Boolean type was introduced in C99 starting with an underscore (_Bool) to dif-
ferentiate it in existing programs that had already declared their own identifiers
named bool . Identifiers that begin with an underscore and either an uppercase
letter or another underscore are always reserved . The C standards committee
often creates new keywords such as _Bool under the assumption that you have
avoided the use of reserved identifiers . If you haven’t, as far as the C standards
committee is concerned, it’s your fault for not having read the standard more
carefully . C23 added the bool keyword but retained _Bool as an alternative
spelling, and bool is now the preferred spelling . The keywords false and true
are constants of type bool with a value of 0 for false and 1 for true . If you are
using an older version of C, you can include the header <stdbool.h>, still spell
this type as bool, and assign it the values true and false .

The following example declares a function called arm_detonator that
takes a single int argument and returns a value of type bool:

bool arm_detonator(int);

void arm_missile(void) {
 bool armed = arm_detonator(3);
 if (armed) puts("missile armed");
 else puts("missile disarmed");
}

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 19

The arm_missile function calls the arm_detonator function and assigns the
return value to the Boolean variable armed. This value can then be tested to
determine whether the missile is armed.

Historically, Boolean values were represented by integers and still
behave as integers. They can be stored in integer variables and used any-
where integers would be valid, including in indexing, arithmetic, parsing,
and formatting. C guarantees that any two true values will compare equally
(which was impossible to achieve before the introduction of the bool type).
You should use the bool type to represent Boolean values.

Character
The C language defines the following character types: char, signed char, and
unsigned char. Each compiler implementation defines char to have the same
alignment, size, range, representation, and behavior as either signed char or
unsigned char. Regardless of the choice made, char is a separate type from
the other two and is incompatible with both.

The char type is commonly used to represent character data in
C language programs. Objects of type char can represent the basic execu-
tion character set—the minimum set of characters required in the execution
 environment—including upper- and lowercase letters, the 10 decimal digits,
the space character, punctuation, and control characters. The char type is
inappropriate for integer data; use signed char to represent small, signed
integer values, and use unsigned char to represent small, unsigned integer
values.

The size of objects of type char is always 1 byte, and its width is CHAR_BIT
bits. The CHAR_BIT macro from <limits.h> defines the number of bits in a
byte. The value of CHAR_BIT macro cannot be less than 8, and on most mod-
ern platforms, it is 8.

The basic execution character set suits the needs of many conven-
tional data processing applications, but its lack of non-English letters is an
obstacle to acceptance by international users. To address this need, the
C standards committee specified a new wide type to allow large character
sets. You can represent the characters of a large character set as wide char-
acters by using the wchar_t type, which generally takes more space than a
basic character. Typically, implementations choose 16 or 32 bits to represent
a wide character. The C standard library provides functions that support
both narrow and wide character types. The wchar_t type was not designed
to support Unicode and has consequently fallen out of favor for most imple-
mentations with the notable exception of Microsoft Visual Studio.

Arithmetic
C provides several arithmetic types that can be used to represent integers,
enumerators, and floating-point values. Chapter 3 covers some of these in
more detail, but here’s a brief introduction.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

20 Chapter 2

Integer

Signed integer types can be used to represent negative numbers, positive num-
bers, and zero. The standard signed integer types include signed char, short
int, int, long int, and long long int.

For each signed integer type, there is a corresponding unsigned integer
type that uses the same amount of storage: unsigned char, unsigned short int,
unsigned int, unsigned long int, and unsigned long long int. The unsigned
types can represent positive numbers and zero. These unsigned integer
types along with type bool make up the standard unsigned integer types.

Except for int itself, the keyword int may be omitted in the declarations
for these types, so you might, for example, declare a type by using long long
instead of long long int.

The signed and unsigned integer types are used to represent integers of
various widths. Each platform determines the width for each of these types,
given some constraints. Each type has a minimum representable range.
The types are ordered by width, guaranteeing that wider types are at least
as large as narrower types. This means that an object of type long long int
can represent all values that an object of type long int can represent, an
object of type long int can represent all values that can be represented by
an object of type int, and so forth. The implementation-defined minimum
and maximum representable values for integer types are specified in the
<limits.h> header file.

Extended integer types may be provided in addition to the standard inte-
ger types. They are implementation defined, meaning that their width,
precision, and behavior are up to the compiler. Extended integer types are
typically larger than the standard integer types (for example, __int128).

In addition to the standard and extended integer types, C23 adds bit-
precise integer types. These types accept an operand specifying the width
of the integer, so a _BitInt(32) is a signed 32-bit integer, and an unsigned
_BitInt(32) is an unsigned 32-bit integer. Bit-precise integer types do not
require their width to be a power of two; the maximum width supported is
specified by BITINT_MAXWIDTH (which must be at least the same as the width of
unsigned long long).

The int type is typically assigned the natural width suggested by the
architecture of the execution environment (for example, 16 bits on a
16-bit architecture and 32 bits on a 32-bit or 64-bit architecture). You can
specify actual-width integers by using type definitions from the <stdint.h>
or <inttypes.h> header, like uint32_t. These headers also provide type defi-
nitions for the greatest-width integer types: uintmax_t and intmax_t. The
intmax_t type, for example, can represent any value of any signed integer
type with the possible exceptions of signed bit-precise integer types and of
signed extended integer types.

Chapter 3 covers integer types in excruciating detail.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 21

enum

An enumeration, or enum, allows you to define a type that assigns names (enu-
merators) to integer values in cases with an enumerable set of constant val-
ues. The following are examples of enumerations:

enum day { sun, mon, tue, wed, thu, fri, sat };
enum cardinal_points { north = 0, east = 90, south = 180, west = 270 };
enum months { jan = 1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec };

If you don’t specify a value to the first enumerator with the = operator,
the value of its enumeration constant is 0, and each subsequent enumera-
tor without an = adds 1 to the value of the previous enumeration constant.
Consequently, the value of sun in the day enumeration is 0, mon is 1, and
so forth.

You can also assign specific values to each enumerator, as shown by
the cardinal_points enumeration. Using = with enumerators may produce
enumeration constants with duplicate values, which can be a problem if you
incorrectly assume that all the values are unique. The months enumeration
sets the first enumerator at 1, and each subsequent enumerator that isn’t
specifically assigned a value will be incremented by 1.

Starting with C23, you can specify the underlying type of the enumera-
tion. For portability and other reasons (Meneide and Pygott 2022), it is
always better to specify the enumeration type. In the following example,
the enumeration constant a0 can be assigned the value 0xFFFFFFFFFFFFFFFFULL
because the type is specified as unsigned long long:

enum a : unsigned long long {
 a0 = 0xFFFFFFFFFFFFFFFFULL
};

An omitted type is implementation defined. Visual C++ uses a signed
int for the type, and GCC uses an unsigned int.

Floating

Floating-point arithmetic is similar to, and often used as a model for, the
arithmetic of real numbers. The C language supports a variety of floating-
point representations including, on most systems, representations in the
IEEE Standard for Floating-Point Arithmetic (IEEE 754-2019). ISO/IEC
60559:2011 has content identical to IEEE 754-2019 but is referenced by the
C standard because it is published by the same standards organization.
The choice of floating-point representation is implementation defined.
Chapter 3 covers floating types in detail.

The C language supports three standard floating types: float, double,
and long double. The set of values of the type float is a subset of the set of
values of the type double; the set of values of the type double is a subset of the
set of values of the type long double.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

22 Chapter 2

C23 adds three decimal floating types (ISO/IEC TS 18661-2:2015), desig-
nated as _Decimal32, _Decimal64, and _Decimal128. Respectively, these have the
decimal32, decimal64, and decimal128 IEC 60559 formats.

The standard floating types and the decimal floating types are collec-
tively called the real floating types.

There are also three complex types, designated as float complex, double
complex, and long double complex.

The real floating and complex types are collectively called the floating
types. Figure 2-1 shows the hierarchy of floating types.

Floating types

Complex typesReal floating types

Decimal floating typesStandard floating types

Figure 2-1: The hierarchy of floating types

Complex types and decimal floating types are not covered in detail in
this book.

void
The void type is a rather strange type. The keyword void (by itself) means
“cannot hold any value.” For example, you can use it to indicate that a func-
tion doesn’t return a value or as the sole parameter of a function to indicate
that the function takes no arguments. On the other hand, the derived type
void * means that the pointer can reference any object.

Derived Types
Derived types are constructed from other types. These include function types,
pointer types, array types, type definitions, structure types, and union
types—all of which are covered here.

Function
A function type is derived from the return type and the number and types of
its parameters. A function can return any complete object type except for
an array type.

When you declare a function, you use the function declarator to specify
the name of the function and the return type. If the declarator includes
a parameter type list and a definition, the declaration of each parameter
must include an identifier, except parameter lists with only a single param-
eter of type void, which needs no identifier.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 23

Here are a few function type declarations:

int f(void);
int fprime();
int *fip();
void g(int i, int j);
void h(int, int);

First, we declare two functions, f and fprime, with no parameter that
returns an int. Next, we declare a function fip with no parameters that return
a pointer to an int. Finally, we declare two functions, g and h, each returning
void and taking two parameters of type int.

Specifying parameters with identifiers (as done here with g) can be
problematic if an identifier is a macro. However, providing parameter
names is good practice for self-documenting code, so omitting the identi-
fiers (as done with h) is not typically recommended.

In a function declaration, specifying parameters is optional. However,
failing to do so can be problematic. Prior to C23, fip declares a function
accepting any number of arguments of any type and returning an int *.
The same function declaration for fip in C++ declares a function accepting
no arguments and returning an int *. Starting with C23, a function declar-
ator with an empty parameter list declares a prototype for a function that
takes no arguments (like it does in C++).

A function type is also known as a function prototype. A function proto-
type informs the compiler about the number and types of parameters a
function accepts. Compilers use this information to verify that the correct
number and type of parameters are used in the function definition and any
calls to the function.

The function definition provides the actual implementation of the func-
tion. Consider the following function definition:

int max(int a, int b)
{ return a > b ? a : b; }

The return type specifier is int; the function declarator is max(int a,
int b); and the function body is { return a > b ? a : b; }. The specifica-
tion of a function type must not include any type qualifiers (see “Type
Qualifiers” on page 31). The function body itself uses the conditional oper-
ator (? :), which is explained in Chapter 4. This expression states that if a is
greater than b, return a; otherwise, return b.

Pointer
A pointer type is derived from a function or object type called the referenced
type. A pointer type derived from the referenced type T is called a pointer to T.
A pointer provides a reference to an entity of the referenced type.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

24 Chapter 2

The following three declarations declare a pointer to int, a pointer to
char, and a pointer to void:

int *ip = 0; // compliant
char *cp = NULL; // good
void *vp = nullptr; // better

Each pointer is initialized to a null pointer constant. A null pointer
constant can be specified as an integer constant expression with the value
0, (void *)0, or the predefined constant nullptr. The NULL macro is defined
in <stddef.h>. If a null pointer constant is converted to a pointer type, the
resulting null pointer is guaranteed to compare unequally to a pointer to
any object or function.

The nullptr constant was introduced in C23 and has advantages to
using NULL (Gustedt 2022). Table 2-1 shows common values for NULL and their
associated types.

Table 2-1: Common Values for NULL and
Their Associated Types

Value Type

0 int

0L long

(void *)0 void *

These different types can have surprising results when invoking a type-
generic macro with a NULL argument. The conditional expression (true ?
0 : NULL) is always defined, regardless of the type of NULL. However, the con-
ditional expression (true ? 1 : NULL) is a constraint violation if NULL has type
void *.

A NULL argument passed as a sentinel value to a variadic function, such
as the Portable Operating System Interface (POSIX) execl function, which
expects a pointer, can have unexpected results. On most modern architec-
tures, the int and void * types have different sizes. If NULL is defined as 0 on
such an architecture, an incorrectly sized argument is passed to the variadic
function.

Earlier in the chapter, I introduced the address-of (&) and indirec-
tion (*) operators. You use the & operator to take the address of an object
or function. For example, taking the address of an int object results in an
address with the type pointer to int:

int i = 17;
int *ip = &i;

The second declaration declares the variable ip as a pointer to int and
initializes it to the address of i. You can also use the & operator on the result
of the * operator:

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 25

ip = &*ip;

Dereferencing ip using the * operator resolves to the actual object i.
Taking the address of *ip using the & operator retrieves the pointer, so these
two operations cancel each other out.

The unary * operator converts a pointer to a type T into a value of type T.
It denotes indirection and operates only on pointers. If the operand points
to a function, the result of using the * operator is the function designator,
and if it points to an object, the result is a value of the designated object.
For example, if the operand is a pointer to int, the result of the indirection
operator has type int. If the pointer is not pointing to a valid object or func-
tion, the behavior is undefined.

Array
An array is a contiguously allocated sequence of objects that all have the
same element type. Array types are characterized by their element types
and the number of elements in the array. Here we declare an array of
11 elements of type int identified by ia and an array of 17 elements of type
pointer to float identified by afp:

int ia[11];
float *afp[17];

You can use square brackets ([]) to identify an element of an array. For
example, the following contrived code snippet creates the string "0123456789"
to demonstrate how to assign values to the elements of an array:

char str[11];
for (unsigned int i = 0; i < 10; ++i) {
 str[i] = '0' + i;
}
str[10] = '\0';

The first line declares an array of char with a bound of 11. This allocates
sufficient storage to create a string with 10 characters plus a null character.
The for loop iterates 10 times, with the values of i ranging from 0 to 9. Each
iteration assigns the result of the expression '0' + i to str[i]. Following the
end of the loop, the null character is copied to the final element of the
array str[10], and str now contains the string "0123456789".

In the expression str[i], str is automatically converted to a pointer to
the first member of the array (pointer to char), and i has an unsigned inte-
ger type. The subscript ([]) and addition (+) operators are defined so that
str[i] is identical to *(str + i). When str is an array object (as it is here), the
expression str[i] designates the ith element of the array (counting from 0).
Because arrays are indexed starting at 0, the array char str[11] is indexed
from 0 to 10, with 10 being the last element, as referenced on the last line of
this example.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

26 Chapter 2

If the operand of the unary & operator is the result of a [] operator, the
result is as if the & operator were removed and the [] operator were changed
to a + operator. For example, &str[10] is the same as str + 10:

&str[10] → &*(str + 10) → str + 10

You can also declare multidimensional arrays. Listing 2-5 declares
arr in the function main as a two-dimensional 3×5 array of type int, also
referred to as a matrix.

#include <stdlib.h>
void func(int arr[5]);
int main() {
 unsigned int i = 0;
 unsigned int j = 0;
 int arr[3][5];
1 func(arr[i]);
2 int x = arr[i][j];
 return EXIT_SUCCESS;
}

Listing 2-5: Matrix operations

More precisely, arr is an array of three elements, each of which is an
array of five elements of type int. When you use the expression arr[i] 1
(which is equivalent to *(arr+i)), the following occurs:

 1. arr is converted to a pointer to the initial array of five elements of type
int starting at arr[i].

 2. i is scaled to the type of arr by multiplying i by the size of one array of
five int objects.

 3. The results from steps 1 and 2 are added.

 4. Indirection is applied to the sum to produce an array of five elements
of type int.

When used in the expression arr[i][j] 2, that array is converted to a
pointer to the first element of type int, so arr[i][j] produces an object of
type int.

T Y PE DEF INIT IONS

You use typedef to declare an alias for an existing type; it never creates a new
type . For example, each of the following declarations creates at least one new
type alias:

typedef unsigned int uint_type;
typedef signed char schar_type, *schar_p, (*fp)(void);

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 27

On the first line, we declare uint_type as an alias for the type unsigned
int . On the second line, we declare schar_type as an alias for signed char,
schar_p as an alias for signed char *, and fp as an alias for signed char(*)
(void) . Identifiers that end in _t in the standard headers are type definitions
(aliases for existing types) . You should not follow this convention in your own
code because the C standard reserves identifiers that match the patterns
int[0-9a-z_]*_t and uint[0-9a-z_]*_t, and POSIX reserves all identifiers that
end in _t . If you define identifiers that use these names, they may collide with
names used by the implementation, which can cause problems that are difficult
to debug .

Structure
A structure type (also known as a struct) contains sequentially allocated mem-
bers. Each member has its own name and may have a distinct type—unlike
array elements, which must all be of the same type. Structures are like
record types found in other programming languages.

Structures are useful for declaring collections of related objects and
may be used to represent things such as a date, customer, or personnel
record. They are especially useful for grouping objects that are frequently
passed together as arguments to a function, so you don’t need to repeatedly
pass individual objects separately.

Listing 2-6 declares a struct named sigline with type struct sigrecord
and a pointer to struct sigrecord named sigline_p.

struct sigrecord {
 int signum;
 char signame[20];
 char sigdesc[100];
} sigline, *sigline_p;

Listing 2-6: A struct sigrecord

The structure has three member objects: signum is an object of type int,
signame is an array of type char consisting of 20 elements, and sigdesc is an
array of type char consisting of 100 elements.

Once you have defined a structure, you’ll likely want to reference its
members. You reference members of an object of the structure type by
using the structure member (.) operator. If you have a pointer to a struc-
ture, you can reference its members with the structure pointer (->) opera-
tor. Listing 2-7 demonstrates the use of each operator.

sigline.signum = 5;
strcpy(sigline.signame, "SIGINT");
strcpy(sigline.sigdesc, "Interrupt from keyboard");

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

28 Chapter 2

1 sigline_p = &sigline;

sigline_p->signum = 5;
strcpy(sigline_p->signame, "SIGINT");
strcpy(sigline_p->sigdesc, "Interrupt from keyboard");

Listing 2-7: Referencing structure members

The first three lines of Listing 2-7 directly access members of the sigline
object by using the dot (.) operator. We assign the address of the sigline
object to the sigline_p pointer 1. In the final three lines of the program, we
indirectly access the members of the sigline object by using the -> operator
through the sigline_p pointer.

Union
Union types are like structures, except that the memory used by the member
objects overlaps. Unions provide multiple different ways to look at the same
memory.

Listing 2-8 shows a union that contains a single member f of type float
and a struct that contains three bitfields of type uint32_t: significand, exponent,
and sign.

static_assert(
 (__STDC_IEC_60559_BFP__ >= 202311L || __STDC_IEC_559__ == 1)
 && __STDC_ENDIAN_LITTLE__
);

union {
 float f;
 struct {
 uint32_t significand : 23;
 uint32_t exponent : 8;
 uint32_t sign : 1;
 };
} float_encoding;

Listing 2-8: Decomposing a float using a union

This allows a (low-level) C programmer to use the entire floating-point
value and examine (and possibly modify) its constituent parts. This union
is not portable because implementations may use a different floating-point
representation or endianness. The static_assert tests to ensure this union
matches the implementation.

Listing 2-9 shows a struct n that contains a member type and a union
u that itself contains four members: inode, fnode, dnode, and ldnode.

enum node_type {
 integer_type,
 float_type,
 double_float_type,

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 29

 long_double_type
};

struct node {
 enum node_type type;
 union {
 int inode;
 float fnode;
 double dnode;
 long double ldnode;
 } u;
} n;

n.type = double_type;
n.u.dnode = 3.14;

Listing 2-9: Saving memory with a union

This structure might be used in a tree, a graph, or some other data
structure that contains differently typed nodes. The type member might
contain a value between 0 and 3, which indicates the type of the value
stored in the structure. It is declared directly in the struct n because it is
common to all nodes.

As with structures, you can access union members via the . operator. Using
a pointer to a union, you can reference its members with the -> operator. In
Listing 2-9, the dnode member is referenced as n.u.dnode. Code that uses this
union will typically check the type of the node by examining the value stored
in n.type and then accessing the value using n . u . inode, n.u.fnode, n.u.dnode, or
n.u.ldnode, depending on the value stored in n.type. Without the union, each
node would contain separate storage for all four data types. The use of a union
allows the same storage to be used for all union members. On the x86-64 GCC
version 13.2 compiler, using a union saved 16 bytes per node.

Unions are commonly used to describe network or device protocols in
cases where you do not know in advance which protocol will be used.

Tags
Tags are a special naming mechanism for structures, unions, and enumera-
tions. For example, the identifier s in the following structure is a tag:

struct s {
 // --snip--
};

By itself, a tag is not a type name and cannot be used to declare a vari-
able (Saks 2002). Instead, you must declare variables of this type as follows:

struct s v; // instance of struct s
struct s *p; // pointer to struct s

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

30 Chapter 2

The names of unions and enumerations are also tags and not types,
meaning that they cannot be used alone to declare a variable. For example:

enum day { sun, mon, tue, wed, thu, fri, sat };
day today; // error
enum day tomorrow; // OK

The tags of structures, unions, and enumerations are defined in a sepa-
rate namespace from ordinary identifiers. This allows a C program to have
both a tag and another identifier with the same spelling in the same scope:

enum status { ok, fail }; // enumeration
enum status status(void); // function

You can even declare an object s of type struct s:

struct s s;

This may not be good practice, but it is valid C. You can think of struct
tags as type names and define an alias for the tag by using a typedef. Here’s
an example:

typedef struct s { int x; } t;

This now allows you to declare variables of type t instead of struct s.
The tag name in struct, union, and enum is optional, so you can just dispense
with it entirely:

typedef struct { int x; } t;

This works fine except in the case of self-referential structures that con-
tain pointers to themselves:

struct tnode {
 int count;
 struct tnode *left;
 struct tnode *right;
};

C requires the use of tag types (struct, union, or enum) to include the tag
name. The compiler will emit a diagnostic if you do not use struct tnode
in the declaration of the left and right pointers. Consequently, you must
declare a tag for the structure.

You can create an alias for the structure using a typedef:

typedef struct tnode {
 int count;
 struct tnode *left;
 struct tnode *right;
} tnode;

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 31

The declaration of the left and right pointers must still use the tag
name because the typedef name is not introduced until after the struct dec-
laration is complete. You can use the same name for the tag and the typedef,
but a common idiom is to name the tag something ugly such as tnode_ to
encourage programmers to use the type name:

typedef struct tnode_ {
 int count;
 struct tnode_ *left;
 struct tnode_ *right;
} tnode;

You can also define this type before the structure so that you can use
it to declare the left and right members that refer to other objects of type
tnode:

typedef struct tnode tnode;
struct tnode {
 int count;
 tnode *left;
 tnode *right;
};

Type definitions can improve code readability beyond their use with
structures. For example, given the following type definition

typedef void fv(int), (*pfv)(int);

these declarations of the signal function all specify the same type:

void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);

The last two declarations are clearly easier to read.

Type Qualifiers
All the types examined so far have been unqualified types. You can qualify
types by using one or more of the following qualifiers: const, volatile, and
restrict. Each of these qualifiers changes behaviors when accessing objects
of the qualified type.

The qualified and unqualified versions of types can be used inter-
changeably as arguments to functions, return values from functions, and
structure and union members.

N O T E The _Atomic type qualifier, available since C11, supports concurrent programs.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

32 Chapter 2

const
Objects declared with the const qualifier (const-qualified types) are not
assignable but can have constant initializers. This means the compiler
can place objects with const-qualified types in read-only memory, and any
attempt to write to them will result in a runtime error:

const int i = 1; // const-qualified int
i = 2; // error: i is const-qualified

It’s possible to accidentally convince your compiler to change a const-
qualified object for you. In the following example, we take the address of a
const-qualified object i and tell the compiler that it’s actually a pointer to
an int:

const int i = 1; // object of const-qualified type
int *ip = (int *)&i;
*ip = 2; // undefined behavior

C does not allow you to cast away the const if the original was declared
as a const-qualified object. This code might appear to work, but it’s defec-
tive and may fail later. For example, the compiler might place the const-
qualified object in read-only memory, causing a memory fault when trying
to store a value in the object at runtime.

C allows you to modify an object that is referenced by a const-qualified
pointer by casting the const away, provided that the original object was not
declared const:

int i = 12;
const int j = 12;
const int *ip = &i;
const int *jp = &j;
*(int *)ip = 42; // OK
*(int *)jp = 42; // undefined behavior

Be careful not to pass a const-qualified pointer to a function that modi-
fies the object.

volatile
Objects are given a volatile-qualified type to allow for processes that are
extrinsic to the compiler. The values stored in these objects may change
without the knowledge of the compiler, or a write may synchronize exter-
nally. For example, every time the value from a real-time clock is read, it
may change, even if the value has not been written to by the C program.
Using a volatile-qualified type lets the compiler know that the value may
change without its knowledge and ensures that every access to the real-time

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 33

clock occurs. Otherwise, an access to the real-time clock may be optimized
away or replaced by a previously read and cached value.

A volatile-qualified type can be used to access memory-mapped reg-
isters, which are accessed through an address just like any other memory.
Input/output (I/O) devices often have memory-mapped registers, where
you can write to, or read from, a specific address to set or retrieve informa-
tion or data. Each read and write operation must occur, even if the com-
piler can see no reason for it. Declaring an object as volatile ensures that
each read or write of that object at runtime occurs the same number of
times and in the same order as indicated by the source code. For example,
if port is defined as a volatile-qualified int, the compiler must generate
instructions to read the value from port and then write this value back to
port in the assignment:

port = port;

Without the volatile qualification, the compiler would see this as a
no-op (a programming statement that does nothing) and might elimi-
nate both the read and the write. Reads and writes of volatile memory are
touched exactly once. A volatile operation cannot be eliminated or fused
with a subsequent one, even if the compiler believes it’s useless. A volatile
operation cannot be speculated, even if the compiler can undo or other-
wise make that speculation benign.

Objects with volatile-qualified types are used when a compiler is not
aware of external interactions. For example, volatile-qualified types can
be used for memory shared with untrusted code to avoid time-of-check to
time-of-use (ToCToU) vulnerabilities. Such types are used to access objects
from a signal handler and with setjmp/longjmp (refer to the C standard for
information on signal handlers and setjmp/longjmp). Unlike Java and other
programming languages, volatile-qualified types should not be used in C
for synchronization between threads.

Memory-mapped I/O ports are modeled by a static volatile–qualified
objects model. Memory-mapped input ports such as a real-time clock are
modeled by static const volatile–qualified objects. A const volatile–qualified
object models a variable that can be altered by a separate thread. The mean-
ing of the static storage-class specifier is explained later in this chapter.

restrict
A restrict-qualified pointer is used to promote optimization. Objects indi-
rectly accessed through a pointer frequently cannot be fully optimized
because of potential aliasing, which occurs when more than one pointer
refers to the same object. Aliasing can inhibit optimizations because the
compiler can’t tell whether an object can change values when another
apparently unrelated object is modified, for example.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

34 Chapter 2

The following function copies n bytes from the storage referenced by q
to the storage referenced by p. The function parameters p and q are both
restrict-qualified pointers:

void f(unsigned int n, int * restrict p, int * restrict q) {
 while (n-- > 0) {
 *p++ = *q++;
 }
}

Because both p and q are restrict-qualified pointers, the compiler can
assume that an object accessed through one of the pointer parameters is
not also accessed through the other. The compiler can make this assess-
ment based solely on the parameter declarations without analyzing the
function body.

Although using restrict-qualified pointers can result in more efficient
code, you must ensure that the pointers do not refer to overlapping memory
to prevent undefined behavior.

Scope
Objects, functions, macros, and other C language identifiers have scope that
delimits the contiguous region where they can be accessed. C has four types
of scope: file, block, function prototype, and function.

The scope of an object or function identifier is determined by where
it is declared. If the declaration is outside any block or parameter list, the
identifier has file scope, meaning its scope is the entire text file in which it
appears as well as any included files.

If the declaration appears inside a block or within the list of param-
eters, it has block scope, meaning that the identifier is accessible only from
within the block. The identifiers for a and b from Listing 2-4 have block
scope and can be referenced only from within the code block in the main
function in which they’re defined.

If the declaration appears within the list of parameter declarations in
a function prototype (not part of a function definition), the identifier has
function prototype scope, which terminates at the end of the function declara-
tor. Function scope is the area between the opening { of a function defini-
tion and its closing }. A label name is the only kind of identifier that has
function scope. Labels are identifiers followed by a colon, and they identify
a statement in the same function to which control may be transferred.
(Chapter 5 covers labels and control transfer.)

Scopes also can be nested, with inner and outer scopes. For example, you
can define a block scope inside another block scope, and every block scope
is defined within a file scope. The inner scope has access to the outer scope,
but not vice versa. As the name implies, any inner scope must be completely
contained within any outer scope that encompasses it.

If you declare the same identifier in both an inner scope and an outer
scope, the identifier declared in the outer scope is hidden (also known as
shadowed) by the identifier declared in the inner scope. Referencing the

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 35

identifier from the inner scope will refer to the object in the inner scope;
the object in the outer scope is hidden and cannot be referenced by its
name. The easiest way to prevent this from becoming a problem is to use
different names. Listing 2-10 demonstrates different scopes and how identi-
fiers declared in inner scopes can hide identifiers declared in outer scopes.

int j; // file scope of j begins

void f(int i) { // block scope of i begins
 int j = 1; // block scope of j begins; hides file-scope j
 i++; // i refers to the function parameter
 for (int i = 0; i < 2; i++) { // block scope of loop-local i begins
 int j = 2; // block scope of the inner j begins; hides outer j
 printf("%d\n", j); // inner j is in scope, prints 2
 } // block scope of the inner i and j ends
 printf("%d\n", j); // the outer j is in scope, prints 1
} // the block scope of i and j ends

void g(int j); // j has function prototype scope; hides file-scope j

Listing 2-10: Identifiers declared in inner scopes hiding identifiers declared in outer scopes

There is nothing wrong with this code, provided the comments accu-
rately describe your intent. However, it’s better to use different names for
different identifiers to avoid confusion, which leads to bugs. Using short
names such as i and j is fine for identifiers with small scopes. Identifiers in
large scopes should have longer, descriptive names that are unlikely to be
hidden in nested scopes. Some compilers will warn about hidden identifiers.

Storage Duration
Objects have a storage duration that determines their lifetime. Four stor-
age durations are available: automatic, static, thread, and allocated. You’ve
already seen that objects declared within a block or as a function param-
eter have automatic storage duration. The lifetime of these objects starts
when the block in which they’re declared begins execution and ends when
execution of this block completes. If the block is entered recursively, a new
object is created each time the block is entered, and each object has its own
storage.

N O T E Scope and lifetime are entirely different concepts. Scope applies to identifiers, whereas
lifetime applies to objects. The scope of an identifier is the code region where the object
denoted by the identifier can be accessed by its name. The lifetime of an object is the
period for which the object exists.

Objects declared in file scope have static storage duration. The lifetime
of those objects is the entire execution of the program, and their stored
value is initialized prior to program startup.

Thread storage duration is used in concurrent programming and is not
covered in this book. Allocated storage duration involves dynamically allocated

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

36 Chapter 2

memory and is discussed in Chapter 6. Finally, as described in the next sec-
tion, a storage-class specifier can determine or influence storage duration.

Storage Class
You can specify the storage class of an object or functions using storage-
class specifiers. For C23, these include auto, constexpr, extern, register,
static, thread_local, and typedef. The constexpr storage-class specifier is new
in C23, and the auto storage-class specifier is significantly changed.

Storage-class specifiers specify various properties of identifiers and
declared features:

• Storage duration: static in block scope, thread_local, auto, and register

• Linkage: extern, static and constexpr in file scope, and typedef

• Value: constexpr

• Type: typedef

With a few exceptions, only one storage-class specifier is allowed for each
declaration. For example, auto may appear with all the others except typedef.

static
The static storage-class specifier is used to specify both storage duration
and linkage.

File scope identifiers specified as static or constexpr, or functions speci-
fied as static, have internal linkage.

You can also declare a variable with block scope to have static storage
duration by using the storage-class specifier static, as shown in the count-
ing example in Listing 2-11. These objects persist after the function has
exited.

#include <stdio.h>
#include <stdlib.h>

void increment(void) {
 static unsigned int counter = 0;
 counter++;
 printf("%d ", counter);
}

int main() {
 for (int i = 0; i < 5; i++) {
 increment();
 }
 return EXIT_SUCCESS;
}

Listing 2-11: A counting example

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 37

This program outputs 1 2 3 4 5. The static variable counter is initialized
to 0 once at program startup and incremented each time the increment func-
tion is called. The lifetime of counter is the entire execution of the program,
and it will retain its last-stored value throughout its lifetime. You could
achieve the same behavior by declaring counter with file scope. However,
it’s good software engineering practice to limit the scope of an object
 whenever possible.

extern
The extern specifier specifies static storage duration and external link-
age. It can be used with function and object declarations in both file and
block scope (but not function parameter lists). If extern is specified for the
redeclaration of an identifier that has already been declared with internal
linkage, the linkage remains internal. Otherwise (if the prior declaration
was external, has no linkage, or is not in scope), the linkage is external.

thread_local
An object whose identifier is declared with the thread_local storage-class
specifier has thread storage duration. Its initializer is evaluated prior to
program execution, its lifetime is the entire execution of the thread for
which it is created, and its stored value is initialized with the previously
determined value when the thread is started. There is a distinct object per
thread, and use of the declared name in an expression refers to the object
associated with the thread evaluating the expression. (The topic of thread-
ing is beyond the scope of this book.)

constexpr
A scalar object declared with the constexpr storage-class specifier is a
 constant and has its value permanently fixed at translation time. The
 constexpr storage-class specifier may appear with auto, register, or static. If
not already present, a const qualification is implicitly added to the object’s
type. The resulting object cannot be modified at runtime in any way. The
compiler can then use this value in any other constant expression.

Additionally, the constant expression used for the initializer of such a
constant is checked at compile time. Before the introduction of constexpr in
C23, a very large object constant might be declared as follows:

static size_t const BFO = 0x100000000;

The initializer may or may not fit into size_t; a diagnostic is not required.
In C23, this same object can be declared using constexpr as follows:

constexpr size_t BFO = 0x100000000;

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

38 Chapter 2

Now, a diagnostic is required on implementations where size_t has a
width of 32 or less.

Static objects must be initialized with a constant value and not a
variable:

int *func(int i) {
 const int j = i; // ok
 static int k = j; // error
 return &k;
}

Arithmetic constant expressions are allowed in initializers. Constant
values are literal constants (for example, 1, 'a', or 0xFF), enum members, a
scalar object declared with the constexpr storage-class specifier, and the
result of operators such as alignof or sizeof (provided the operand does not
have a variable-length array type). Unfortunately, const-qualified objects are
not constant values. Starting with C23, an implementation may accept other
forms of constant expressions; it is implementation defined whether they
are integer constant expressions.

register
The register storage-class specifier suggests that access to an object be as
fast as possible. The extent to which such suggestions are effective is imple-
mentation defined. Frequently, compilers can make better decisions about
register allocation and ignore these programmer suggestions. The register
storage class can be used only for an object that never has its address taken.
A compiler can treat any register declaration simply as an auto declaration.
However, whether addressable storage is used, the address of any part of an
object declared with a storage-class specifier register cannot be computed,
either explicitly by use of the unary & operator or implicitly by converting
an array name to a pointer.

typedef
The typedef storage-class specifier defines an identifier to be a typedef name
that denotes the type specified for the identifier. The typedef storage-class
specifier was discussed earlier in the “Type Definitions” box.

auto
Prior to C23, the auto specifier was allowed only for objects declared at
block scope (except function parameter lists). It indicates automatic stor-
age duration and no linkage, which are the defaults for these kinds of
declarations.

C23 introduced type inference into the C language by expanding the
definition of the existing auto storage-class specifier. Prior to C23, declaring
a variable in C requires the user to name a type. However, when the decla-
ration includes an initializer, the type can be derived directly from the type

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 39

of the expression used to initialize the variable. This has been a C++ feature
since 2011.

The auto storage duration class specifier has similar behavior to C++ in
that it allows the type to be inferred from the type of the assignment value.
Take the following file scope definitions, for example:

static auto a = 3;
auto p = &a;

Because the integer literal 3 has an implicit type of int, these declara-
tions are interpreted as if they had been written as:

static int a = 3;
int * p = &a;

Effectively, a is an int, and p is an int *. Type inference is extremely
useful when implementing or invoking type-generic macros, as we’ll see in
Chapter 9.

typeof Operators
C23 introduced the typeof operators typeof and typeof_unqual. The typeof
operators can operate on an expression or a type name and yield the type
of their operand. If the type of the operand is a variably modified type, the
operand is evaluated; otherwise, the operand is not evaluated.

The typeof operators and the auto storage duration class specifier both
perform automatic type inference. They can both be used to determine the
type of expression.

The auto storage duration class specifier is commonly used to declare
initialized variables where the type can be inferred from the initial value.
However, to form a derived type, you must use the typeof operator:

_Atomic(typeof(x)*) apx = &x;

The auto storage duration class specifier cannot be used with _Generic
(described in Chapter 9) and typedef (described later in this chapter).

The result of the typeof_unqual operator is the nonatomic, unqualified
version of the type that would result from the typeof operator. The typeof
operator preserves all qualifiers.

The typeof operator is like the sizeof operator, which executes the
expression in an unevaluated context to understand the final type. You can
use the typeof operator anywhere you can use a type name. The following
example illustrates the use of both typeof operators:

#include <stdlib.h>
const _Atomic int asi = 0;
const int si = 1;

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

40 Chapter 2

const char* const beatles[] = {
 "John",
 "Paul",
 "George",
 "Ringo"
};

1 typeof_unqual(si) main() {
 2 typeof_unqual(asi) plain_si;
 3 typeof(_Atomic 4 typeof(si)) atomic_si;
 5 typeof(beatles) beatles_array;
 6 typeof_unqual(beatles) beatles2_array;
 return EXIT_SUCCESS;
}

At the first use of the typeof_unqual operator 1, the operand is si, which
has the type const int. The typeof_unqual operator strips the const qualifier,
resulting in just plain int. This use of the typeof_unqual operator is illustra-
tive and not meant for production code. The typeof_unqual operator is used
again on operand asi 2, which has the type const _Atomic int. All quali-
fiers are once again stripped, resulting in a plain int. The operand to the
typeof specifier at 3 includes another typeof specifier. If the typeof operand
is itself a typeof specifier, the operand is evaluated before evaluating the
current typeof operator. This evaluation happens recursively until a typeof
specifier is no longer the operand. In this case, the typeof specifier at 3
does nothing and can be omitted. The typeof operator at 4 is evaluated
before the typeof operator at 3 and returns const int. The typeof operator
at 3 is now evaluated and returns const _Atomic int. The typeof operator at 5
returns a const array of four const char pointers. The typeof_unqual operator
at 6 strips the qualifier and returns an array of four const char pointers.
The qualifiers, in this case, are stripped only from the array and not the
 element types the array contains.

The following main function is equivalent but doesn’t use typeof
operators:

int main() {
 int plain_si;
 const _Atomic int atomic_si;
 const char* const beatles_array[4];
 const char* beatles2_array[4];
 return EXIT_SUCCESS;
}

You can use the typeof operator to refer to a macro parameter to con-
struct objects with the required types without specifying the type names
explicitly as macro arguments.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 41

Alignment
Object types have alignment requirements that place restrictions on the
addresses at which objects of that type may be allocated. An alignment rep-
resents the number of bytes between successive addresses at which a given
object can be allocated. Central processing units (CPUs) may have different
behavior when accessing aligned data (for example, where the data address
is a multiple of the data size) versus unaligned data.

Some machine instructions can perform multibyte accesses on nonword
boundaries, but with a performance penalty. A word is a natural, fixed-sized
unit of data handled by the instruction set or the hardware of the processor.
Some platforms cannot access unaligned memory. Alignment requirements
may depend on the CPU word size (typically, 16, 32, or 64 bits).

Generally, C programmers need not concern themselves with alignment
requirements, because the compiler chooses suitable alignments for its
various types. However, on rare occasions, you might need to override the
compiler’s default choices—for example, to align data on the boundaries of
the memory cache lines that must start at power-of-two address boundaries
or to meet other system-specific requirements. Traditionally, these require-
ments were met by linker commands or similar operations involving other
nonstandard facilities.

C11 introduced a simple, forward-compatible mechanism for specifying
alignments. Alignments are represented as values of the type size_t. Every
valid alignment value is a nonnegative integral power of two. An object type
imposes a default alignment requirement on every object of that type: a
stricter alignment (a larger power of two) can be requested using the align-
ment specifier (alignas). You can include an alignment specifier in a decla-
ration. Listing 2-12 uses the alignment specifier to ensure that good_buff is
properly aligned (bad_buff may have incorrect alignment for member-access
expressions).

struct S {
 double d; int i; char c;
};

int main() {
 unsigned char bad_buff[sizeof(struct S)];
 alignas(struct S) unsigned char good_buff[sizeof(struct S)];
 struct S *bad_s_ptr = (struct S *)bad_buff;
 struct S *good_s_ptr = (struct S *)good_buff; // correct alignment
 good_s_ptr->i = 12;
 return good_s_ptr->i;
}

Listing 2-12: Use of the alignas keyword

Although good_buff has proper alignment to be accessed through an
lvalue of type struct S, this program still has undefined behavior. This
undefined behavior stems from the underlying object good_buff being

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

42 Chapter 2

declared as an array of objects of type unsigned char and being accessed
through an lvalue of a different type. The cast to (struct S *), like any
pointer cast, doesn’t change the effective type of the storage allocated to
each array. Because it is an established practice to use areas of character
type for low-level storage management, I co-authored a paper to make such
code conforming in a future revision of the C standard (Seacord et al. 2024).

Alignments are ordered from weaker to stronger (also called stricter)
alignments. Stricter alignments have larger alignment values. An address
that satisfies an alignment requirement also satisfies any valid, weaker align-
ment requirement.

Alignment of dynamically allocated memory is covered in Chapter 6.

Variably Modified Types
Variably modified types (VMTs) define a base type and an extent (number
of elements), which is determined at runtime. VMTs are a mandatory fea-
ture of C23.

VMTs can be used as function parameters. Remember from earlier
in this chapter that, when used in an expression, an array is converted to
a pointer to the first element of the array. This means that we must add
an explicit parameter to specify the size of the array—for example, the n
parameter in the signature for memset:

void *memset(void *s, int c, size_t n);

When you call such a function, n should accurately represent the size
of the array referenced by s. Undefined behavior results if this size is larger
than the array.

When declaring a function to take an array as an argument that speci-
fies a size, we must declare the size of the array before referencing the size
in the array declaration. We could, for example, modify the signature for
the memset function as follows to take the number of elements n and an array
of at least n elements:

void *memset_vmt(size_t n, char s[n], int c);

For arrays of character type, the number of elements is equal to the
size. In this function signature, s[n] is a variably modified type because s[n]
depends on the runtime value of n.

We’ve changed the order of the parameters so that the size parameter n
is declared before we use it in the array declaration. The array argument s
is still adjusted to a pointer, and no storage is allocated because of this dec-
laration (except for the pointer itself). When calling this function, you must
declare the actual storage for the array referenced by s and ensure that n is
a valid size for it. Just like a non-VMT parameter, the actual array storage
may be a fixed-size array, variable-length array (covered in Chapter 6), or
dynamically allocated storage.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 43

VMTs can generalize your functions, making them more useful. For
example, the matrix_sum function sums all the values in a two-dimensional
array. The following version of this function accepts a matrix with a fixed
column size:

int matrix_sum(size_t rows, int m[][4]);

When passing a multidimensional array to a function, the number of
elements in the initial dimension of the array (the rows) is lost and needs to
be passed in as an argument. The rows parameter provides this information
in this example. You can call this function to sum the values of any matrix
with exactly four columns, as shown in Listing 2-13.

int main(void) {
 int m1[5][4];
 int m2[100][4];
 int m3[2][4];
 printf("%d.\n", matrix_sum(5, m1));
 printf("%d.\n", matrix_sum(100, m2));
 printf("%d.\n", matrix_sum(2, m3));
}

Listing 2-13: Summing matrices with four columns

This is fine until you need to sum the values of a matrix that does not
have four columns. For example, changing m3 to have five columns would
result in a warning such as this:

warning: incompatible pointer types passing 'int [2][5]' to parameter of type 'int (*)[4]'

To accept this argument, you would have to write a new function with
a signature that matches the new dimensions of the multidimensional
array. The problem with this approach, then, is that it fails to generalize
sufficiently.

Instead of doing that, we can rewrite the matrix_sum function to use a
VMT, as shown in Listing 2-14. This change allows us to call matrix_sum with
matrices of any dimension.

int matrix_sum(size_t rows, size_t cols, int m[rows][cols]) {
 int total = 0;

 for (size_t r = 0; r < rows; r++)
 for (size_t c = 0; c < cols; c++)
 total += 1 m[r][c];
 return total;
}

Listing 2-14: Using a VMT as a function parameter

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

44 Chapter 2

The compiler performs the matrix indexing 1. Without VMTs, this
would require either manual indexing or double indirection, which are
both error prone.

Again, no storage is allocated by either the function declaration or the
function definition. As with a non-VMT parameter, you need to allocate
the storage for the matrix separately, and its dimensions must match those
passed to the function as the rows and cols arguments. Failing to do so can
result in undefined behavior.

Attributes
Starting with C23, you can use attributes to associate additional informa-
tion with a declaration, statement, or type. This information can be used
by the implementation to improve diagnostics, improve performance, or
modify the behavior of the program in other ways. A comma-delimited
list of zero or more attributes is specified within a pair of double square
brackets, for example, [[foo]] or [[foo, bar]].

Declarations attributes are specified in two ways. If the attribute speci-
fier is at the start of a declaration, the attributes are applied to all declara-
tions in the declaration group. Otherwise, the attributes are applied to the
declaration to the immediate left of the attribute specifier. For example, in
the following declaration group, the foo attribute is applied to x, y, and z:

[[foo]] int x, y, *z;

While in the second declaration group, the foo and bar attributes are
applied only to b:

int a, b [[foo, bar]], *c;

C23 defines several attributes that apply to declarations, such as
 nodiscard and deprecated. The nodiscard attribute is used with function dec-
larations to denote that the value returned by the function is expected to
be used within an expression or initializer. The deprecated attribute is used
with the declaration of a function or a type to denote that use of the func-
tion or type should be diagnosed as discouraged.

In addition to standard attributes, the implementation may provide
nonportable attributes. Such attributes are also specified within double
square brackets, but they include a vendor prefix to distinguish between
attributes from different vendors. For example, the [[clang::overloadable]]
attribute is used on a function declaration to specify that it can use C++-
style function overloading in C, and the [[gnu::packed]] attribute is used
on a structure declaration to specify that the member declarations of the
structure should avoid using padding between member declarations when-
ever possible for a more space-efficient layout. Vendors typically use their
own prefixes, and they may use whatever prefixes they choose. For exam-
ple, Clang implements many attributes with the gnu prefix for improved

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

Objects, Functions, and Types 45

compatibility with GCC. Your compiler should ignore unknown attributes,
although they may still be diagnosed so you know that the attribute has no
effect. Refer to your compiler’s documentation for the full list of supported
attributes.

E X ERCISES

1 . Add a retrieve function to the counting example from Listing 2-6 to retrieve
the current value of counter .

2 . Declare an array of three pointers to functions and invoke the appropriate
function based on an index value passed in as an argument .

3 . Repair the following program with the appropriate use of the volatile
type qualifier:

#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>

static jmp_buf buf;

int main() {
 int foo = 5;
 if (setjmp(buf) != 2) {
 if (foo != 5) { puts("hi"); longjmp(buf, 2); }
 foo = 6;
 longjmp(buf, 1);
 }
 return EXIT_SUCCESS;
}

Hint: The problem may only manifest for optimized builds .

Summary
In this chapter, you learned about objects and functions and how they differ.
You learned how to declare objects and functions, take the addresses of
objects, and dereference those object pointers. You also learned about most
of the object types available to C programmers as well as derived types.

We’ll return to these types in later chapters to further explore how they
can be best used to implement your designs. In the next chapter, I provide
detailed information about the two kinds of arithmetic types: integers and
floating-point.

Effective C, 2nd Edition (Sample Chapter) © 8/14/24 by Robert C. Seacord

