
4
P A T T E R N S

Art is pattern informed by sensibility.
—Herbert Read

Architects have long used design patterns
to envision new buildings, an approach just

as useful for guiding software design. This
chapter introduces many of the most useful

patterns promoting secure design. Several of these pat-
terns derive from ancient wisdom; the trick is knowing
how to apply them to software and how they enhance
security.

These patterns either mitigate or avoid various security vulnerabili-
ties, forming an important toolbox to address potential threats. Many are
simple, but others are harder to understand and best explained by example.
Don’t underestimate the simpler ones, as they can be widely applicable and
are among the most effective. Still, other concepts may be easier to grasp as
anti-patterns describing what not to do. I present these patterns in groups
based on shared characteristics that you can think of as sections of the
toolbox (Figure 4-1).

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

54 Chapter 4

Trust and
Responsibility
Reluctance to Trust
Accept Security Responsibility

Anti-Patterns
Confused Deputy
Backflow of Trust
Third-Party Hooks
Unpatchable Components

Exposure
Minimization
Allowlists over Blocklists
Least Privilege
Least Information
Secure by Default
Fail Securely
Avoid Predictability

Redundancy
Separation of Privilege
Defense in Depth

Strong Enforcement
Least Common Mechanism
Complete Mediation

Design Attributes
Transparent Design
Economy of Design

Security
Patterns

Figure 4-1: Groupings of secure software patterns this chapter covers

When and where to apply these patterns requires judgment. Let neces-
sity and simplicity guide your design decisions. As powerful as these pat-
terns are, don’t overdo it; just as you don’t need seven deadbolts and chains
on your doors, you don’t need to apply every possible design pattern to fix
a problem. Where several patterns are applicable, choose the best one or
two, or maybe more for critical security demands. Overuse can be counter-
productive because the diminishing returns of increased complexity and
overhead quickly outweigh additional security gains.

Design Attributes
The first group of patterns describe at a high level what secure design looks
like: simple and transparent. These derive from the adages “keep it simple”
and “you should have nothing to hide.” As basic and perhaps obvious as
these patterns may be, they can be applied widely and are very powerful.

Economy of Design
Designs should be as simple as possible.

Economy of Design raises the security bar because simpler designs likely
have fewer bugs, and thus fewer undetected vulnerabilities. Though develop-
ers claim that “all software has bugs,” we know that simple programs certainly
can be bug-free. Prefer the simplest of competing designs for security mecha-
nisms, and be wary of complicated designs that perform critical security
functions.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 55

 LEGO bricks are a great example of this pattern. Once the design
and manufacture of the standard building element is perfected, it enables
building a countless array of creative designs. A similar system composed of
a number of less universally useful pieces would be more difficult to build
with; any particular design would require a larger inventory of parts and
involve other technical challenges.

You can find many examples of Economy of Design in the system
architecture of large web services built to run in massive datacenters. For
reliability at scale, these designs decompose functionality into smaller, self-
contained components that collectively perform complicated operations.
Often, a basic frontend terminates the HTTPS request, parsing and validat-
ing the incoming data into an internal data structure. That data structure
gets sent on for processing by a number of subservices, which in turn use
microservices to perform various functions.

In the case of an application such as web search, different machines
may independently build different parts of the response in parallel, then yet
another machine blends them into the complete response. It’s much easier
to build many small services to do separate parts of the whole task—query
parsing, spelling correction, text search, image search, results ranking, and
page layout—than to do everything in one massive program.

Economy of Design is not an absolute mandate that everything must
always be simple. Rather, it highlights the great advantages of simplicity,
and says that you should only embrace complexity when it adds significant
value. Consider the differences between the design of access control lists
(ACLs) in *nix and Windows. The former is simple, specifying read/write/
execute permissions by user or user group, or for everybody. The latter is
much more involved, including an arbitrary number of both allow and deny
access control entries as well as an inheritance feature; notably, evaluation
is dependent on the ordering of entries within the list. (These simplified
descriptions are to make a point about design, and are not intended as com-
plete.) This pattern correctly shows that the simpler *nix permissions are
easier to correctly enforce, and beyond that, it’s easier for users of the system
to correctly understand how ACLs work and therefore to use them correctly.
However, if the Windows ACL provides just the right protection for a given
application and can be accurately configured, then it may be a fine solution.

The Economy of Design pattern does not say that the simpler option
is unequivocally better, or that the more complex one is necessarily prob-
lematic. In this example, *nix ACLs are not inherently better, and Windows
ACLs are not necessarily buggy. However, Windows ACLs do represent
more of a learning curve for developers and users, and using their more
complicated features can easily confuse people as well as invite unintended
consequences. The key design choice here, which I will not weigh in on,
is to what extent the ACL designs best fit the needs of users. Perhaps *nix
ACLs are too simplistic and fail to meet real demands; on the other hand,
perhaps Windows ACLs are overly feature-bound and cumbersome in typi-
cal use patterns. These are difficult questions we must each answer for our
own purposes, but for which this design pattern provides insight.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

56 Chapter 4

Transparent Design
Strong protection should never rely on secrecy.

Perhaps the most famous example of a design that failed to follow the
pattern of Transparent Design is the Death Star in Star Wars, whose thermal
exhaust port afforded a straight shot at the heart of the battle station. Had
Darth Vader held his architects accountable to this principle as severely
as he did Admiral Motti, the story would have turned out very differently.
Revealing the design of a well-built system should have the effect of dissuad-
ing attackers by showing its invincibility. It shouldn’t make the task easier
for them. The corresponding anti-pattern may be better known: we call it
Security by Obscurity.

This pattern specifically warns against a reliance on the secrecy of a
design. It doesn’t mean that publicly disclosing designs is mandatory, or
that there is anything wrong with secret information. If full transparency
about a design weakens it, you should fix the design, not rely on keeping
it secret. This in no way applies to legitimately secret information, such as
cryptographic keys or user identities, which actually would compromise
security if leaked. That’s why the name of the pattern is Transparent Design,
not Absolute Transparency. Full disclosure of the design of an encryption
method—the key size, message format, cryptographic algorithms, and so
forth—shouldn’t weaken security at all. The anti-pattern should be a big
red flag: for instance, distrust any self-anointed “experts” who claim to
invent amazing encryption algorithms that are so great that they cannot
publish the details. Without exception, these are bogus.

The problem with Security by Obscurity is that while it may help fore-
stall adversaries temporarily, it’s extremely fragile. For example, imagine
that a design used an outdated cryptographic algorithm: if the attackers
ever found out that the software was still using, say, DES (a legacy symmet-
ric encryption algorithm from the 1970s), they could easily crack it within a
day. Instead, do the work necessary to get to a solid security footing so that
there is nothing to hide, whether or not the design details are public.

Exposure Minimization
The largest group of patterns call for caution: think “err on the safe side.”
These are expressions of basic risk/reward strategies where you play it safe
unless there is an important reason to do otherwise.

Least Privilege
It’s always safest to use just enough privilege for the job.

Never clean a loaded gun. Unplug power saws when changing blades.
These commonplace safety practices are examples of the Least Privilege
pattern, which aims to reduce the risk of making mistakes when performing
a task. This pattern is the reason that administrators of important systems
should not be randomly browsing the internet while logged in at work; if
they visit a malicious website and get compromised, the attack could easily
do serious harm.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 57

The *nix sudo(1) command performs exactly this purpose. User accounts
with high privilege (known as sudoers) need to be careful not to inadvertently
use their extraordinary power by accident or if compromised. To provide this
protection, the user must prefix superuser commands with sudo, which may
prompt the user for a password, in order to run them. Under this system,
most commands (those that do not require sudo) will affect only the user’s
own account, and cannot impact the entire system. This is akin to the “IN
CASE OF EMERGENCY BREAK GLASS” cover on a fire alarm switch to pre-
vent accidental activation, in that this forces an explicit step (corresponding
to the sudo prefix) before activating the switch. With the glass cover, nobody
can claim to have accidentally pulled the fire alarm, just as a competent
administrator would never type sudo and a command that breaks the system
all by accident.

This pattern is important for the simple reason that when vulnerabili-
ties are exploited, it’s better for the attacker to have minimal privileges to
use as leverage. Use all-powerful authorizations such as superuser privileges
only when strictly necessary, and for the minimum possible duration. Even
Superman practiced Least Privilege by only wearing his uniform when
there was a job to do, and then, after saving the world, immediately chang-
ing back into his Clark Kent persona.

In practice, it does take more effort to selectively and sparingly use ele-
vated privileges. Just as unplugging power tools to work on them requires
more effort, discretion when using permissions requires discipline, but
doing it right is always safer. In the case of an exploit, it means the differ-
ence between a minor incursion and total system compromise. Practicing
Least Privilege can also mitigate damage done by bugs and human error.

Like all rules of thumb, use this pattern with a sense of balance to avoid
overcomplication. Least Privilege does not mean the system should always
grant literally the minimum level of authorization (for instance, creating code
that, in order to write file X, is given write access to only that one file). You may
wonder, why not always apply this excellent pattern to the max? In addition to
maintaining a general sense of balance and recognizing diminishing returns
for any mitigation, a big factor here is the granularity of the mechanism that
controls authorization, and the cost incurred while adjusting privileges up and
down. For instance, in a *nix process, permissions are conferred based on user
and group ID access control lists. Beyond the flexibility of changing between
effective and real IDs (which is what sudo does), there is no easy way to tem-
porarily drop unneeded privileges without forking a process. Code should
operate with lower ambient privileges where it can, using higher privileges in
the necessary sections and transitioning at natural decision points.

Least Information
It’s always safest to collect and access the minimum amount of private infor-
mation needed for the job.

The Least Information pattern, the data privacy analog of Least Privilege,
helps to minimize unintended disclosure risks. Avoid providing more private
information than necessary when calling a subroutine, requesting a service,
or responding to a request, and at every opportunity curtail unnecessary

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

58 Chapter 4

information flow. Implementing this pattern can be challenging in practice
because software tends to pass data around in standard containers not opti-
mized for purpose, so extra data often is included that isn’t really needed.

All too often, software fails this pattern because the design of inter-
faces evolves over time to serve a number of purposes, and it’s convenient
to reuse the same parameters or data structure for consistency. As a result,
data that isn’t strictly necessary gets sent along as extra baggage that seems
harmless enough. The problem arises, of course, when this needless data
flowing through the system creates additional opportunities for attack.

For example, imagine a large customer relationship management (CRM)
system used by various workers in an enterprise. Different workers use the
system for a wide variety of purposes, including sales, production, shipping,
support, maintenance, R&D, and accounting. Depending on their roles,
each has a different authorization for access to subsets of this information.
To practice Least Information, the applications in this enterprise should
request only the minimum amount of data needed to perform a specific
task. Consider a customer support representative responding to a phone
call: if the system uses Caller ID to look up the customer record, the sup-
port person doesn’t need to know their phone number, just their purchase
history. Contrast this with a more basic design that either allows or disallows
the lookup of customer records that include all data fields. Ideally, even if the
representative has more access, they should be able to request the minimum
needed for a given task and work with that, thereby minimizing the risk of
disclosure.

At the implementation level, Least Information design includes wiping
locally cached information when no longer needed, or perhaps displaying
a subset of available data on the screen until the user explicitly requests
to see certain details. The common practice of displaying passwords as
******** uses this pattern to mitigate the risk of shoulder surfing.

It’s particularly important to apply this pattern at design time, as it can
be extremely difficult to implement later on because both sides of the inter-
face need to change together. If you design independent components suited
to specific tasks that require different sets of data, you’re more likely to get
this right. APIs handling sensitive data should provide flexibility to allow
callers to specify subsets of data they need in order to minimize informa-
tion exposure (Table 4-1).

Table 4-1: How Least Information Changes API Design

Least Information non-compliant API Least Information compliant API

RequestCustomerData(id='12345') RequestCustomerData(id='12345',
items=['name', 'zip'])

{'id': '12345', 'name': 'Jane Doe',
'phone': '888-555-1212', 'zip':
'01010', ...}

{'name': 'Jane Doe', 'zip': '01010'}

The RequestCustomerData API in the left column ignores the Least
Information pattern because the caller has no option but to request the
complete data record by ID. They don’t need the phone number, so there is

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 59

no need to request it, and even ignoring it still expands the attack surface
for an attacker trying to get it. The right column has a version of the same
API that allows callers to specify what fields they need and delivers only
those, which minimizes the flow of private information.

Considering the Secure by Default pattern as well, the default for the
items parameter should be a minimal set of fields, provided that callers can
request exactly what they need to minimize information flow.

Secure by Default
Software should always be secure “out of the box.”

Design your software to be Secure by Default, including in its initial state,
so that inaction by the operator does not represent a risk. This applies to the
overall system configuration, as well as configuration options for components
and API parameters. Databases or routers with default passwords notoriously
violate this pattern, and to this day, this design flaw remains surprisingly
widespread.

If you are serious about security, never configure an insecure state with
the intention of making it secure later, because this creates an interval of
vulnerability and is too often forgotten. If you must use equipment with a
default password, for example, first configure it safely on a private network
behind a firewall before deploying it in the network. A pioneer in this area,
the state of California has mandated this pattern by law; its Senate Bill
No. 327 (2018) outlaws default passwords on connected devices.

Secure by Default applies to any setting or configuration that could have
a detrimental security impact, not just to default passwords. Permissions
should default to more restrictive settings; users should have to explicitly
change them to less restrictive ones if needed, and only if it’s safe to do so.
Disable all potentially dangerous options by default. Conversely, enable
features that provide security protection by default so they are functioning
from the start. And of course, keeping the software fully up-to-date is impor-
tant; don’t start out with an old version (possibly one with known vulnerabili-
ties) and hope that, at some point, it gets updated.

Ideally, you shouldn’t ever need to have insecure options. Carefully con-
sider proposed configurable options, because it may be simple to provide
an insecure option that will become a booby trap for others thereafter. Also
remember that each new option increases the number of possible combina-
tions, and the task of ensuring that all of those combinations of settings are
actually useful and safe becomes more difficult as the number of options
increases. Whenever you must provide unsafe configurations, make a point
of proactively explaining the risk to the administrator.

Secure by Default applies much more broadly than to configuration
options, though. Defaults for unspecified API parameters should be secure
choices. A browser accepting a URL entered into the address bar without
any protocol specified should assume the site uses HTTPS, and fall back
to HTTP only if the former fails to connect. Two peers negotiating a new
HTTPS connection should default to accepting the more secure cipher
suite choices first.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

60 Chapter 4

Allowlists over Blocklists
Prefer allowlists over blocklists when designing a security mechanism.
Allowlists are enumerations of what’s safe, so they are inherently finite. By
contrast, blocklists attempt to enumerate all that isn’t safe, and in doing so
implicitly allow an infinite set of things you hope are safe. It’s clear which
approach is riskier.

First, here’s a non-software example to make sure you understand what
the allowlist versus blocklist alternative means, and why allowlists are always the
way to go. During the early months of the COVID-19 stay-at-home emergency
order, the governor of my state ordered the beaches closed with the following
provisos, presented here in simplified form:

No person shall sit, stand, lie down, lounge, sunbathe, or loiter
on any beach except when “running, jogging, or walking on the
beach, so long as social distancing requirements are maintained”
(crossing the beach to surf is also allowed).

The first clause is a blocklist, because it lists what activities are not
allowed, and the second exception clause is an allowlist, because it grants
permission to the activities listed. Due to legal issues, there may well be
good reasons for this language, but from a strictly logical perspective, I
think it leaves much to be desired.

First let’s consider the blocklist: I’m confident that there are other risky
activities people could do at the beach that the first clause fails to prohibit.
If the intention of the order was to keep people moving, it omitted many—
kneeling, for example, as well as yoga and living statue performances. The
problem with blocklists is that any omissions become flaws, so unless you
can completely enumerate every possible bad case, it’s an insecure system.

Now consider the allowlist of allowable beach activities. While it, too, is
incomplete—who would contest that skipping is also fine?—this won’t cause
a big security problem. Perhaps a fraction of a percent of beach skippers
will be unfairly punished, but the harm is minor, and more importantly, an
incomplete enumeration doesn’t open up a hole that allows a risky activity.
Additional safe items initially omitted can easily be added to the allowlist as
needed.

More generally, think of a continuum, ranging from disallowed on the
left, then shading to allowed on the right. Somewhere in the middle is a
dividing line. The goal is to allow the good stuff on the right of the line while
disallowing the bad on the left. Allowlists draw the line from the right side,
then gradually move it to the left, including more parts of the continuum as
the list of what to allow grows. If you omit something good from the allowlist,
you’re still on the safe side of the elusive line that’s the true divide. You may
never get to the precise point that allows all safe actions, at which point any
addition to the list would be too much, but using this technique makes it easy
to stay on the safe side. Contrast that to the blocklist approach: unless you enu-
merate everything to the left of the true divide, you’re allowing something you

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 61

shouldn’t. The safest blocklist will be one that includes just about everything,
and that’s likely to be overly restrictive, so it doesn’t work well either way.

Often, the use of an allowlist is so glaringly obvious we don’t notice it
as a pattern. For example, a bank would reasonably authorize a small set of
trusted managers to approve high-value transactions. Nobody would dream
of maintaining a blocklist of all the employees not authorized, tacitly allow-
ing any other employee such privilege. Yet sloppy coders might attempt to
do input validation by checking that the value did not contain any of a list
of invalid characters, and in the process easily forget about characters like
NUL (ASCII 0) or perhaps DEL (ASCII 127).

Ironically, perhaps the biggest-selling consumer security product, antivi-
rus software, attempts to block all known malware. Modern antivirus products
are much more sophisticated than the old-school versions, which relied
on comparing a digest against a database of known malware, but still, they
all appear to work based on a blocklist to some extent. (A great example of
Security by Obscurity, most commercial antivirus software is proprietary, so
we can only speculate.) It makes sense that they’re stuck with blocklist tech-
niques because they know how to collect examples of malware, and the pros-
pect of somehow allowlisting all good software in the world before it’s released
seems to be a nonstarter. My point isn’t about any particular product or an
assessment of its worth, but about the design choice of protection by virtue
of a blocklist, and why that’s inevitably risky.

Avoid Predictability
Any data (or behavior) that is predictable cannot be kept private, since
attackers can learn it by guessing.

Predictability of data in software design can lead to serious flaws
because it can result in the leakage of information. For instance, consider
the simple example of assigning new customer account IDs. When a new
customer signs up on a website, the system needs a unique ID to designate
the account. One obvious and easy way to do this is to name the first account 1,
the second account 2, and so on. This works, but from the point of view of an
attacker, what does it give away?

New account IDs now provide an attacker an easy way of learning the
number of user accounts created so far. For example, if the attacker periodi-
cally creates a new, throwaway account, they have an accurate metric for
how many customer accounts the website has at a given time—information
that most businesses would be loathe to disclose to a competitor. Many other
pitfalls are possible, depending on the specifics of the system. Another con-
sequence of this poor design is that attackers can easily guess the account ID
assigned to the next new account created, and armed with this knowledge,
they might be able to interfere with the new account setup by claiming
to be the new account and confusing the registration system.

The problem of predictability takes many guises, and different types
of leakage can occur with different designs. For example, an account ID

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

62 Chapter 4

that includes several letters of the account holder’s name or ZIP code would
needlessly leak clues about the account owner’s identity. Of course, this
same problem applies to IDs for web pages, events, and more. The simplest
mitigation against these issues is that if the purpose of an ID is to be a
unique handle, you should make it just that—never a count of users, the
email of the user, or based on other identifying information.

The easy way to avoid these problems is to use securely random IDs. Truly
random values cannot be guessed, so they do not leak information. (Strictly
speaking, the length of IDs leaks the maximum number of possible IDs, but
this usually isn’t sensitive information.) A standard system facility, random
number generators come in two flavors: pseudorandom number generators
and secure random number generators. You should use the secure option,
which is slower, unless you’re certain that predictability is harmless. See
Chapter 5 for more about secure random number generators.

Fail Securely
If a problem occurs, be sure to end up in a secure state.

In the physical world, this pattern is common sense itself. An old-fashioned
electric fuse is a great example: if too much current flows through it, the heat
melts the metal, opening the circuit. The laws of physics make it impossible to
fail in a way that maintains excessive current flow. This pattern perhaps may
seem like the most obvious one, but software being what it is (we don’t have
the laws of physics on our side), it’s easily disregarded.

Many software coding tasks that at first seem almost trivial often grow in
complexity due to error handling. The normal program flow can be simple,
but when a connection is broken, memory allocation fails, inputs are invalid,
or any number of other potential problems arise, the code needs to pro-
ceed if possible, or back out gracefully if not. When writing code, you
might feel as though you spend more time dealing with all these distractions
than with the task at hand, and it’s easy to quickly dismiss error-handling
code as unimportant, making this a common source of vulnerabilities.
Attackers will intentionally trigger these error cases if they can, in hopes
that there is a vulnerability they can exploit.

Error cases are often tedious to test thoroughly, especially when combi-
nations of multiple errors can compound into new code paths, so this can
be fertile ground for attack. Ensure that each error is either safely handled,
or leads to full rejection of the request. For example, when someone uploads
an image to a photo sharing service, immediately check that it is well formed
(because malformed images are often used maliciously), and if not, then
promptly remove the data from storage to prevent its further use.

Strong Enforcement
These patterns concern how to ensure that code behaves by enforcing the
rules thoroughly. Loopholes are the bane of any laws and regulations, so these
patterns show how to avoid creating ways of gaming the system. Rather than

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 63

write code and reason that you don’t think it will do something, it’s better to
structurally design it so that forbidden operations cannot possibly occur.

Complete Mediation
Protect all access paths, enforcing the same access, without exception.

An obscure term for an obvious idea, Complete Mediation means
securely checking all accesses to a protected asset consistently. If there
are multiple access methods to a resource, they must all be subject to the
same authorization check, with no shortcuts that afford a free pass or
looser policy.

For example, suppose a financial investment firm’s information sys-
tem policy declares that regular employees cannot look up the tax IDs of
customers without manager approval, so the system provides them with a
reduced view of customer records omitting that field. Managers can access
the full record, and in the rare instance that a non-manager has a legiti-
mate need, they can ask a manager to look it up. Employees help customers
in many ways, one of which is providing replacement tax documents if, for
some reason, customers did not receive theirs in the mail. After confirm-
ing the customer’s identity, the employee requests a duplicate form (a
PDF), which they print out and mail to the customer. The problem with
this system is that the customer’s tax ID, which the employee should
not have access to, appears on the tax form: that’s a failure of Complete
Mediation. A dishonest employee could request any customer’s tax form,
as if for a replacement, just to learn their tax ID, defeating the policy pre-
venting disclosure to employees.

The best way to honor this pattern is, wherever possible, to have a single
point where a particular security decision occurs. This is often known as a
guard or, informally, a bottleneck. The idea is that all accesses to a given asset
must go through one gate. Alternatively, if that is infeasible and multiple
pathways need guards, then all checks for the same access should be func-
tionally equivalent and ideally implemented as identical code.

In practice, this pattern can be challenging to accomplish consistently.
There are different degrees of compliance, depending on the guards in
place:

High compliance

Resource access only allowed via one common routine (bottleneck
guard)

Medium compliance

Resource access in various places, each guarded by an identical authori-
zation check (common multiple guards)

Low compliance

Resource access in various places, variously guarded by inconsistent
authorization checks (incomplete mediation)

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

64 Chapter 4

A counter-example demonstrates why designs with simple authorization
policies that concentrate authorization checks in a single bottleneck code
path for a given resource are the best way to get this pattern right. A Reddit
user recently reported a case of how easy it is to get it wrong:

I saw that my 8-year-old sister was on her iPhone 6 on iOS 12.4.6
using YouTube past her screen time limit. Turns out, she discov-
ered a bug with screen time in messages that allows the user to
use apps that are available in the iMessage App Store.

Apple designed iMessage to include its own apps, making it possible to
invoke the YouTube app in multiple ways, but it didn’t implement the
screen-time check on this alternate path to video watching—a classic fail-
ure of Complete Mediation.

Avoid having multiple paths for accessing the same resource, each
with custom code that potentially works slightly differently, because any
discrepancies could mean weaker guards on some paths than on others.
Multiple guards would require implementing the same essential check
multiple times, and would be more difficult to maintain because you’d
need to make matching changes in several places. The use of multiple
guards incurs more chances of making an error and more work to thor-
oughly test.

Least Common Mechanism
Maintain isolation between independent processes by minimizing shared
mechanisms.

To best appreciate what this means and how it helps, let’s consider
an example. The kernel of a multiuser operating system manages system
resources for processes running in different user contexts. The design of
the kernel fundamentally ensures the isolation of processes unless they
explicitly share a resource or a communication channel. Under the covers,
the kernel maintains various data structures necessary to service requests
from all user processes. This pattern points out that the common mecha-
nism of these structures could inadvertently bridge processes, and therefore
it’s best to minimize such opportunities. For example, if some functionality
can be implemented in userland code, where the process boundary neces-
sarily isolates it to the process, the functionality will be less likely to some-
how bridge user processes. Here, the term bridge specifically means either
leaking information, or allowing one process to influence another without
authorization.

If that still feels abstract, consider this non-software analogy. You visit
your accountant to review your tax return the day before the filing deadline.
Piles of papers and folders cover the accountant’s desk like miniature sky-
scrapers. After shuffling through the chaotic mess, they pull out your paper-
work and start the meeting. While waiting, you can see tax forms and bank
statements with other people’s names and tax IDs in plain sight. Perhaps
your accountant accidentally jots a quick note about your taxes in someone

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 65

else’s file by mistake. This is exactly the kind of bridge between independent
parties, created because the accountant uses the desktop as a common work-
space, that the Least Common Mechanism strives to avoid.

Next year, you hire a different accountant, and when you meet with
them, they pull your file out of a cabinet. They open it on their desk, which
is neat, with no other clients’ paperwork in sight. That’s how to do Least
Common Mechanism right, with minimal risk of mix-ups or nosy clients
seeing other documents.

In the realm of software, apply this pattern by designing services that
interface to independent processes or different users. Instead of a mono-
lithic database with everyone’s data in it, can you provide each user with
a separate database or otherwise scope access according to the context?
There may be good reasons to put all the data in one place, but when you
choose not to follow this pattern, be alert to the added risk and explicitly
enforce the necessary separation. Web cookies are a great example of using
this pattern because each client stores its own cookie data independently.

Redundancy
Redundancy is a core strategy for safety in engineering that’s reflected in
many common-sense practices, such as spare tires for cars. These patterns
show how to apply it to make software more secure.

Defense in Depth
Combining independent layers of protection makes for a stronger overall
defense that is often synergistically far more effective than any single layer.

This powerful technique is one of the most important patterns we have
for making inevitably bug-ridden software systems more secure than their
components. Visualize a room that you want to convert to a darkroom by
putting plywood over the window. You have plenty of plywood, but some-
body has randomly drilled several small holes in every sheet. Nail up just
one sheet, and numerous pinholes ruin the darkness. Nail a second sheet
on top of that, and unless two holes just happen to align, you now have
a completely dark room. A security checkpoint that utilizes both a metal
detector and a pat-down is another example of this pattern.

In the realm of software design, deploy Defense in Depth by layering two
or more independent protection mechanisms to enforce a particularly criti-
cal security decision. Like the holey plywood, there might be flaws in each
of the implementations, but the likelihood that any given attack will pen-
etrate both is minuscule, akin to having two plywood holes just happen to
line up and let light through. Since two independent checks require double
the effort and take twice as long, you should use this technique sparingly.

A great example of this technique that balances the effort and over-
head against the benefit is the implementation of a sandbox, a container in
which untrusted arbitrary code can run safely. (Modern web browsers run

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

66 Chapter 4

WebAssembly in a secure sandbox.) Running untrusted code in your system
could have disastrous consequences if anything goes wrong, justifying the
overhead of multiple layers of protection (Figure 4-2).

Sandbox

Sandbox loader

Code interpreter

Code
validator

Submit code

Valid

Rule
violation

Code

Resources

Execution

Forbidden
operation

Access from
sandbox is
forbidden

This would be
a vulnerability

Protected
resources

REJECT

Figure 4-2: An example of a sandbox as the Defense in Depth pattern

Code for sandbox execution first gets scanned by an analyzer (defense
layer one), which examines it against a set of rules. If any violation occurs,
the system rejects the code completely. For example, one rule might forbid
the use of calls into the kernel; another rule might forbid the use of specific
privileged machine instructions. If and only if the code passes the scan-
ner, it then gets loaded into an interpreter that runs the code while also
enforcing a number of restrictions intended to prevent the same kinds of
overprivileged operations. For an attacker to break this system, they must
first get past the scanner’s rule checking and also trick the interpreter into
executing the forbidden operation. This example is especially effective
because code scanning and interpretation are fundamentally different, so
the chances of the same flaw appearing in both layers is low, especially if
they’re developed independently. Even if there is a one-in-a-million chance

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 67

that the scanner misses a particular attack technique, and the same goes for
the interpreter, once they’re combined, the total system has about a one-in-
a-trillion chance of actually failing. That’s the power of this pattern.

Separation of Privilege
Two parties are more trustworthy than one.

Also known as Separation of Duty, the Separation of Privilege pattern refers
to the indisputable fact that two locks are stronger than one when those
locks have different keys entrusted to two different people. While it’s pos-
sible that those two people may be in cahoots, that rarely happens; plus,
there are good ways to minimize that risk, and in any case it’s way better
than relying entirely on one individual.

For example, safe deposit boxes are designed such that a bank main-
tains the security of the vault that contains all the boxes, and each box
holder has a separate key that opens their box. Bankers cannot get into any
of the boxes without brute-forcing them, such as by drilling the locks, yet
no customer knows the combination that opens the vault. Only when a cus-
tomer gains access from the bank and then uses their own key can their box
be opened.

Apply this pattern when there are distinct overlapping responsibilities
for a protected resource. Securing a datacenter is a classic case: the data-
center has a system administrator (or a team of them for a big operation)
responsible for operating the machines with superuser access. In addition,
security guards control physical access to the facility. These separate duties,
paired with corresponding controls of the respective credentials and access
keys, should belong to employees who report to different executives in the
organization, making collusion less likely and preventing one boss from
ordering an extraordinary action in violation of protocol. Specifically, the
admins who work remotely shouldn’t have physical access to the machines
in the datacenter, and the people physically in the datacenter shouldn’t
know any of the access codes to log in to the machines, or the keys needed
to decrypt any of the storage units. It would take two people colluding, one
from each domain of control, to gain both physical and admin access in
order to fully compromise security. In large organizations, different groups
might be responsible for various datasets managed within the datacenter as
an additional degree of separation.

The other use of this pattern, typically reserved for the most critical
functions, is to split one responsibility into multiple duties to avoid any
serious consequences as a result of a single actor’s mistake or malicious
intent. As extra protection against a backup copy of data possibly leaking,
you could encrypt it twice with different keys entrusted separately, so that
it can be used only with the help of both parties. An extreme example,
triggering a nuclear missile launch, requires two keys turned simultane-
ously in locks 10 feet apart, ensuring that no individual acting alone
could possibly actuate it.

Secure your audit logs by Separation of Privilege, with one team respon-
sible for the recording and reviewing of events and another for initiating the

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

68 Chapter 4

events. This means that the admins can audit user activity, but a separate
group needs to audit the admins. Otherwise, a bad actor could block the
recording of their own corrupt activity or tamper with the audit log to cover
their tracks.

You can’t achieve Separation of Privilege within a single computer
because an administrator with superuser rights has full control, but there
are still many ways to approximate it to good effect. Implementing a design
with multiple independent components can still be valuable as a mitigation,
even though an administrator can ultimately defeat it, because it makes
subversion more complicated; any attack will take longer and the attacker
is more likely to make mistakes in the process, increasing their likelihood
of being caught. Strong Separation of Privilege for administrators could be
designed by forcing the admin to work via a special ssh gateway under sepa-
rate control that logged their session in full detail and possibly imposed
other restrictions.

Insider threats are difficult, or in some cases impossible, to eliminate,
but that doesn’t mean mitigations are a waste of time. Simply knowing
that somebody is watching is, in itself, a large deterrent. Such precautions
are not just about distrust: honest staff should welcome any Separation of
Privilege that adds accountability and reduces the risk posed by their own
mistakes. Forcing a rogue insider to work hard to cleanly cover their tracks
slows them down and raises the odds of their being caught red-handed.
Fortunately, human beings have well-evolved trust systems for face-to-face
encounters with coworkers, and as a result, insider duplicity is extremely
rare in practice.

Trust and Responsibility
Trust and responsibility are the glue that makes cooperation work. Software
systems are increasingly interconnected and interdependent, so these pat-
terns are important guideposts.

Reluctance to Trust
Trust should be always be an explicit choice, informed by solid evidence.

This pattern acknowledges that trust is precious, and so urges skepticism.
Before there was software, criminals exploited people’s natural inclina-
tion to trust others, dressing up as workmen to gain access, selling snake
oil, or perpetrating an endless variety of other scams. Reluctance to Trust
tells us not to assume that a person in a uniform is necessarily legit, and to
consider that the caller who says they’re with the FBI may be a trickster. In
software, this pattern applies to checking the authenticity of code before
installing it, and requiring strong authentication before authorization.

The use of HTTP cookies is a great example of this pattern, as Chapter 11
explains in detail. Web servers set cookies in their response to the client,
expecting clients to send back those cookies with future requests. But since
clients are under no actual obligation to comply, servers should always take
cookies with a grain of salt, and it’s a huge risk to absolutely trust that clients
will always faithfully perform this task.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 69

Reluctance to Trust is important even in the absence of malice. For
example, in a critical system, it’s vital to ensure that all components are
up to the same high standards of quality and security so as not to compro-
mise the whole. Poor trust decisions, such using code from an anonymous
developer (which might contain malware, or simply be buggy) for a critical
function quickly undermines security. This pattern is straightforward and
rational, yet can be challenging in practice because people are naturally
trusting and it can feel paranoid to withhold trust.

Accept Security Responsibility
All software professionals have a clear duty to take responsibility for secu-
rity; they should reflect that attitude in the software they produce.

For example, a designer should include security requirements when
vetting external components to incorporate into the system. And at the
interface between two systems, both sides should explicitly take on certain
responsibilities they will honor, as well as confirm any guarantees they
depend on the caller to uphold.

The anti-pattern that you don’t want is to someday encounter a problem
and have two developers say to each other, “I thought you were handling
security, so I didn’t have to.” In a large system, both sides can easily find
themselves pointing the finger at the other. Consider a situation where
component A accepts untrusted input (for example, a web frontend server
receiving an anonymous internet request) and passes it through, possibly
with some processing or reformatting, to business logic in component B.
Component A could take no security responsibility at all and blindly pass
through all inputs, assuming B will handle the untrusted input safely with
suitable validation and error checking. From component B’s perspective,
it’s easy to assume that the frontend validates all requests and only passes
safe requests on to B, so there is no need for B to worry about this. The right
way to handle this situation is by explicit agreement; decide who validates
requests and what guarantees to provide downstream, if any. For maximum
safety, use Defense in Depth, where both components independently vali-
date the input.

Consider another all-too-common case, where the responsibility gap
occurs between the designer and user of the software. Recall the example
of configuration settings from our discussion of the Secure by Default pat-
tern, specifically when an insecure option is given. If the designer knows a
configurable option to be less secure, they should carefully consider whether
providing that option is truly necessary. That is, don’t just give users an
option because it’s easy to do, or because “someone, someday, might want
this.” That’s tantamount to setting a trap that someone will eventually fall
into unwittingly. When valid reasons for a potentially risky configuration
exist, first consider methods of changing the design to allow a safe way of
solving the problem. Barring that, if the requirement is inherently unsafe,
the designer should advise the user and protect them from configuring
the option when unaware of the consequences. Not only is it important to

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

70 Chapter 4

document the risks and suggest possible mitigations to offset the vulnerabil-
ity, but users should also receive clear feedback—ideally, something better
than the responsibility-ditching “Are you sure? (Learn more: <link>)” dialog.

W H AT’S W RONG W IT H T HE “A R E YOU SUR E” DI A LOG?

This author personally considers “Are you sure?” dialogs and their ilk to almost
always be a failure of design, and one that also often compromises security. I
have yet to come across an example in which such a dialog is the best possible
solution to the problem. When there are security consequences, this practice
runs afoul of the Accept Security Responsibility pattern, in that the designer is
foisting responsibility on to the user, who may well not be “sure” but has run out
of options. To be clear, in these remarks I would not include normal confirma-
tions, such as rm(1) command interactive prompts or other operations where it’s
important to avoid accidental operation.

These dialogs can fall victim to the dialog fatigue phenomenon, in which
people trying to get something done reflexively dismiss dialogs, almost univer-
sally considering them hindrances rather than help. As security conscious as
I am, when presented with these dialogs I, too, wonder, “How else can I do
what I want to do?” My choices are to either give up on what I want to do or
proceed at my own considerable risk—and I can only guess at exactly what
that risk is, since even if there is a “learn more” text provided, it never seems to
provide a good solution. At this point, “Are you sure?” only signals to me that
I’m about to do something I’ll potentially regret, without explaining exactly what
might happen and implying there likely is no going back.

I’d like to see a new third option added to these dialogs—“No, I’m not
sure but proceed anyway”—and have that logged as a severe error because
the software has failed the user. For any situation where security is critical,
scrutinize examples of this sort of responsibility offloading and treat them as
significant bugs to be eventually resolved. Exactly how to eliminate these will
depend on the particulars, but there are some general approaches to accepting
responsibility. Be clear as to precisely what is about to happen and why. Keep
the wording concise, but provide a link or equivalent reference to a complete
explanation and good documentation. Avoid vague wording (“Are you sure you
want to do this?”) and show exactly what the target of the action will be (don’t
let the dialog box obscure important information). Never use double negatives
or confusing phrasing (“Are you sure you want to go back?” where answering
“No” selects the action). If possible, provide an undo option; a good pattern,
seen more these days, is passively offering an undo following any major action.
If there is no way to undo, then in the linked documentation, offer a work-
around, or suggest backing up data beforehand if unsure. Let’s strive to reduce
these Hobson’s choices in quantity, and ideally confine them to use by profes-
sional administrators who have the know-how to accept responsibility.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 71

Anti-Patterns
Learn to see in another’s calamity the ills which you should avoid.

—Publilius Syrus

Some skills are best learned by observing how a master works, but another
important kind of learning comes from avoiding the past mistakes of oth-
ers. Beginning chemists learn to always dilute acid by adding the acid to a
container of water—never the reverse, because in the presence of a large
amount of acid, the first drop of water reacts suddenly, producing a lot of
heat that could instantly boil the water, expelling water and acid explosively.
Nobody wants to learn this lesson by imitation, and in that spirit, I present
here several anti-patterns best avoided in the interests of security.

The following short sections list a few software security anti-patterns.
These patterns may generally carry security risks, so they are best avoided,
but they are not actual vulnerabilities. In contrast to the named patterns
covered in the previous sections, which are generally recognizable terms,
some of these don’t have well-established names, so I have chosen descrip-
tive monikers here for convenience.

Confused Deputy
The Confused Deputy problem is a fundamental security challenge that is
at the core of many software vulnerabilities. One could say that this is the
mother of all anti-patterns. To explain the name and what it means, a short
story is a good starting point. Suppose a judge issues a warrant, instruct-
ing their deputy to arrest Norman Bates. The deputy looks up Norman’s
address, and arrests the man living there. The man insists there is a mis-
take, but the deputy has heard that excuse before. The plot twist of our
story (which has nothing to do with Psycho) is that Norman anticipated
getting caught and for years has used a false address. The deputy, confused
by this subterfuge, used their arrest authority wrongly; you could say that
Norman played them, managing to direct the deputy’s duly granted author-
ity to his own malevolent purposes. (The despicable crime of swatting—
falsely reporting an emergency to direct police forces against innocent
victims—is a perfect example of the Confused Deputy problem, but I didn’t
want to tell one of those sad stories in detail.)

Common examples of confused deputies include the kernel when
called by userland code, or a web server when invoked from the internet.
The callee is a deputy because the higher-privilege code is invoked to do
things on behalf of the lower-privilege caller. This risk derives directly
from the trust boundary crossing, which is why those are of such acute
interest in threat modeling. In later chapters, numerous ways of confusing
a deputy will be covered, including buffer overflows, poor input validation,
and cross-site request forgery (CSRF) attacks, just to name a few. Unlike
human deputies, who can rely on instinct, past experience, and other cues
(including common sense), software is trivially tricked into doing things it
wasn’t intended to, unless it’s designed and implemented with all necessary
precautions fully anticipated.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

72 Chapter 4

Intention and Malice

To recap from Chapter 1, for software to be trustworthy, there are two
requirements: it must be built by people you can trust are both honest and
competent to deliver a quality product. The difference between the two
conditions is intention. The problem with arresting Norman Bates wasn’t
that the deputy was crooked; it was failing to properly ID the arrestee. Of
course, code doesn’t disobey or get lazy, but poorly-written code can easily
work in ways other than how it was intended. While many gullible computer
users and occasionally even technically adept software professionals do get
tricked into trusting malicious software, many attacks work by exploiting a
Confused Deputy in software that is duly trusted but happens to be flawed.

Often, Confused Deputy vulnerabilities arise when the context of the
original request gets lost earlier in the code—for example, if the requester’s
identity is no longer available. This sort of confusion is especially likely in
common code shared by both high- and low-privilege invocations. Figure 4-3
shows what such an invocation looks like.

Low
… call Deputy() ...

Trust: Low

Deputy
… call Utility() ...

Trust: High

Utility
… doSafe …

… doDangerous ...

Trust: High

High
… call Deputy() ...

Trust: High

Effective
privilege
is Low

Effective
privilege
is High

Figure 4-3: An example of the Confused Deputy anti-pattern

The Deputy code in the center performs work for both low- and high-
privilege code. When invoked from High on the right, it may do potentially
dangerous operations in service of its trusted caller. Invocation from Low
represents a trust boundary crossing, so Deputy should only do safe opera-
tions appropriate for low-privilege callers. Within the implementation, Deputy
uses a subcomponent, Utility, to do its work. Code within Utility has no
notion of high- and low-privilege callers, and hence is liable to mistakenly do
potentially dangerous operations on behalf of Deputy that low-privilege call-
ers should not be able to do.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

Patterns 73

Trustworthy Deputy

Let’s break down how to be a trustworthy deputy, beginning with a consid-
eration of where the danger lies. Recall that trust boundaries are where the
potential for confusion begins, because the goal in attacking a Confused
Deputy is to leverage its higher privilege. So long as the deputy understands
the request and who is requesting it, and the appropriate authorization
checks happen, everything should be fine.

Recall the previous example involving the Deputy code, where the prob-
lem occurred in the underlying Utility code that did not contend with the
trust boundary when called from Low. In a sense, Deputy unwittingly made
Utility a Confused Deputy. If Utility was not intended to defend against low-
privilege callers, then either Deputy needs to thoroughly shield it from being
tricked, or Utility may require modification to be aware of low-privilege
invocations.

Another common Confused Deputy failing occurs in the actions taken
on behalf of the request. Data hiding is a fundamental design pattern where
the implementation hides the mechanisms it uses behind an abstraction,
and the deputy works directly on the mechanism though the requester
cannot. For example, the deputy might log information as a side effect of
a request, but the requester has no access to the log. By causing the deputy
to write the log, the requester is leveraging the deputy’s privilege, so it’s
important to beware of unintended side effects. If the requester can present
a malformed string to the deputy that flows into the log with the effect of
damaging the data and making it illegible, that’s a Confused Deputy attack
that effectively wipes the log. In this case, the defense begins by noting
that a string from the requester can flow into the log and, considering the
potential impact that might have, requiring input validation, for example.

The Code Access Security model, mentioned in Chapter 3, is designed
specifically to prevent Confused Deputy vulnerabilities from arising. When
low-privilege code calls high-privilege deputy code, the effective permis-
sions are reduced accordingly. When the deputy needs its greater privileges,
it must assert them explicitly, acknowledging that it is working at the behest
of lower-privilege code.

In summary, at trust boundaries, handle lower-trust data and lower-
privilege invocations with care so as not to become a Confused Deputy.
Keep the context associated with requests throughout the process of per-
forming the task so that authorization can be fully checked as needed.
Beware that side effects do not allow requesters to exceed their authority.

Backflow of Trust
Backflow of Trust is present whenever a lower-trust component controls a
higher-trust component. An example of this is when a system administrator
uses their personal computer to remotely administer an enterprise system.
While the person is duly authorized and trusted, their home computer isn’t
within the enterprise regime and shouldn’t be hosting sessions using admin
rights. In essence, you can think of this as a structural Elevation of Privilege
just waiting to happen.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

74 Chapter 4

While nobody in their right mind would fall into this anti-pattern in
real life, it’s surprisingly easy to miss in an information system. Remember
that what counts here is not the trust you give components, but how much
trust the components merit. Threat modeling can surface potential prob-
lems of this variety through an explicit look at trust boundaries.

Third-Party Hooks
Another form of the Backflow of Trust anti-pattern is when hooks in a compo-
nent within your system provide a third party undue access. Consider a criti-
cal business system that includes a proprietary component performing some
specialized process within the system. Perhaps it uses advanced AI to predict
future business trends, consuming confidential sales metrics and updating
forecasts daily. The AI component is cutting-edge, and so the company that
makes it must tend to it daily. To make it work like a turnkey system, it needs a
direct tunnel through the firewall to access the administrative interface.

This also is a perverse trust relationship because this third party has
direct access into the heart of the enterprise system, completely outside the
purview of the administrators. If the AI provider were dishonest, or compro-
mised, they could easily exfiltrate internal company data, or worse, and there
would be no way of knowing. Note that a limited type of hook may not have
this problem and would be acceptable. For example, if the hook implements
an auto-update mechanism and is only capable of downloading and install-
ing new versions of the software, it may be fine, given a suitable level of trust.

Unpatchable Components
It’s almost invariably a matter of when, not if, someone will discover a
vulnerability in any given popular component. Once such a vulnerability
becomes public knowledge, unless it is completely disconnected from any
attack surface, it needs patching promptly. Any component in a system that
you cannot patch will eventually become a permanent liability.

Hardware components with preinstalled software are often unpatch-
able, but for all intents and purposes, so is any software whose publisher has
ceased supporting it or gone out of business. In practice, there are many
other categories of effectively unpatchable software: unsupported software
provided in binary form only; code built with an obsolete compiler or other
dependency; code retired by a management decision; code that becomes
embroiled in a lawsuit; code lost to ransomware compromise; and, remark-
ably enough, code written in a language such as COBOL that is so old that,
these days, experienced programmers are in short supply. Major operating
system providers typically provide support and upgrades for a certain time
period, after which the software becomes effectively unpatchable. Even
software that is updatable may effectively be no better if the maker fails to
provide timely releases. Don’t tempt fate by using anything you are not con-
fident you can update quickly when needed.

N O T E See Appendix D for a cheat sheet listing the secure design patterns and anti-patterns
presented in this chapter.

Designing Secure Software (Sample Chapter) © 2022 by Loren Kohnfelder

