INDEX

Symbols + (addition operator), 2 {} (curly brackets), to define	Anscombe's quartet, 82–83 antiderivative, 200 append() method, 30 area of a circle, estimating, 145–146 between two curves, 206–207 asin() function, 179 aspect ratio, 153 atan() function, 179 ATM example, 138–140 attractors, 172
j (imaginary number, in Python), 6 ∫ (integral), 200 ∩ (intersection), 127 λ (lambda), 192, 197–199 % (modulo operator), 3 * (multiplication operator), 2 π (pi), 129, 147 - (subtraction operator), 2 θ (theta), 49 → (transformation), 158	bar charts for exercise, 57–59 for expenses, 56–57 Barnsley fern, drawing, 163–168 break, exiting with, 24
∪ (union), 126 A abs() function, 7	calculus. <i>See</i> functions cardinality, of a set, 122 cards, shuffling deck of, 144–145 Cartesian coordinates, 28–29 graph, 32
acos() function, 179 algebraic expressions. See expressions Anaconda software installer,	Cartesian product, 127–128, 137 causation, and correlation, 76 circles animating, 153–155
animation of a growing circle, 153–155 of a projectile's trajectory, 156–158 animation module, 154 Anscombe, Francis, "Graphs in Statistical Analysis," 82	drawing, 153–153 drawing, 151–153 estimating area of, 145–146 packing a square with, 168–169 close() method, 231 cmath module, 7 code, reusing, 235–236 coin tosses, 137–138, 144 comma-separated value (CSV) files, 86–88

complex numbers, 6–7	discrete probability, 131–139
addition and subtraction of, 6	dispersion of data, measuring,
cmath module, 7	71–75
complex() function, 6	range, finding, 71–72
complex roots, 22	variance and standard
conjugate of, 7	deviation, finding, 72–75
conjugate() function, 7	distribution, uniform, 131
magnitude, 7	domain, of a function, 178
Mandelbrot set, 172–176	Droettboom, Michael,
real and imag, 7	"matplotlib," 150
components() function, 226	matpiotilo, 100
continuous compound interest,	_
183–184	E
	else block, 230
controlling program exit, 24	empty lists, 30
correlation coefficients, 75–78, 89	enumerate() function, 31
cos() function, 52, 178–179	epsilon (ε), 192, 197–199
Counter class, 66	equations, solving, 20–22, 105–108
CSV (comma-separated value) files,	graphically, 115
86–88	linear, 20, 108
csv module, 86	quadratic, 20–22, 106
next() function, 87	solve() function, 105–108,
reader() function, 87	
curves	180, 199
area between, 205–206	for variables, 106–107
length of, 207–208	Euler's number (e) , 179
	even-odd vending machine, 22–23
D	events (probability), 131
	exception handling, 9, 228–235
data. See also sets, statistical	file reading errors, 232–235
measures	multiple exception types,
dispersion, measuring, 71–75	228–229
reading from files, 83–88	tryexcept, 9, 228
deck of cards, shuffling, 144–145	tryexceptelse, 230
definite integral, 200–201, 203	ValueError, 9, 12
derivative, of a function, 185–191	ZeroDivisionError, $11,228-229$
calculator program, 186–187	exit option, for programs, 24–26
higher-order, 188–191	exp() function, 204
partial, 187	expenses, visualizing with bar
Derivative class, 185, 189	charts, 56–57
dictionary, 100-101, 224-226, 227	experiments (probability), 131
die rolls	expressions, 96–105
game, 135–136	factorizing and expanding,
law of large numbers, 143–144	96–97
simulating, 134–135	multiplying, 104–105
target score, possibility of,	plotting, 108–115
136–137	input by the user, 111–113
130 131	multiple, 113–115
	munipic, 115-115

pretty printing, 97–100 integrals of, finding, 200–201 limit of, finding, 181–185 strings, converting to, 103–105 substituting in values, 100-103 probability density, 201–204 extrema, of a function, 188–191 range of, 178 G F factor() function, 96-97, 115 geometric shapes, drawing, factors of an integer, 150 - 158calculating, 12–14 geometric transformations, 158 fargs keyword argument, 154, 158 global maxima and minima, Fibonacci sequence, 59–60 188-199 file handling golden ratio, 59-60 close() method, 231 gradient ascent method, 191, 195 filename as input, 232 gradient descent method, 199, handling errors, 232–235 205 - 206open() function, 231 graphs, creating with matplotlib, reading files, 230-231 32 - 46readlines() method, 232 customizing with titles and file object, 84 labels, 41-44 formatting output, 15 marking points, 33–35 format(), 15 saving as images, 45–46 temperature data example, number of digits, 16 print() function, 1 35 - 44fractals, 158-168 Barnsley fern, 163–168 Н Hénon's function, 171–172 higher-order derivatives of Mandelbrot set, 172-176 functions, finding, Sierpiński triangle, 170–171 188-191 transformations of points, Hénon's function, 171–172 158 - 163Hunter, John, "matplotlib," 150 fractions calculator, 23-24 working with, 5–6 fractions module, 5 IDLE, 1, 13–14 frames argument, 154, 158 new program, 13 frequency tables, creating, 69–71 program execution, 14 FuncAnimation class, 154-158 running a program, 14 functions (calculus), 178 shell, 1 common, 178-180 importing, modules, 5 continuity at a point, imshow() function, 172 verifying, 205 indefinite integral, 200 derivatives of, finding, 185–187 index, of a list, 29, 31 higher-order, 188-191 inequalities, solving, 117–119 domain of, 178 infinite loop, 24 extrema of, 188-191 Infinity, 183, 204

in operator, 122	M
input() function, 8	Mac OS X, software installation on
installation, of software	217–220
on Linux, 216–217	Mandelbrot set, 172–176
on Mac OS X, 217–220	mathematical operations, 1–3
on Windows, 214–215	exponential operator, 3
Integral class, 200	floor division operator, 2
integrals of functions, finding, 200	modulo (%) operator, 3, 12
intersection, of sets, 127	math module, 178
interval argument, 154	matplotlib, 32
	animation module, 154
K	axes
have in a distinger, 994, 997	auto scaling, 152
keys, in a dictionary, 224, 227	customizing, 42
_	Axes object, 151
L	axis() function, 43
labels, 4	barh() function, 57
Lady ferns, 164	Circle patch, 151
law of large numbers, 144	colorbar() function, 175
legend() function, 40	displaying images, 172
len() function, 62	documentation, 211
limit, finding, 181	Figure object, 150, 154
Limit class, 182	FuncAnimation class, 154–158
Linux, software installation on,	gca() function, 152
216–217	gcf() function, 154
lists, 29-31	imshow() function, 172
appending to a list, 30	labels, 41
choosing a random	legend, adding a, 40
element, 161	legend() function, 40
creating a set, 123	marker, 34
empty lists, 30	multiple data sets, 38, 53
index, 29	patches, 150
iterating over the elements, 31	plot() function, 32, 36
len() function, 62	Polygon patch, 168
list comprehensions, 223-224	pylab module, 32
lists of lists, 173–175	pyplot module, 44
max() function, 72	savefig() function, 45
min() function, 72	saving, 45–46
sort() method, 64	scatter() function, 81
sum() function, 62	scatter plots, 79, 81–83
tuples as members, 66	set_aspect() method, 153
zip() function, 77	show() function, 32
local maxima and minima,	title, 41
188–191	title() function, 41
log() function, 179	xlabel() function, 41
	ylabel() function, 41

maxima and minima, of functions,	P
188–191	Packages (Python), 32
max() function, 72	partial derivative of functions,
mean, finding, 62–63	finding, 187
median, finding, 63–65	Pearson correlation coefficient, 75
min() function, 72	PEMDAS (order of operations), 3
mode, finding, 65–69	pi (π) , estimating value of, 147
modules, 5	plot() function, 32, 109
modulo (%) operator, 3	plotting
multiplication tables, generating,	expressions, 108–115
15–17, 23	input by the user, 111–113
multiplying expressions, 104–105	multiple, 113–115
	with formulas, 46–54
N	projectile motion, 48–54
name, 221-223	using SymPy. See SymPy
negative index, of a list, 31	polynomial expressions, 117
NegativeInfinity, 204	polynomial() method, 119
Newton's law of universal	pretty printing, 97–100
gravitation, 46–48	probability, 131–140, 201–204
number line, 28	continuous random
numbers	variable, 201
abs() function, 7	density functions, 201–204
common number sets, 126	distribution, uniform, 131
complex numbers. See complex	expectation, 143
numbers	law of large numbers, 144
conversion between types, 5	nonuniform probability, 164
float() function, 5	random numbers. See also
floating point, 4–5	random numbers
Fraction class, 5, 6	generating, 134–137
fractions module, 5	nonuniform, 137–140
integers, 4–5	random variable, 143
int() function, 5	Project Euler, 210
is_integer() method, 10	projectile motion, 48, 191
random. See random numbers	animation, 156
rational, irrational, and real, 126	trajectory drawing, 51, 56
type() function, 4	pylab module, 32
types of, 4–7	pyplot module, 44–45
Nykamp, Duane Q., "The idea of	Python
a probability density	documentation, 210, 211
function," 202	IDLE, 1, 13–14
	installation
0	Linux, 216–217
	Mac OS X, 217–220
open() function, 231	Windows, 214–215
order of operations (PEMDAS), 3	overview, 221–236

Q	sets, 121–131
quadratic equations	cardinality, 122
finding the roots of, 20–22	checking for a number in, 122
solving, 106	common, 126
quadratic functions, exploring	correlation between, 75–81
visually, 55–56	creating, 122–124
visually, 33 30	empty, 123
D.	from lists or tuples, 123
R	EmptySet object, 123
random module, 134	FiniteSet class, 122
choice() function, 160	FiniteSet object, 122
randint() function, 134, 175	intersect() method, 127
random() function, 134	is_subset() method, 124
uniform() function, 146	is_superset() method, 124
random numbers	iterating through the
ATM example, 138–140	members, 123
coin tosses, 137–138, 144	operations, 126–131
deck of cards, shuffling, 144–145	Cartesian product, 127–128
die rolls. See die rolls	formulas, using sets of
generating, 134–137	variables in, 129
nonuniform, 137–140	gravity example, 130–131
range	union and intersection, 126
of a function, 178	powerset() method, 125
of a set, 71–72	repetition and order, 123–124
range() function, 13, 37, 50	subsets, supersets, and power
start, stop, and step values, 13	sets, 124–125
rate of change, finding, 184	union() method, 126–127
reading data from files, 83–88	Venn diagrams, 140–143
CSV files, 86–88	show() function, 32, 111
text files, 84–85	shuffling, deck of cards, 144–145
return values, multiple, 226–228	Sierpiński triangle, 170–171
reusing code, 235–236	simultaneous equations, 108
Robertson, Ian, "Calculating	sin() function, 52, 178, 179
Percentiles," 90	software installation
	on Linux, 216–217
S	on Mac OS X, 217–220
sample and ass (muchability) 191	on Windows, 214–215
sample spaces (probability), 131	solving algebraic equations, 105
save() function, 111	standard deviation, finding, 72–75
saving plots, as image files,	statistical measures
45–46, 111 scatter plots, 79, 81–83	correlation coefficient,
•	75–81, 87
series	calculating, 76–78
calculating value of, 102–103	high school grades example
Fibonacci, 59–60	78-81
printing, 99–100	dispersion, 71–75
summing, 116	frequency tables, 69–71
set_aspect() method, 153	grouped, 90–91

mean, 62–63	<pre>solve_poly_inequality()</pre>
median, 63–65	function, 117
mode, 65–71	solve univariate inequality()
Pearson correlation	function, 118
coefficient, 75	solving inequalities, 117
percentile, 89–90	S class, 182
range, 71–72	subs() method, 100, 108, 184
standard deviation, 72–75	summation() function, 116
variance, 72–75	symbol, defining a, 94
step size, 192, 197–199	Symbol class, 94
string, 8	symbols() function, 95
format() method, 15	SympifyError class, 104
int() and float(), See under	sympify() function, 103, 119, 186
numbers, 8	3,, 100, 110, 100
strings to mathematical	-
expressions, 103	T
sum() function, 62	tan() function, 179
summing a series, 116	title() function, 41–42
symbolic math, 93	trajectory (projectile motion)
SymPy	comparing, 53–54, 56
as_numer_denom() method, 118	drawing, 51–53
assumptions, 180	transformation of a point, 158
Derivative class, 185	tuples, 29–31
documentation, 98, 211	empty, 31
doit() method, 182, 185	iterating through the
expand() function, 96	members, 123
expression, factorizing an, 96	
factor() function, 96	U
init_printing() function, 98	-
installation. See installation, of	union, of sets, 118, 126–127
software	units of measurement, converting,
Integral class, 200	17–20, 23
is_polynomial() method, 119	universal gravitation, Newton's law,
is_rational_function()	46–48
method, 119	user input
Limit class, 182	complex() function, 12
plot() function, 109	fractional numbers, 11
•	getting, 8–12
plotting expressions with, 108–115	handling invalid input, 9–11
	input() function, 8
input by the user, 111–113 multiple, 113–115	
Poly class, 117	V
pprint() function, 97–100	ValueError, 9, 12
	variables, 4, 178
pretty printing, 97–100 save() function, 111	nonlinear relationship, 47
	variance, finding, 72–75
show() function, 111 simplify() function, 101	- C
	Venn diagrams, 140–143
solve() function, 105, 106, 180	

W

while loop, 24
exiting early using break, 24
Windows, software installation on,
214–215

Z

ZeroDivisionError, 11, 228-229 zip() function, 77