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PROCESS ING IMAGES WITH
CONVOLUT IONAL NEURAL

NETWORKS

In this chapter, you’ll dive into convolu-
tional neural networks, the primary tool

for using deep learning for image analysis.
You’ll then apply this knowledge to classifying

blood smears used to identify malaria and to measur-
ing the position of microscopic particles from their
images.

You’ll begin by exploring how convolutions provide powerful tools to
extract information from images. You’ll learn to implement convolutional
layers—the fundamental building blocks of convolutional neural networks.
Then you’ll discover how downsampling and upsampling layers are used to
modify the spatial resolution of the feature maps generated by convolutional
layers in advanced convolutional architectures. You’ll also learn how to use
heatmaps to better understand the workings of convolutional neural net-
works, showcasing the features they learn in an accessible and insightful way.

This chapter ends with two projects that demonstrate the creative po-
tential of convolutional neural networks by generating artistic and visually
stimulating outputs. The DeepDreams project demonstrates how to use
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convolutional neural networks to transform images into dreamlike scenes,
showcasing the network’s ability to amplify patterns in a visually intriguing
way. Finally, the style transfer project explores how you can apply convolu-
tional neural networks to merge the style of one image with the content of
another, leading to captivating results.

Understanding Convolutions
A convolution is a blending process that combines two sets of data to produce
a new set. Imagine you have a sequence of numbers (call this your main
data) and a smaller set of numbers (think of this as a filter). You apply this
filter to your main data by sliding it across, step-by-step.

At each step, you multiply the numbers in the filter with the numbers
they cover in the main data, and then add these up to get a single number.
This process is repeated across the entire main data sequence. The resulting
series of numbers is your output—a transformed version of the original data
that can highlight some of its properties.

This method is widely used in signal and image processing, where it
helps in tasks like sharpening or blurring signals and images, as you’ll see
shortly.

Convolving 1D Data
To understand how a 1D convolution works, consider a sequence of values
in a 1D signal. You may want to compute its moving average, which is derived
at each point from its adjacent values in the sequence. You can implement
this with a 1D convolution, as shown in Listing 3-1.

import numpy as np

signal = np.array([0, 2, 0, 2, 0, 2, 0, 2, 0])

filter1d = np.ones(2) / 2

¶ conv1d_length = signal.shape[0] - filter1d.shape[0] + 1

conv1d = np.zeros((conv1d_length,))

for i in range(conv1d_length):

· conv1d[i] = np.sum(signal[i:i + filter1d.shape[0]] * filter1d)

Listing 3-1: Implementing a moving average with a 1D convolution

This script calculates the moving average of a 1D signal by using a 1D
convolution. It begins by defining the signal array with nine data points, rep-
resenting the original 1D signal. Next, it creates the filter1d filter of length
2 with values [0.5, 0.5], indicating that each element within a two-point win-
dow of the signal will contribute equally to the average.
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The convolution process starts by first determining the length of the
output array ¶, which is calculated as the length of the signal minus the
length of the filter plus 1. This calculation is essential to ensure that the con-
volution process covers the entire signal without exceeding its bounds. The
reason for adding 1 is to account for the number of valid complete placements
of the filter over the signal. The new conv1d array of this length is initialized
to store the results. The script then performs the convolution operation by
iteratively sliding the filter along the signal. At each step ·, the script multi-
plies corresponding elements of the signal and the filter, sums them up, and
stores the result in conv1d.

You can use print(conv1d) to print the resulting array, which represents
the convolved signal:

[1 1 1 1 1 1 1 1]

This is a smoothed version of the original signal; while the original signal
alternated 0s and 2s, the resulting signal is always 1.

Figure 3-1 illustrates this process. The signal on the left of the figure is
convolved with a rectangular filter [0.5, 0.5] obtaining the averaged signal,
corresponding to that calculated in Listing 3-1.

Signal

Averaged signal

Rectangular filter

Differentiation signal

Sobel filter
Signal

Gaussian filter

Smoothed signal

Signal

Figure 3-1: 1D convolutions of a signal with various filters

The other two panels of Figure 3-1 show the effect of convolving a signal
with different filters. On the right, a signal is convolved with a Sobel filter of
length 3 performing a differentiation operation often used to detect steps.
Finally, at the bottom, another signal is convolved with a Gaussian filter of
length 5 with unitary standard deviation obtaining another smoothed ver-
sion of the signal.
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EXERCISES

3-1: Detect the presence of steps in a signal by using a Sobel filter. For
example, use the Sobel filter of length 3 [-1, 0, 1] with various signals
(for your reference, in 1D, the Sobel filter is the same as the Prewitt filter).
With a constant signal, you should get a null convolution. On the other
hand, with a signal featuring an abrupt change (such as a step function),
you should get a convolution with a spike near the change point.
3-2: Smooth a signal by convolving it with a Gaussian filter. For exam-
ple, you can use a Gaussian filter of length 5 [0.0545, 0.2442, 0.4026,
0.2442, 0.0545].
3-3: Detect a specific pattern in a signal by convolving it with a filter
matching the pattern. The convolution will have a high value at the loca-
tions where the pattern is present in the signal.
3-4: Sharpen a signal by first smoothing it with a Gaussian filter and
then subtracting this smoothed version of the signal from the original one.

Convolving 2D Data
To extend the concept of convolutions to higher dimensions, you’ll now im-
plement a 2D convolution using Listing 3-2.

¶ image = np.array([

[1, 1, 0, 0, 1, 1, 0, 0, 1, 1],

[1, 1, 0, 0, 1, 1, 0, 0, 1, 1],

[0, 0, 1, 1, 0, 0, 1, 1, 0, 0],

[0, 0, 1, 1, 0, 0, 1, 1, 0, 0],

])

· filter2d = np.ones((2, 2)) / 4

conv2d_height = image.shape[0] - filter2d.shape[0] + 1

conv2d_width = image.shape[1] - filter2d.shape[1] + 1

conv2d = np.zeros((conv2d_height, conv2d_width))

for i in range(conv2d_height):

for j in range(conv2d_width):

conv2d[i, j] = np.sum(

image[i:i + filter2d.shape[0], j:j + filter2d.shape[1]] * filter2d

)

Listing 3-2: Implementing a 2D convolution

This script convolves a 4×10–pixel (height by width) image ¶ with a
2×2–pixel filter ·, using a procedure similar to that used for the 1D convo-
lution. The 2D convolution process uses two nested for loops, which iterate
over each pixel position in the image where the filter can be applied. At each
position, the filter overlaps with a part of the image, and an element-wise
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multiplication followed by a sum is computed. This sum represents the con-
volved value at that specific location in the output array. This procedure is
repeated across the entire image.

If you print the resulting convolution with print(conv2d), you get a
smoothed version of the original image:

[[1. 0.5 0. 0.5 1. 0.5 0. 0.5 1. ]

[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]

[0. 0.5 1. 0.5 0. 0.5 1. 0.5 0. ]]

You can see that this output is a smoothed version of the original image
from the gradual transitions in pixel values: Instead of abrupt shifts from 1
to 0 as in the original image, there is now an intermediate value of 0.5. This
output is also an image with smaller dimensions (3×9 pixels) than the orig-
inal image, corresponding to the valid complete placements of the filter over
the image, which are areas where the filter fully fits within the original im-
age boundaries during the convolution process.

This process is illustrated in Figure 3-2.

Input image

Feature map

Filter

Figure 3-2: A 2D convolution of an image with a filter

The input image at the top is convolved with the filter, generating the
convolved image at the bottom, which is often referred to as a feature map.

EXERCISES

3-5: Detect the edges in an image by convolving it with a 2D Prewitt
filter. For example, use a filter with values [[-1, 0, 1], [-1, 0, 1],
[-1, 0, 1]] to detect vertical edges, and a filter with values [[1, 1, 1],
[0, 0, 0], [-1, -1, -1]] to detect horizontal edges. Alternatively, you
could use 2D Sobel filters with values [[-1, 0, 1], [-2, 0, 2], [-1, 0,
1]] and [-1, -2, -1], [0, 0, 0], [1, 2, 1] for the same purposes.
3-6: Blur an image by convolving it with a 2D Gaussian filter. For exam-
ple, use a Gaussian filter of size 5×5 with a standard deviation of 1.
3-7: Detect a specific pattern in an image by convolving it with a filter
matching the pattern.
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If the input image contains multiple color channels, such as in RGB
(red, green, and blue) images, the convolution combines all the color chan-
nels, as shown in Figure 3-3.

Input RGB image

Feature map

RGB filter

Figure 3-3: A 2D convolution of an
RGB image with a filter

For a multichannel image, the image data is represented as a 3D array
(height by width by channels), as shown on the left. The convolution op-
eration uses a filter that extends through all the color channels. This filter
performs the convolution across the height and width of the image, while si-
multaneously aggregating information from all the color channels. By com-
bining all color channels, this convolution effectively integrates the spatial
and color information, leading to a more comprehensive analysis of the im-
age’s features.

Using Convolutions in a Neural Network
Now that you’ve had a glimpse of the power of convolutions in analyzing
signals and images, you’re ready to integrate them within neural networks.

Convolutional layers consist of neural network layers containing multiple
convolutions. They enable the construction of sophisticated neural network
architectures to analyze signals and images. The versatility of convolutions
in signal and image processing stems from their ability to perform varied
operations with different filters, which is especially crucial in deep learning.

Filters are typically learned during training to achieve specific objectives,
allowing for the extraction of significant features from signals and images.
This adaptability through training explains why convolutions are a funda-
mental element in neural network architectures.

Implementing Neural Networks in PyTorch
In this section, you’ll use PyTorch to learn some of the basic building blocks
of neural network architectures. You’ll see convolutional, activation, pool-
ing, downsampling, and dense layers, as well as how to sequentially stack
them to create a deep neural network.
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Start by creating a sample image representing a checkerboard, using
Listing 3-3.

import torch

H, W, S = 12, 16, 4 # Height, width, square size

¶ image = torch.zeros(1, H, W)

for idx in range(0, H, S):

for idy in range(0, W, S):

· image[0, idx:idx + S, idy:idy + S] = (-1) ** (idx // S + idy // S)

Listing 3-3: Creating a sample image

The image is stored in the image PyTorch tensor (a multidimensional ar-
ray used by PyTorch to store and process data efficiently for deep learning
models, which allows for optimized computations on GPUs). This tensor has
three dimensions, corresponding to the number of color channels (1), the
height (H), and the width (W) ¶. The image is a checkerboard with squares
of size S = 4 taking as values either 1 or –1 ·. This image has a single color
channel, so you can think of it as grayscale.

You can now write the plot_image() function shown in Listing 3-4.

import matplotlib.pyplot as plt

def plot_image(image):

"""Render an image."""

¶ plt.imshow(image, cmap="gray", aspect="equal", vmin=-2, vmax=2,

extent=[0, image.shape[1], 0, image.shape[0]])

plt.colorbar()

· plt.xticks(range(0, image.shape[1] + 1))

¸ plt.yticks(range(0, image.shape[0] + 1))

¹ plt.grid(color="red", linewidth=1)

plt.show()

Listing 3-4: The function to render an image

This function renders the image via the Matplotlib imshow() function
with a grid highlighting its pixels ¹, ensuring that the grid lines are at the
beginning and end of each pixel · ¸. Even though the values of the image
range from –1 to 1, the color bar limits are set from –2 to 2 ¶ to make this
image directly comparable with the subsequent ones.

Now, use this function to plot the image you’ve created:

plot_image(image.squeeze())

When passing image to the plot_image() function, you need to eliminate the
extra dimensions that are of size 1, which is done using the squeeze() method.
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Figure 3-4 shows the rendered image.
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Figure 3-4: The sample image representing a checkerboard

The image is a checkerboard with three rows and four columns of 4×4-
pixel squares with values –1 (dark gray) and 1 (light gray). In total, the image
has 12×16 pixels (height by width).

Defining Convolutional Layers
You’ll now define a convolutional layer, set the values of its filters, and apply
it to the checkerboard image to see how it transforms, as shown in Listing 3-5.

import torch.nn as nn

conv = nn.Conv2d(in_channels=1, out_channels=2, kernel_size=(1, 3), bias=False)

¶ filters = torch.zeros(conv.out_channels, conv.in_channels, *conv.kernel_size)

· filters[0, 0, :, :] = torch.tensor([[1, 1, 1],]) / 3

¸ filters[1, 0, :, :] = torch.tensor([[-1, 0, 1],])

¹ conv.weight = nn.Parameter(filters)

º features_conv = conv(image.unsqueeze(0))

Listing 3-5: Implementing a convolutional layer in PyTorch

This code creates the conv convolutional layer with a single color chan-
nel (in_channels=1) and two filters (out_channels=2) with size kernel_size=(1, 3)

(the terms kernel and filter are frequently used interchangeably), while set-
ting the bias to 0 (bias=False). Similar to the bias in neurons discussed in
Chapters 1 and 2, the bias in convolutional layers adds a constant offset to

102 Chapter 3

Deep Learning Crash Course (Sample Chapter) © 2025 by Giovanni Volpe, Benjamin Midtvedt, 
Jesús Pineda, Henrik Klein Moberg, Harshith Bachimanchi, Joana B. Pereira, and Carlo Manzo



the output. In the rest of this section, you’ll set the bias to 0 to focus on the
convolutional operation.

By default, the filters of a convolutional layer are initialized to random
numbers. In Listing 3-5, however, you set the filters by overwriting the ran-
domly initialized ones. You first initialize a filters tensor with 0s, conforming
to the shape required by the convolution layer ¶. The first index in filters

corresponds to the filter number, and the second index to the channel num-
ber. Then you modify this tensor to define two specific kernels: the first,
which is an averaging filter ·, and the second, which is an edge-detection
filter ¸. Finally, you set these custom kernels as weights in the convolutional
layer ¹.

You can think of the output, features_conv, as a new image with two
pseudo–color channels created by the kernels. Importantly, you need to
batch the input image before passing it through the convolutional layer,
which is a requirement of PyTorch (and most other deep learning frame-
works). This involves adding an additional dimension to represent the batch
size by using the unsqueeze(0) method º. To batch the image, in this case,
you transform image, which is a 3D tensor of shape [1, 12, 16] (channels,
height, width), into a 4D tensor of shape [1, 1, 12, 16], where the first di-
mension represents the batch.

To visualize the output feature maps, implement the plot_channels()

function in Listing 3-6.

def plot_channels(channels, figsize=(15, 5)):

"""Render multiple channels."""

fig, axs = plt.subplots(1, channels.shape[0], figsize=figsize)

for channel, ax, i in zip(channels, axs, range(channels.shape[0])):

¶ im = ax.imshow(channel, cmap="gray", aspect="equal", vmin=-2, vmax=2,

extent=[0, channel.shape[1], 0, channel.shape[0]])

plt.colorbar(im)

ax.set_title(f"Channel {i}", fontsize=24)

ax.set_xticks(range(0, channel.shape[1] + 1))

ax.set_yticks(range(0, channel.shape[0] + 1))

· ax.grid(color="red", linewidth=1)

plt.show()

Listing 3-6: The function to render the multiple channels of an image

For each channel of an image, this function renders the channel ¶ and
overlays a grid to highlight the pixels ·.

Now you can use this function to render the feature maps obtained by
the convolution:

plot_channels(features_conv[0].detach())

When passing the feature maps to the plot_channels() function, you need to
first extract the first (and, in this case, only) image of the batch and then use
the detach() method to tell PyTorch that you don’t require gradient calcula-
tion for the image (typically required for the backpropagation).
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You should get Figure 3-5.
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Figure 3-5: The feature maps obtained by convolutions with the filters

You can see two feature maps (channels), corresponding to the two fil-
ters in the convolutional layer you’ve defined in Listing 3-5. The first chan-
nel (Channel 0) corresponds to the feature map obtained by applying the
averaging filter, which acts only along the horizontal direction. By averag-
ing the intensity values, this filter produces a smoothing effect, reducing the
distinction between adjacent horizontal regions.

The second channel (Channel 1) represents the feature map produced
by the edge-detection filter. This filter highlights the horizontal transitions
in intensity by accentuating edges perpendicular to the horizontal axis, as
shown by the pronounced contrast between adjacent areas in the horizontal
direction.

EXERCISES

3-8: Revisit the example in this section, using various filters. For example,
use a vertical edge detector and a 3×3 Gaussian filter.
3-9: Until now, you’ve used grayscale images, but usually images have
multiple colors. Revisit the example in this section, using an RGB image as
input.

Adding ReLU Activation
You can now add a ReLU activation to the output of the convolutional layer:

relu = nn.ReLU()

model_relu = nn.Sequential(conv, relu)

features_relu = model_relu(image.unsqueeze(0))

plot_channels(features_relu[0].detach())

After creating a ReLU activation (relu), this code combines the convolu-
tional layer and the ReLU activation via nn.Sequential(). The resulting out-
put is rendered in Figure 3-6.
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Figure 3-6: The image after convolution and ReLU activation

Comparing Figure 3-6 with Figure 3-5, you can see that all negative val-
ues have been converted to 0s.

EXERCISE

3-10: While the ReLU activation function is commonly used for its sim-
plicity and efficiency, there are several other options that can impact the
network’s performance, as you saw in Chapter 1. For instance, the sig-
moid function, which maps input values to a range of 0 to 1, can be useful
for binary classification tasks. Another option is the hyperbolic tangent
function, which scales the inputs to a range of –1 to 1, offering a centered
scaling. A third option is the leaky ReLU, a variation of ReLU that allows a
small gradient when the unit is inactive and can help with the dying ReLU
problem but can hinder training if many of the layer’s outputs are negative
and converted to 0. Modify the activation function in the given code to use
these alternatives and observe how they affect the output feature maps.

Adding Pooling Layers
Pooling layers (also known as downsampling layers) reduce the spatial resolu-
tion of feature maps, downsampling the data. For example, you might add
a pooling layer to the convolutional layer to reduce the computational load
by decreasing the number of parameters and operations needed in the net-
work. Furthermore, this approach helps in detecting larger-scale features by
summarizing the presence of features in larger patches of the input image.
You can implement a pooling layer with the following code:

pool = nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1))

model_pool = nn.Sequential(conv, pool)

features_pool = model_pool(image.unsqueeze(0))

plot_channels(features_pool[0].detach())

This code creates a max pooling layer (pool) with kernel_size=(2, 1), which
means it extracts the maximum value over a window of 2 pixels in the vertical
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direction (height) and 1 pixel in the horizontal direction (width). The maxi-
mum extraction is executed with stride=(2, 1), which means that the window
sequentially slides over the image with two steps in the vertical direction and
one step in the horizontal one, effectively reducing the height by half and
keeping the width the same. The code then combines the convolutional layer
with the max pooling layer and plots the resulting feature maps, which are
shown in Figure 3-7.
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Figure 3-7: The image after convolution and pooling

By comparing Figure 3-7 with Figure 3-5, you’ll notice that the pooled
feature maps have half the height of those at the output of the convolutional
layer. This reduction in dimensionality lessens the computational burden
and helps in summarizing the information contained in larger patterns in
the image.

Apart from max pooling, which selects the maximum value from the
feature map within the pooling window, many alternative operations can be
used by a pooling layer to downsample the feature maps. For example, average
pooling computes the average value within the window, effectively smoothing
the features; L2-norm pooling calculates the square root of the sum of the
squares of the pixel values, preserving the magnitude of large features; and
min pooling selects the minimum value, useful when the absence of features is
critical, as in background suppression or noise reduction.

EXERCISE

3-11: Revisit the given code to implement these alternative pooling oper-
ations; you can also change the kernel_size and stride. Observe how
the output feature maps change.

Using Upsampling Layers
Upsampling layers (also known as unpooling layers) perform the inverse op-
eration of pooling layers, increasing the spatial resolution of the feature
maps. Understanding and utilizing both pooling and upsampling layers
is crucial, as they are complementary techniques for manipulating feature
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maps: While pooling layers reduce dimensionality to improve computational
efficiency and feature-detection robustness, upsampling layers restore or
enhance the resolution, which is especially important for tasks like image
segmentation or generating high-resolution outputs from lower-resolution
inputs. You can implement an upsampling layer with the following code:

upsample = nn.Upsample(scale_factor=(2, 1))

model_upsample = nn.Sequential(conv, upsample)

features_upsample = model_upsample(image.unsqueeze(0))

plot_channels(features_upsample[0].detach(), figsize=(15, 8))

This code defines an upsampling layer (upsample) with scale_factor=(2, 1),
which replaces each pixel by two vertically stacked pixels with the same value,
thereby doubling the height of the feature maps while maintaining their
original width. This upsampling layer is then combined with the convolu-
tional layer and used to generate the output feature maps, which are ren-
dered in Figure 3-8.
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Figure 3-8: The image after convolution and upsampling

By comparing Figure 3-8 with Figure 3-5, you can verify that the upsam-
pling has doubled the height of the feature maps, repeating each pixel twice
along the vertical direction.

The upsampling method you’ve seen in this section uses a straightfor-
ward duplication approach that replicates pixels to enlarge the feature map.
However, alternative upsampling techniques can offer different benefits. For
example, nearest neighbor upsampling replicates the nearest pixel, potentially
preserving sharper edges; bilinear upsampling uses linear interpolation,
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leading to smoother transitions; and trilinear upsampling, suitable for 3D
data, interpolates in three dimensions.

EXERCISES

3-12: Experiment with different upsampling methods by modifying the
upsampling layer in the given code. Observe and compare the effects on
the spatial resolution and the overall appearance of the upsampled fea-
ture maps.
3-13: Perform subsequent pooling and upsampling operations on an
image. What do you observe? How does the result depend on the order
of the two operations? Try different combinations of pooling and upsam-
pling layers.

Transforming Images
Now that you’ve learned about convolutional, activation, pooling, and up-
sampling layers, you can combine them to construct complex convolutional
architectures that transform images. This means applying operations to
modify or analyze input images, crucial for tasks like image classification
or object detection. The images being transformed will vary based on the
application, such as facial recognition or medical imaging.

Listing 3-7 shows an example of a convolutional neural network for
transforming images.

model_trans = nn.Sequential(

nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3),

nn.ReLU(),

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3),

nn.ReLU(),

nn.MaxPool2d(kernel_size=2, stride=2),

)

¶ image_trans = model_trans(image.unsqueeze(0))[0]

Listing 3-7: Implementing a convolutional neural network to transform an image

This code defines a neural network model named model_trans, which
consists of two convolutional layers, each followed by a ReLU activation
function and a max pooling layer.

The first convolutional layer has an input channel size of 1 (suitable for
grayscale images) and an output channel size of 16, with a kernel size of 3
in both directions (kernel_size=3 is equivalent to kernel_size=(3, 3)). This
is immediately followed by a ReLU activation function, which introduces
nonlinearity in the network. Next, a max pooling layer with a kernel size of
2 and a stride of 2 in both directions reduces the spatial dimensions of the
feature maps.
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A similar sequence of convolutional layer, ReLU activation, and max
pooling is repeated, with the second convolutional layer further increasing
the number of output channels to 32.

When you use this network to process the usual input image, image, the
result is a transformed image, image_trans ¶. Note that the first (and only, in
this case) image is extracted from the batch. You can check the dimensions
of the input and output with

print(f"Input image with {image.shape}")

print(f"Output image with {image_trans.shape}")

which prints:

Input image with torch.Size([1, 12, 16])

Output image with torch.Size([32, 1, 2])

The first indices indicate that the input image has one single color chan-
nel (it’s grayscale), while the output image has 32 features. The second and
third indices indicate that the input image has 12×16 pixels, but each of the
output feature maps has only 1×2 pixels. Consequently, although the im-
age has diminished in spatial resolution, it has simultaneously gained in the
richness of its feature representation.

EXERCISES

3-14: Use Gaussian filters to get a smoothed, downsampled version of
an image. Apply this to the MNIST digits.
3-15: Implement a code that enlarges an image through a series of
upsampling and convolutional layers. Use Gaussian filters to smooth the
upsampled image. Apply this to the MNIST digits.
3-16: Combine the reduction and enlargement of an image into a
telescopic convolutional architecture. Apply this to the MNIST digits.

Using Dense Layers to Classify Images
You can also use convolutional neural networks for the classification of im-
ages. In this case, you typically need to flatten the feature maps obtained
from the convolutional layers (known as the convolutional base) and couple
them with a dense output layer (a dense top). For example, you can do this by
expanding Listing 3-7 as shown in Listing 3-8.

model_clas = nn.Sequential(

--snip--

nn.MaxPool2d(kernel_size=2, stride=2),

nn.Flatten(),

nn.Linear(in_features=32 * 1 * 2, out_features=2),
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nn.Softmax(dim=1),

)

classification = model_clas(image.unsqueeze(0))

Listing 3-8: Implementing a convolutional neural network with a dense top to classify
images (by modifying Listing 3-7)

This code adds a dense top to the convolutional base, transitioning from
feature extraction to classification. The addition of a flattening layer re-
shapes the multidimensional output of the convolutional layers into a 1D
tensor, which is a necessary step before feeding the data into fully connected
layers. The flattening is followed by a dense layer with two output features,
corresponding to a binary classification. Finally, a softmax activation is ap-
plied, obtaining some values that are often interpreted as the relative like-
lihoods of the two possible classes, though they aren’t probabilities in the
traditional statistical sense.

If you use this network to process the usual image, image, it results in a
classification vector, classification. You can check the dimensions of the
input and output with

print(f"Input image with {image.shape}")

print(f"Output classification with {classification.shape}")

which prints:

Input image with torch.Size([1, 12, 16])

Output classification with torch.Size([2])

The output classification has two values corresponding to two classes.

NO T E Code Example 3-1, “Implementing Neural Networks in PyTorch,” is available at
https://github.com/DeepTrackAI/DeepLearningCrashCourse. Navigate to
the Ch03_CNN folder and then ec03_1_cnn. The cnn.ipynb notebook provides a
set of code examples to implement neural networks with PyTorch.

EXERCISE

3-17: Use Prewitt or Sobel filters in the convolutional layers to construct
a classifier capable of distinguishing between images predominantly
featuring horizontal or vertical lines.

Project 3A: Classifying Malaria-Infected Blood Smears
Malaria is a blood disease transmitted by mosquitoes. It’s commonly diag-
nosed by visually examining blood smears. The use of neural networks to
automatically screen samples can help improve response time, decrease the
workload of experts, and ensure reproducible results. In this project, you’ll
train neural networks to identify malaria-infected blood cells.

110 Chapter 3

Deep Learning Crash Course (Sample Chapter) © 2025 by Giovanni Volpe, Benjamin Midtvedt, 
Jesús Pineda, Henrik Klein Moberg, Harshith Bachimanchi, Joana B. Pereira, and Carlo Manzo

https://github.com/DeepTrackAI/DeepLearningCrashCourse


Loading the Malaria Dataset
The malaria dataset was published by Sivaramakrishnan Rajaraman and co-
workers in 2018 in PeerJ (volume 6, article number e4568) and is publicly
available. The dataset consists of 27,558 cell images with equal instances of
uninfected and parasitized cells. You can download and extract the images
with Listing 3-9.

import os

from torchvision.datasets.utils import _extract_zip, download_url

dataset_path = os.path.join(".", "blood_smears_dataset")

if not os.path.exists(dataset_path):

url = "https://data.lhncbc.nlm.nih.gov/public/Malaria/cell_images.zip"

download_url(url, ".")

_extract_zip("cell_images.zip", dataset_path, None)

os.remove("cell_images.zip")

Listing 3-9: Downloading and extracting the malaria dataset

This code downloads the zipped images, unzips them in the blood_smears
_dataset folder, and finally removes the ZIP file.

Visualizing Blood Smears
You can use the ImageFolder class to load the images into a dataset, as shown
in Listing 3-10.

from torchvision.datasets import ImageFolder

¶ base_dir = os.path.join(dataset_path, "cell_images")

dataset = ImageFolder(base_dir)

Listing 3-10: Loading the images into a dataset

This code populates the dataset with images. The base directory ¶ com-
prises two distinct folders, Parasitized and Uninfected, enabling you to catego-
rize images under these specific labels. Consequently, the images are clas-
sified into two separate classes: parasitized cell images, assigned the value
0, and uninfected cell images, assigned the value 1, in alignment with their
alphabetical ordering.

You can now have a look at a few images to gauge the best strategy to
analyze the data. Write the plot_blood_smears() function shown in Listing 3-11.

import matplotlib.pyplot as plt

import numpy as np

def plot_blood_smears(dataset, parasitized):

"""Plot blood smears."""

fig, axs = plt.subplots(3, 6, figsize=(16, 8))

for ax in axs.ravel():

image, label = dataset[np.random.randint(0, len(dataset))]
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ax.imshow(image)

ax.set_title(f"Parasitized ({label})" if label == parasitized

else f"Uninfected ({label})", fontsize=16)

plt.tight_layout()

plt.show()

Listing 3-11: The function to plot blood smears

Then use this function to plot examples of the images:

plot_blood_smears(dataset, parasitized=0)

This generates an image similar to that shown in Figure 3-9. The parasitized

parameter indicates that the infected cells are labeled with 0s.
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Figure 3-9: Samples of uninfected and parasitized blood-smear images

Notice that the infected cells present some spots due to the presence
of the malaria plasmodium, which permits you to identify them. Also no-
tice that the number of pixels in the images (on the order of tens of thou-
sands of pixels) is quite large, so you’ll likely need to downsample them sig-
nificantly in order to be able to process them with a relatively small neural
network.

Furthermore, the dimensions of the images aren’t consistent; this is a
problem if you want to use dense layers as part of the neural network archi-
tecture (either in a dense neural network or as the dense top of a convolu-
tional architecture), because they require inputs of fixed length. Finally, in
the medical literature, typically 1s signify the presence of a condition and 0s
its absence, which is the opposite of the ground truth used in the dataset,
where malaria-infected cells are denoted as 0s and uninfected cells with 1s.
You’ll take care of all these issues in the next section.

Transforming Images and Their Ground Truth
To take care of the identified issues, you’ll need to transform the images and
their labels. This can be done when creating dataset.
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First, define a transformation to resize and normalize the images, as
shown in Listing 3-12.

from torchvision.transforms import Compose, Resize, ToTensor

image_trans = Compose([Resize((28, 28)), ToTensor()])

Listing 3-12: Transformation for the images

This transformation will resize the image to 28×28 pixels and convert
it to a PyTorch tensor (note that ToTensor() also normalizes the image values
from 0 to 1).

You then need to create a transformation for the labels, as shown in
Listing 3-13.

import torch

def label_trans(label):

"""Transform label."""

¶ return torch.tensor(1 - label).float().unsqueeze(-1)

Listing 3-13: Transformation for the labels

This defines a transformation to make the target label equal to 0 for the
uninfected cells and to 1 for the parasitized ones ¶. Next, the code converts
the label into a PyTorch tensor with tensor() and into a floating-point type
with float(), enhancing the label’s compatibility with PyTorch computa-
tional requirements. Finally, the code adds a new dimension to the tensor
by using unsqueeze(-1), preparing it for batch processing in neural network
models.

Next, update Listing 3-10 to make these transformations, as shown in
Listing 3-14.

--snip--

dataset = ImageFolder(base_dir, transform=image_trans,

target_transform=label_trans)

Listing 3-14: Loading the images into a dataset while transforming images and labels (by
modifying Listing 3-10)

This code assigns image_trans (Listing 3-12) to transform the input im-
ages and label_trans (Listing 3-13) to transform the labels.

Now you’re ready to plot the transformed images and relative labels.
You can’t use the plot_blood_smears() function directly just yet because the
images returned by dataset are PyTorch tensors and not NumPy arrays, but
to address this, you can update the function as shown in Listing 3-15.

def plot_blood_smears(dataset, parasitized):

"""Plot blood smears for NumPy arrays and PyTorch tensors."""

--snip--

for ax in axs.ravel():

image, label = dataset[randint(0, len(dataset))]
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if isinstance(image, torch.Tensor):

image, label = image.numpy().transpose(1, 2, 0), label.numpy()

ax.imshow(image)

--snip--

Listing 3-15: The function to plot blood smears as either NumPy arrays or PyTorch tensors
(by modifying Listing 3-11)

This revised function checks whether the image is a PyTorch tensor. If
so, the function transforms the tensor into a NumPy array and transposes
its dimensions so that the colors are the third dimension, as is normal for
RGB images, using the transpose(1, 2, 0)method. The updated function also
transforms the label from a PyTorch tensor to a NumPy array with the numpy()

method. You can now use this function to plot the transformed images:

plot_blood_smears(dataset, parasitized=1)

The result should be similar to Figure 3-10. The parasitized parameter now
indicates that the infected cells are those labeled with 1.
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Figure 3-10: Samples of uninfected and parasitized blood-smear images after transformation

Now all the images are the same size, and the parasitized cell images are
labeled as 1s and the uninfected cell images as 0s. Furthermore, you can see
that the labels are NumPy arrays.

Splitting the Dataset and Defining the Data Loaders
You can now split the dataset into training (80 percent) and test (20 percent)
sets with Listing 3-16.

train, test = torch.utils.data.random_split(dataset, [0.8, 0.2])

Listing 3-16: Splitting the dataset into training and test sets
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Finally, define the data loaders for both sets, using Listing 3-17.

train_loader = torch.utils.data.DataLoader(train, batch_size=32, shuffle=True)

test_loader = torch.utils.data.DataLoader(test, batch_size=256, shuffle=False)

Listing 3-17: Defining the data loaders

This code defines the two data loaders. The batch size for the training
data loader is set to 32, while a larger batch size of 256 is used for the test
set. Another difference between the data loaders stems from the fact that
it’s best to shuffle the training data to improve training performance, while
this isn’t necessary for the test data.

Classifying with Dense Neural Networks
You can now implement a dense neural network to detect the presence of
malaria infection, using Listing 3-18.

import deeplay as dl

dnn = dl.MultiLayerPerceptron(

in_features=28 * 28 * 3, hidden_features=[128, 128], out_features=1,

out_activation=torch.nn.Sigmoid,

)

Listing 3-18: Implementing the dense neural network

This code implements a dense neural network with one input for each
pixel and color channel of the input image, two layers with 128 neurons,
and a single sigmoidal output. You can use print(dnn) to check its detailed
architecture.

Next, compile this neural network, assigning it a loss and an optimizer,
as shown in Listing 3-19.

dnn_classifier = dl.BinaryClassifier(

model=dnn, optimizer=dl.RMSprop(lr=0.001),

).create()

Listing 3-19: Compiling the dense neural network

This code compiles the dense neural network as a binary classifier, using
RMSprop as an optimizer. You can use print(dnn_classifier) to print out the
compiled network. This printout also contains information about the loss
function and the tracked metrics.

The default loss of dl.BinaryClassifier is a binary cross-entropy loss, which
is particularly well suited for scenarios where the output can be interpreted
as a probability (that is, assuming values from 0 to 1 that sum up to 1). Its
mathematical formulation is LBCE = –

[
y log(p) + (1 – y) log(1 – p)

]
, where y
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is the true label (0 or 1), and p is the predicted probability of the class with
label 1. This loss function penalizes the predictions based on the divergence
between the predicted probability and the actual label.

Furthermore, dl.BinaryClassifier uses binary accuracy as its default met-
ric. This metric calculates the proportion of correct predictions by summing
the true positives (TP) and true negatives (TN) and dividing by the total
number of predictions. The formula is

Accuracy =
TP + TN

TP + TN + FP + FN

where FP indicates false positives, and FN indicates false negatives.

Training
Next, train the dense neural network:

dnn_trainer = dl.Trainer(max_epochs=5, accelerator="auto")

dnn_trainer.fit(dnn_classifier, train_loader)

This code creates a trainer for the dense neural network with five epochs.
This trainer uses error backpropagation to train the network via the fit()

method.

Testing
Now let’s test the trained dense neural network:

dnn_trainer.test(dnn_classifier, test_loader)

This code prints the final binary cross-entropy loss, which should be around
0.60, and the final binary accuracy, which should be around 0.68. This per-
formance is better than chance (which would result in a binary accuracy of
0.50), but not very impressive. You’ll greatly improve the performance in the
next sections by using convolutional architectures.

Plotting the ROC Curve
The ROC curve is a way to evaluate the performance of a binary classifier.
A binary classifier outputs a continuous value from 0 to 1, which is then
converted to a binary classification by setting a threshold (or cutoff ). This al-
lows you to tune the behavior of the classifier. For example, it may be more
acceptable on medical grounds to incorrectly classify an uninfected cell as
parasitized than the other way around—in this case, it would be desirable to
choose a lower threshold.

The ROC curve shows the relationship between the true-positive rate (TPR)
and the false-positive rate (FPR) as the threshold is changed. Also known as
sensitivity, or recall, the TPR is the proportion of positive samples that are
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correctly classified. The FPR, or fallout, is the proportion of negative samples
that are incorrectly classified. The ROC curve is constructed by plotting
TPR against FPR as the threshold is changed from 0 to 1. The AUROC, or
area under the ROC curve, is a measure of classifier quality, with 0.5 being
equivalent to a random classifier and 1 being a perfect classifier.

NO T E In case you’re curious, the receiver operating characteristic (ROC) was developed
during World War II for the analysis of radar signals. It was initially used to dis-
tinguish between signals (such as enemy aircraft) and noise (like birds or clouds) in
radar technology. The ROC curve was later adopted in various fields, particularly
in medicine and machine learning, to evaluate the performance of diagnostic tests
and classification models by plotting the TPR against the FPR at various threshold
settings.

You can compute and plot the ROC curve with the plot_roc() function
shown in Listing 3-20.

import torchmetrics as tm

def plot_roc(classifier, loader):

"""Plot ROC curve."""

¶ roc = tm.ROC(task="binary")

for image, label in loader:

· roc.update(classifier(image), label.long())

¸ fig, ax = roc.plot(score=True)

ax.grid(False)

ax.axis("square")

ax.set_xlim(0, 1)

ax.set_ylim(0, 1)

ax.legend(loc="center right")

plt.show()

Listing 3-20: The function to calculate and plot the ROC curve of a classifier

This function uses the ROC class from TorchMetrics ¶ to calculate and
plot the ROC curve. The labels are converted to the long format ·, and the
plot will include the AUROC value ¸.

You can then use this function to plot the ROC curve for the trained
dnn_classifier:

plot_roc(dnn_classifier, test_loader)

The result is shown in Figure 3-11.
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Figure 3-11: The ROC curve for the classifier, using the
dense neural network

You should get an AUROC of around 0.75, indicating a decent but not
exceptional ability to distinguish between the uninfected and parasitized
cells. For example, Figure 3-11 shows that you can correctly identify 90 per-
cent of parasitized cells, as long as you are willing to accept mislabeling about
60 percent of the uninfected ones as false positives—probably not as good as
you’d like for medical tests.

Classifying with Convolutional Neural Networks
You can improve the performance of the classifier by using a convolutional
neural network with a dense top, as implemented by Listing 3-21.

conv_base = dl.ConvolutionalNeuralNetwork(

in_channels=3, hidden_channels=[16, 16, 32], out_channels=32,

)

¶ conv_base.blocks[2].pool.configure(torch.nn.MaxPool2d, kernel_size=2)

connector = dl.Layer(torch.nn.AdaptiveAvgPool2d, output_size=1)

dense_top = dl.MultiLayerPerceptron(

in_features=32, hidden_features=[], out_features=1,

out_activation=torch.nn.Sigmoid,

)

cnn = dl.Sequential(conv_base, connector, dense_top)

Listing 3-21: Implementing a convolutional neural network with a dense top
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This code creates a convolutional base (conv_base) with four layers of 16,
16, 32, and 32 filters. A max pooling layer is added between the second and
third layers, with a kernel size of 2×2 (and implicitly a stride of 2 in both di-
rections) ¶. The connector layer is created by using an average pooling layer
that downsamples each one of the output filters to a single number. The
code creates a dense top (dense_top) with 32 neurons and a single sigmoidal
output. Finally, all these components are combined into a single convolu-
tional neural network with a dense top (cnn).

You can visualize the overall architecture via print(cnn). In this architec-
ture, the convolutional layers extract important features from the images,
which can then be processed more effectively by the dense top.

Next, compile this neural network with Listing 3-22.

cnn_classifier = dl.BinaryClassifier(

model=cnn, optimizer=dl.RMSprop(lr=0.001),

).create()

Listing 3-22: Compiling the convolutional neural network with a dense top

You are now ready to train your dense neural network.

Training
Train the convolutional neural network:

cnn_trainer = dl.Trainer(max_epochs=5, accelerator="auto")

cnn_trainer.fit(cnn_classifier, train_loader)

This code creates a trainer for the convolutional neural network, then calls
the fit() method of the trainer to train the network.

Testing
Let’s test the convolutional neural network:

cnn_trainer.test(cnn_classifier, test_loader)

This code prints the final binary cross-entropy loss, which should be around
0.12, and the final binary accuracy, which should be around 0.95. These re-
sults are much better than those with the dense neural network and, in abso-
lute terms, are pretty good values for a binary classifier.

Plotting the ROC Curve
Now compute and display the ROC curve of this improved classifier:

plot_roc(cnn_classifier, test_loader)

You should see a ROC curve similar to that shown in Figure 3-12.
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Figure 3-12: The ROC curve for the classifier, using the
convolutional neural network with a dense top

This curve has an AUROC of about 0.99, which means that this is an
excellent model capable of separating with high confidence the positive and
negative classes.

Checking the Values of the Filters
Now that you’ve successfully trained a convolutional neural network to iden-
tify the malaria-infected cells, you might be curious to check the values of
the filters that have been optimized in the training process. You can extract
a filter as follows:

filter = cnn_classifier.model[0].blocks[0].layer.weight[15]

This accesses the model’s first module, selects the initial block correspond-
ing to the first convolutional layer, and selects the 16th filter. Then you can
use print(filter) to print the filter values:

tensor([[[ 0.1500, -0.2196, 0.0505],

[-0.0819, 0.0980, 0.0494],

[ 0.0911, -0.0277, -0.1928]],

[[-0.2429, 0.0118, -0.1666],

[-0.0016, 0.2690, 0.1233],

[ 0.1608, 0.2330, -0.1441]],
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[[-0.1029, 0.0322, -0.0945],

[-0.0732, 0.1109, 0.1606],

[-0.0897, 0.0135, -0.2524]]], grad_fn=<SelectBackward0>)

This is a PyTorch tensor with dimensions 3 (number of color channels) by
3 (filter height) by 3 (filter width), just as you saw in Figure 3-3. Note that
this tensor isn’t detached from the computational graph, as indicated by
grad_fn=<SelectBackward0>.

Printing out the values of the filters alone may not provide much clar-
ity, as interpreting their specific functions can be challenging. Instead, it’s
more insightful to observe the activations associated with each filter when an
image is processed through the neural network, which you’ll do next.

Visualizing Activations of Convolutional Layers
Start by selecting an image from the dataset, using Listing 3-23.

from PIL import Image

im_ind = 0

image_filename = dataset.samples[im_ind][0]

image_hr = Image.open(image_filename)

image = image_trans(image_hr)

Listing 3-23: Loading an image from the dataset

This code retrieves the original image with index im_ind and applies the
same transformation used in preprocessing (corresponding to Listing 3-12).

You can then verify whether this is an image of parasitized cells with
print(label_trans(dataset.targets[im_ind])), which will print tensor([0.]) if
the cells in the image are uninfected, or tensor([1.]) if they are parasitized.

To gain insights into the inner workings of a neural network, you can
attach hooks to a specific layer of the network. Hooks are functions that can
be set to execute at certain points during the forward or backward pass of
the network. For example, you can use Listing 3-24 to access the activations
in the forward pass of the neural network.

def hook_func(layer, input, output):

"""Hook for activations."""

¶ activations = output.detach().clone()

· print(f"Activations size: {activations.size()}")

layer = cnn_classifier.model[0].blocks[0].layer

¸ layer.register_forward_hook(hook_func)

¹ pred = cnn_classifier.model(image.unsqueeze(0))

Listing 3-24: Adding a hook to access the activations in the forward pass
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This code defines the hook_func() function. Such a hook function takes
three parameters: the layer itself, the input to the layer, and the output from
the layer. The code then selects a layer to which it registers the hook ¸. When
the network processes data, the hook is triggered during the forward pass ¹.
This allows you to execute a custom function at that point, enabling you to
observe or manipulate the activations. In this case, the hook will first detach
from the current computation graph and clone the activations ¶ and then
print the activation size ·.

NO T E Beyond visualizing activations, hooks can help significantly in debugging and ana-
lyzing neural networks.

After utilizing the hook for its intended purpose, it’s good practice to
remove it from the network. This step is important because hooks, if left at-
tached, can continue to execute on every forward pass, potentially leading to
unintended side effects or performance issues. You can do this by modifying
Listing 3-24 as shown in Listing 3-25.

--snip--

handle_hook = layer.register_forward_hook(hook_func)

try:

pred = cnn_classifier.model(image.unsqueeze(0))

except Exception as e:

print(f"An error occurred during model prediction: {e}")

finally:

¶ handle_hook.remove()

Listing 3-25: Adding and removing a hook in the forward pass (by modifying Listing 3-24)

This code saves the handle_hook reference to the hook handle returned
when the code originally registers the hook. After the forward pass, the code
uses this handle to remove the hook ¶. Furthermore, the evaluation of the
neural network is enclosed inside a try-except construct to ensure that the
hook removal is always executed, even if some errors occur during evaluation.

Next, write the plot_activations() function to visualize the activations, as
shown in Listing 3-26.

def plot_activations(activations, cols=8):

"""Visualize activations."""

rows = -(activations.shape[0] // -cols)

fig, axs = plt.subplots(rows, cols, figsize=(2 * cols, 2 * rows))

for i, ax in enumerate(axs.ravel()):

ax.axis("off")

if i < activations.shape[0]:

ax.imshow(activations[i].numpy())

ax.set_title(i, fontsize=16)

plt.show()

Listing 3-26: The function to visualize the activations
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You can now use this function within the hook, updating Listing 3-25 as
shown in Listing 3-27.

def hook_func(layer, input, output):

"""Hook to plot activations."""

activations = output.detach().clone()

plot_activations(activations[0])

--snip--

Listing 3-27: Visualizing activations in the hook in the forward pass (by modifying
Listing 3-25)

When passing activations to the plot_activations() function, this code
uses [0] to select the first element of the activations tensor, representing the
activations for the first image in the batch processed by the neural network.

Finally, make the last modification to Listing 3-27 to plot the activations
of all convolutional layers, as shown in Listing 3-28.

--snip--

for block in cnn_classifier.model[0].blocks:

layer = block.layer

--snip--

Listing 3-28: Plotting the activations of all convolutional layers (by modifying Listing 3-27)

This final version of the code uses a for loop to plot the activations for
each convolutional layer.

Figure 3-13 shows the activations of the first layer.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Figure 3-13: Activations of the first convolutional layer

These activations capture basic features, such as edges and simple tex-
tures, as is typical for the activations of the first layer of a convolutional neu-
ral network.

Figure 3-14 shows the fourth, and final, convolutional layer’s activations.
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Figure 3-14: Activations of the fourth (last) convolutional layer

This last layer typically captures high-level content, representing full ob-
jects or specific parts that are relevant for making predictions. In fact, you
can clearly see that the activations highlight the presence of a malaria plas-
modium within the image, which then permits the dense top to classify the
imaged cells as parasitized. You can also see that all the activations appear
quite similar, suggesting that the convolutional network could likely be re-
duced in size—by decreasing the number of layers and features—without sac-
rificing performance.

By examining the progression from simple to complex feature detec-
tion across the layers, you gain valuable insights into how neural networks
build a hierarchy of features, starting from basic edges and textures to more-
complex patterns. By recognizing which types of features are extracted at
each layer, you can make more-informed decisions about network architec-
ture, such as the number of layers or their types, to better capture the rele-
vant features for your specific task. These insights also aid in diagnosing and
improving network performance, as you can pinpoint where the network
might be failing to capture essential features or where it’s focusing on irrele-
vant details.

Visualizing Heatmaps
Heatmaps give you a visual representation of which parts of the inputs are
firing up your convolutional neural network, particularly in the later lay-
ers. They’re like X-rays that show you what the model considers important
in an image. In this section, you’ll use an approach known as Grad-CAM,
which stands for gradient-weighted class activation mapping, to generate these
heatmaps.

First, you need to store the activations and the gradients corresponding
to the layer for which you want to see the heatmap. You can do this by using
hooks for both the forward and backward passes of the neural network, as
shown in Listing 3-29.
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hookdata = {}

def fwd_hook_func(layer, input, output):

"""Forward hook function."""

¶ hookdata["activations"] = output.detach().clone()

def bwd_hook_func(layer, grad_input, grad_output):

"""Backward hook function."""

· hookdata["gradients"] = grad_output[0].detach().clone()

layer = cnn_classifier.model[0].blocks[3].layer

handle_fwd_hook = layer.register_forward_hook(fwd_hook_func)

handle_bwd_hook = layer.register_full_backward_hook(bwd_hook_func)

try:

pred = cnn_classifier.model(image.unsqueeze(0))

¸ pred.sum().backward()

except Exception as e:

print(f"An error occurred during model prediction: {e}")

finally:

handle_fwd_hook.remove()

handle_bwd_hook.remove()

Listing 3-29: Implementing hooks for forward and backward passes

This code stores the activations and gradients from the last convolu-
tional layer of the neural network. You initialize the hookdata dictionary to
store the activations ¶ and gradients · captured by the hooks so that you’ll
also be able to use them outside the hook functions themselves.

The fwd_hook_func() function is called during the forward pass to store
the activations ¶. These activations are detached from the current compu-
tation graph and cloned to ensure that they are preserved as they are at the
time of the forward pass.

The bwd_hook_func() function is another hook function called during the
backward pass. This function captures the gradients flowing back through
the layer immediately after the loss is calculated and the backward pass is
initiated. The first gradient tensor grad_output[0] is detached and cloned to
the dictionary ·.

The two hooks are registered to the final convolutional layer, saving the
corresponding handle_fwd_hook and handle_bwd_hook handles. The prediction
obtained by the forward pass is used to call the backward() method ¸, initi-
ating the backward pass and triggering the backward hook. Here, the code
uses pred.sum().backward() instead of pred.backward() to combine all outputs
into a single scalar before computing gradients, which allows PyTorch to per-
form the backward pass without specifying a custom gradient vector. After
the forward and backward passes are complete, both the forward and back-
ward hooks are removed.
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Now you can combine activations and gradients to calculate the heatmap,
as shown in Listing 3-30.

from torch.nn.functional import relu

activations = hookdata["activations"][0]

gradients = hookdata["gradients"][0]

pooled_gradients = gradients.mean(dim=[1, 2], keepdim=True)

¶ heatmap = relu((pooled_gradients * activations).sum(0)).detach().numpy()

Listing 3-30: Calculating the heatmap

This code pools the gradients via the mean() function, which averages
them across the spatial dimensions (dim=[1, 2]). The use of keepdim=True re-
sults in a pooled gradient with the same number of channels as the original
output, but with a spatial dimension of 1×1.

The heatmap is then calculated by multiplying these pooled gradients
with the activations (pooled_gradients * activations) ¶. This operation is in-
tended to weigh the activations by how much each channel contributed to
the increase in the output. The sum(0) function aggregates these weighted
activations across all channels, resulting in a single 2D heatmap.

Finally, the relu() function is applied to the aggregated heatmap to zero
out any negative values, because you’re interested in only the features that
have a positive influence on the target class. Negative values would indicate
pixels that decrease the output for the target class, which isn’t useful for the
heatmap. The heatmap is then detached from the computation graph and
converted into a NumPy array for visualization purposes.

Visualize the heatmap with Listing 3-31.

from numpy import array

from skimage.exposure import rescale_intensity

from skimage.transform import resize

rescaled_image = rescale_intensity(array(image_hr), out_range=(0, 1))

resized_heatmap = resize(heatmap, rescaled_image.shape, order=2)

rescaled_heatmap = rescale_intensity(resized_heatmap, out_range=(0.25, 1))

plt.figure(figsize=(12, 5))

plt.subplot(1, 3, 1)

¶ plt.imshow(rescaled_image, interpolation="bilinear")

plt.title("Original image", fontsize=16)

plt.axis("off")

plt.subplot(1, 3, 2)

· plt.imshow(rescaled_heatmap.mean(axis=-1), interpolation="bilinear")

plt.title("Heatmap with Grad-CAM", fontsize=16)

plt.axis("off")
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plt.subplot(1, 3, 3)

¸ plt.imshow(rescaled_image * rescaled_heatmap)

plt.title("Overlay", fontsize=16)

plt.axis("off")

plt.show()

Listing 3-31: Plotting a heatmap

This code rescales the image’s intensity as well as the heatmap’s size and
intensity to match them. Then the code plots the image ¶, the heatmap ·,
and their overlay ¸. Figure 3-15 shows the resulting plots.

Original image Heatmap with Grad-CAM Overlay

Figure 3-15: Input image (left), heatmap obtained with Grad-CAM (center), and
overlay (right)

You can see how the neural network identifies the plasmodium present
in the parasitized cell and then uses this as key information to classify the
cell image. The original image on the left presents the cell as viewed un-
der a microscope, with the features of interest being relatively indistinct to
the unaided eye. The Grad-CAM image in the middle provides a heatmap
that highlights the specific regions the neural network is focusing on, with
warmer colors indicating areas of higher importance for the model’s predic-
tions. Here, the bright spot pinpoints the location of the plasmodium. The
overlay image on the right combines these two, superimposing the heatmap
onto the original image, thereby illustrating exactly where the plasmodium
is situated within the cell.

And there you have it: a window into your model’s mind. By analyzing
these heatmaps, you can get a sense of the features your model is focusing
on to make its decisions. This can be incredibly useful for debugging and
understanding your neural network’s behavior. For instance, if the heatmap
highlights an area devoid of relevant features, like the corner of an image
where only background is present rather than a plasmodium, this could indi-
cate that the model is learning to focus on noise or artifacts rather than the
meaningful patterns necessary for accurate predictions. Such a discrepancy
would suggest that further data preprocessing is needed to remove noise,
or that the model’s architecture or training process requires adjustments to
ensure that it learns to prioritize biologically relevant signals.

Processing Images with Convolutional Neural Networks 127

Deep Learning Crash Course (Sample Chapter) © 2025 by Giovanni Volpe, Benjamin Midtvedt, 
Jesús Pineda, Henrik Klein Moberg, Harshith Bachimanchi, Joana B. Pereira, and Carlo Manzo



NO T E Code Example 3-A, “Classifying Blood Smears with a Convolutional Neural Net-
work,” is available at https://github.com/DeepTrackAI/DeepLearning
CrashCourse. Navigate to the Ch03_CNN folder and then ec03_A_blood
_smears. The blood_smears.ipynb notebook provides the complete code exam-
ple that loads the malaria dataset, trains a convolutional neural network with a
dense top to classify the images of cells with and without malaria, analyzes where
the trained network fails, and shows the network activations and heatmaps.

Project 3B: Localizing Microscopic Particles
Determining the position of particles within an image is a fundamental task
for microscopy. In this project, you’ll build a neural network to determine
the position of an optically trapped microparticle in a video.

Loading the Videos
Start by downloading the particle videos, using Listing 3-32.

import os

if not os.path.exists("particle_dataset"):

os.system("git clone https://github.com/DeepTrackAI/particle_dataset")

Listing 3-32: Downloading the videos of an optically trapped particle

This code downloads the particle dataset into particle_dataset. This folder
contains two videos with an optically trapped particle. One video is acquired
with very low noise (low_noise.avi), and the other with very high noise (high
_noise.avi). In both cases, an optically trapped microscopic particle jiggles
around the center of the frame because of Brownianmotion. This dataset was
published in 2019 by Saga Helgadottir and co-workers in Optica (volume 6,
pages 506–513).

Next, implement the load_video() function in Listing 3-33.

import cv2

import numpy as np

def load_video(path, frames_to_load, image_size):

"""Load video."""

video = cv2.VideoCapture(path)

data = []

for _ in range(frames_to_load):

_, frame = video.read()

frame = cv2.normalize(frame, None, 0, 255, cv2.NORM_MINMAX)

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) / 255

frame = cv2.resize(frame, (image_size, image_size))
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data.append(frame)

return np.array(data)

Listing 3-33: The function to load a video

This function takes as input the path to the video file, loads the video,
and returns a NumPy array containing the extracted frames. After loading
the video, the function returns frames_to_load frames. The code extracts
each frame, normalizes its pixel values to the range 0 to 255, converts it to
grayscale and normalizes the pixel values in the range 0 to 1, resizes it to
image_size by image_size pixels, and stores the frame in the data list. Finally,
the function returns the list of frames as a NumPy array.

Now use this function to load the first 100 frames for each video with
Listing 3-34.

image_size = 51

video_low_noise = \

load_video(os.path.join("particle_dataset", "low_noise.avi"),

frames_to_load=100, image_size=image_size)

video_high_noise = \

load_video(os.path.join("particle_dataset", "high_noise.avi"),

frames_to_load=100, image_size=image_size)

Listing 3-34: Loading the first 100 frames of each video

Let’s have a look at some of the frames, using Listing 3-35.

import matplotlib.pyplot as plt

fig, axs = plt.subplots(2, 6, figsize=(24, 8))

for i in range(6):

axs[0, i].imshow(video_low_noise[i], cmap="gray", vmin=0, vmax=1)

axs[0, i].text(0, 5, f"Frame {i}", color="white", fontsize=24)

axs[0, i].axis("off")

axs[1, i].imshow(video_high_noise[i], cmap="gray", vmin=0, vmax=1)

axs[1, i].text(0, 5, f"Frame {i}", color="white", fontsize=24)

axs[1, i].axis("off")

plt.subplots_adjust(wspace=0.1, hspace=0.1)

plt.show()

Listing 3-35: Plotting the first six frames of each video

This code plots the first six frames of each video, as shown in Figure 3-16.
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Figure 3-16: The first six frames of the low-noise (top) and high-noise (bottom) videos

In the top row, the frames are captured with high-quality illumination,
so it’s easy to identify the particle and locate its center. The particle is always
close to the center of the frame because of the optical trap, but not exactly
in the same position because it’s continually shaken by the Brownian mo-
tion. In the bottom row, the same particle is captured with poor illumina-
tion. Now, it isn’t so easy anymore to accurately locate the particle position,
as you’ll experience when trying to manually annotate this data in the next
section.

Manually Annotating the Videos
To train a neural network, you need to know the ground truth. In this case,
for each video frame, you need the corresponding particle position. A com-
mon way to get particle positions that can be used as a ground truth is to
manually annotate some of the data and then use it for training and testing.

You can use the ManualAnnotation class shown in Listing 3-36 to do this.

from matplotlib.widgets import Cursor

class ManualAnnotation:

"""Graphical interface for manual annotation."""

def __init__(self, images):

"""Initialize manual annotation."""

self.images, self.positions, self.i = images, [], 0

self.fig, self.ax = plt.subplots(1, 1, figsize=(5, 5))

self.fig.canvas.header_visible = False

self.fig.canvas.footer_visible = False

def start(self):

"""Start manual annotation."""

self.im = self.ax.imshow(self.images[self.i], cmap="gray",

vmin=0, vmax=1)

self.text = self.ax.text(3, 5,

f"Frame {self.i + 1} of {len(self.images)}",

color="white", fontsize=12)

self.ax.axis("off")
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self.cursor = Cursor(self.ax, useblit=True, color="red", linewidth=1)

self.cid = self.fig.canvas.mpl_connect("button_press_event",

self.onclick)

self.next_image()

plt.show()

def next_image(self):

"""Get next image."""

self.im.set_data(self.images[self.i])

self.text.set_text(f"Frame {self.i + 1} of {len(self.images)}")

self.fig.canvas.draw_idle()

def onclick(self, event):

"""Save position on click."""

self.positions.append([event.xdata, event.ydata])

if self.i < len(self.images) - 1:

self.i += 1

self.next_image()

else:

self.fig.canvas.mpl_disconnect(self.cid)

plt.close()

return

Listing 3-36: The class to manually annotate the video frames with the particle position

This class creates an object that uses the Matplotlib library to create a
simple graphical user interface (GUI) that allows you to record the position
of the particle center by clicking it. The __init__() method initializes the
GUI, setting up the figure and axes and preparing the image sequence for
display. The start() method is where the actual GUI is displayed; it shows the
first image and sets up the cursor for annotation. The next_image() method
updates the display with the next frame in the sequence. The onclick()

method captures the user’s clicks, recording the position of the particle in
each frame. This method also handles the progression to the next frame and
concludes the annotation process when all frames have been processed.

You can use this class to annotate a subset of images, combining both
low-noise and high-noise ones, as shown in Listing 3-37.

¶ %matplotlib ipympl

number_of_images_to_annotate = 100

dataset = np.concatenate([video_low_noise, video_high_noise], axis=0)

np.random.shuffle(dataset)

images_to_annotate = np.random.choice(

np.arange(dataset.shape[0]), number_of_images_to_annotate, replace=False,

)

manual_annotation = ManualAnnotation(dataset[images_to_annotate])
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manual_annotation.start()

annotated_images = manual_annotation.images

manual_positions = manual_annotation.positions

· %matplotlib inline

Listing 3-37: Manually annotating some video frames with the particle positions

This demonstrates the process of using the ManualAnnotation class for an-
notating a series of images with particle positions. Initially, the script sets up
an interactive Matplotlib environment suitable for notebooks ¶. The script
prepares a dataset for annotation by combining low-noise and high-noise
video datasets and shuffling them to ensure variability. Then the script ran-
domly selects a subset of number_of_images_to_annotate images from this com-
bined dataset for annotation.

Subsequently, the script instantiates the ManualAnnotation object with the
selected images and starts the annotation process. This opens a GUI for the
user to manually annotate the particle positions in each image, shown in
Figure 3-17.

Figure 3-17: The GUI for manually annotating the
video frames with the particle positions

After completing the annotation, the script retrieves the annotated im-
ages (annotated_images) and the corresponding manually recorded positions
(manual_positions). Finally, the script switches back to the normal Matplotlib
backend ·, concluding the interactive session and returning to the standard
plotting environment.

Save the annotated images and relative positions into files, using
Listing 3-38.
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if not os.path.exists("annotated_images.npy"):

np.save("annotated_images.npy", np.array(annotated_images))

if not os.path.exists("manual_positions.npy"):

np.save("manual_positions.npy", np.array(manual_positions))

Listing 3-38: Saving the annotated images and relative positions

This script saves the data as NumPy arrays into the annotated_images.npy
and manual_positions.npy files, but only if these files don’t already exist.

Now you need to define the data loaders to use the data in the training.
To do this, you first need to define a custom dataset, as shown in Listing 3-39.

import torch

class AnnotatedDataset(torch.utils.data.Dataset):

"""Manually annotated dataset."""

def __init__(self, file_images, file_positions):

"""Load annotated images and manual positions."""

self.images = np.load(file_images)

self.positions = np.load(file_positions)

def __len__(self):

"""Return number of images."""

return self.images.shape[0]

def __getitem__(self, idx):

"""Get next image and annotated position."""

¶ im = torch.tensor(self.images[idx, np.newaxis, :, :]).float()

· pos = torch.tensor(self.positions[idx] / im.shape[-1] - 0.5).float()

return [im, pos]

Listing 3-39: Implementing a custom dataset for the manually annotated particle data

This class inherits from the PyTorch Dataset class. It contains the parti-
cles’ images and positions loaded from the files saved during the annotation
process. When a new item is requested, the __getitem__() method of this class
converts the image into a PyTorch tensor with an added new axis for the
batch dimension and data type set to float for computational efficiency ¶.
The __getitem__() method then normalizes the position by dividing it by the
image width (im.shape[-1]), offsets the position by 0.5 to refer it to the center
of the image (and not to its lower-left corner), and converts the position into
a float PyTorch tensor ·. Finally, the class combines the processed image
tensor and the position tensor into a list to be returned.
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Now that you’ve defined a custom dataset, create an instance of it

ann_dataset = AnnotatedDataset(file_images="annotated_images.npy",

file_positions="manual_positions.npy")

and use it to create the data loaders:

import deeplay as dl

train_ann_dataset, test_ann_dataset = \

torch.utils.data.random_split(ann_dataset, [0.8, 0.2])

train_ann_dataloader = dl.DataLoader(train_ann_dataset, batch_size=1)

test_ann_dataloader = dl.DataLoader(test_ann_dataset, batch_size=1)

This code splits the annotated data into training and test sets so that 80 per-
cent of the data is in the training set. Then the code creates a training data
loader and a testing data loader.

Implementing a Convolutional Neural Network
Now you’re ready to implement the neural network for classification with
Listing 3-40.

cnn = dl.Sequential(

dl.ConvolutionalNeuralNetwork(

in_channels=1, hidden_channels=[16, 32], out_channels=64,

pool=torch.nn.MaxPool2d(kernel_size=2), out_activation=torch.nn.ReLU,

),

dl.Layer(torch.nn.MaxPool2d, kernel_size=2),

dl.Layer(torch.nn.Flatten),

dl.MultiLayerPerceptron(

in_features=6 * 6 * 64, hidden_features=[32, 32], out_features=2,

out_activation=torch.nn.Identity,

),

)

Listing 3-40: Implementing the convolutional neural network with a dense top

This code implements a convolutional neural network with a dense
top that accepts as input an image of the particle and returns as output
its predicted x- and y-coordinates. Before proceeding further, print out
this neural network with print(cnn) and explore its details; it’s indeed good
practice to verify in the printout that the various layers and their properties
match the way you set them up.
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Next, compile the neural network with Listing 3-41.

from torchmetrics import MeanAbsoluteError as MAE

¶ cnn_regressor_template = dl.Regressor(

model=cnn, loss=torch.nn.MSELoss(), optimizer=dl.Adam(), metrics=[MAE()],

)

· cnn_ann_regressor = cnn_regressor_template.create()

Listing 3-41: Compiling the neural network

This code creates a template to use the neural network as a regressor ¶,
setting up its loss function (torch.nn.MSELoss()), its optimizer (dl.Adam()),
and a metric to be tracked (MAE()). Then the code creates a concrete in-
stance of this template ·. You can check the structure of this regressor with
print(cnn_ann_regressor) and verify that its architecture and properties are as
set up.

Training with Annotated Data
To train the neural network with the manually annotated data, use

cnn_ann_trainer = dl.Trainer(max_epochs=50, accelerator="auto")

cnn_ann_trainer.fit(cnn_ann_regressor, train_ann_dataloader)

which trains the neural network for 50 epochs with the manually anno-
tated data.

Testing the Trained Neural Network
Next, evaluate the trained neural network performance:

test_ann_results = cnn_ann_trainer.test(cnn_ann_regressor, test_ann_dataloader)

MAE_ann = test_ann_results[0]["testMeanAbsoluteError_epoch"] * image_size

print(f"Mean pixel error (MAE): {MAE_ann:.3f} pixels")

This code tests the neural network against the test annotated data, then re-
trieves the MAE from the tracked metrics. This error is transformed from
normalized units into pixels by multiplying it by image_size, and the result is
printed. Depending on the consistency of your annotations, you might ob-
serve mean pixel errors varying from 0.2 to 2 pixels, indicating a substantial
margin of error.
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NO T E The observed error in this context relates to the precision of your manual annota-
tions. Precision here refers to the consistency or repeatability of your annotations.
Higher error values indicate lower precision, suggesting that repeating annotations
on the same image may yield significantly different positions. This concept of pre-
cision is distinct from the accuracy of the manual annotation process. Accuracy
concerns how closely your annotations align with the actual ground-truth values.
However, without access to these ground-truth values, it isn’t possible to directly as-
sess the accuracy of your manual annotations. Therefore, while you can gauge the
precision of your work, assessing its accuracy remains a challenge in the absence of a
known standard or reference.

Repeating the annotation process with your family and friends could be
a fascinating experiment to explore the variability and reliability of manual
annotations. By involving multiple annotators, you can assess how different
individuals perceive and mark the same set of images. This approach offers
several benefits and insights, such as understanding the range of precision
among different people, identifying potential biases in annotation, and de-
termining whether certain images are consistently difficult to annotate.

Visualizing the Predictions
Finally, you can visualize the predictions of the trained network and com-
pare them with your manual annotations, using Listing 3-42.

¶ indices = np.random.choice(np.arange(len(test_ann_dataset)), 6, replace=False)

· images = [test_ann_dataset[index][0] for index in indices]

¸ annotations = [test_ann_dataset[index][1] for index in indices]

¹ predictions = cnn_ann_regressor(torch.stack(images))

fig, axs = plt.subplots(1, 6, figsize=(25, 8))

for ax, im, ann, pred in zip(axs, images, annotations, predictions):

ax.imshow(im.numpy().squeeze(), cmap="gray")

ann = ann * image_size + image_size / 2

ax.scatter(ann[0], ann[1], marker="+", c="g", s=500, linewidth=6,

label="Annotation")

pred = pred.detach().numpy() * image_size + image_size / 2

ax.scatter(pred[0], pred[1], marker="x", c="r", s=500, linewidth=4,

label="Prediction")

ax.set_axis_off()

ax.legend(loc=(0.5, 0.8), framealpha=1, fontsize=24)

plt.show()

Listing 3-42: Comparing the predictions with the manual annotations

This code chooses some random frame indices ¶. Then it extracts the
relative images · and annotations ¸, and predicts the positions by using
the neural network trained with the manual annotations ¹. The code then
generates images that should look similar to those in Figure 3-18.
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Annotation
Prediction

Figure 3-18: Particle images with annotated and predicted positions

The network has, in fact, learned to predict particle positions that are
close to the manual annotations used for its training, as you can verify by
observing that the annotation and prediction markers match.

Simulating the Training Data
You can enhance your neural network’s performance by using simulated data
rather than relying on manually annotated data. Manual annotations can
be inconsistent because of differences in the way different people interpret
data (interobserver variability) and because the same person may interpret data
differently over time (intraobserver variability). Additionally, manually labeling
data is often slow, effort intensive, and difficult to scale.

In contrast, using simulated datasets for training removes the inconsis-
tencies associated with human annotations and enables the generation of
substantially larger datasets. Such large datasets are vital for effectively train-
ing deep learning models.

To create simulated datasets that closely mimic experimental conditions,
you need to carefully design them to incorporate a range of variable prop-
erties and realistic noise. This process requires simulating the various sce-
narios, conditions, and outliers that the neural network might encounter in
real-world applications. You need to integrate factors such as differing light-
ing conditions and sensor noise to ensure that the dataset is comprehensive
and challenging enough, replicating the complexity and unpredictability of
real-world data as closely as possible.

Creating Particle Images
You’ll use the DeepTrack2 library to generate simulated particle images,
which will then be used to train your model. As you’ll see, this method
streamlines the training process while also potentially increasing the robust-
ness and accuracy of the neural network.

Define the particle via the MieSphere class, as shown in Listing 3-43.

import deeptrack as dt

particle = dt.scatterers.MieSphere(

position=(25, 25), z=0, radius=500e-9, refractive_index=1.37,

position_unit="pixel",

)

Listing 3-43: Defining a microscopic particle with its physical parameters
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This code defines the position of the particle in the image along the x-
and y-axes, its z-coordinate, its radius in meters, its refractive index, and the
units of the positions.

Next, you need to specify the optical device to image the particle. You’ll
use a bright-field microscope, implemented by the Brightfield class, as shown
in Listing 3-44.

brightfield_microscope = dt.optics.Brightfield(

wavelength=630e-9, NA=0.8, resolution=1e-6, magnification=15,

refractive_index_medium=1.33, output_region=(0, 0, image_size, image_size),

)

Listing 3-44: Defining the optical device

This code defines the wavelength of the illuminating light in meters, the
numerical aperture of the objective, the effective camera pixel size in meters,
the magnification of the optical device, the refractive index of the medium
where the particle is immersed, and the size of the camera sensor in pixels.
These optical device parameters are defined such that they (loosely) match
the experimental conditions in which the videos were acquired.

To create images of the particles, you need to combine brightfield

_microscope with particle:

imaged_particle = brightfield_microscope(particle)

This code passes the particle to the bright-field microscope, creating the
new imaged_particle pipeline that you’ll use to create images of the particle.
A pipeline is a series of steps or processes that allows for the systematic trans-
formation, analysis, and interpretation of data.

Plot the simulated particle image with the plot_simulated_particles()

function in Listing 3-45.

def plot_simulated_particles(image_pipeline):

"""Plot simulated particles."""

fig, axs = plt.subplots(1, 6, figsize=(25, 8))

for i, ax in enumerate(axs.flatten()):

image = image_pipeline.update().resolve()

ax.imshow(np.squeeze(image), cmap="gray")

ax.set_xticks([])

ax.set_yticks([])

plt.show()

Listing 3-45: The function to plot the images of simulated particles

This function calls the update() method on the image_pipeline to get a
new instance of the particle, and the resolve() method to resolve the simu-
lation pipeline and to return the image of the particle. Then the function
squeezes the resulting image to plot it.

You can plot multiple particle images obtained with this pipeline, using
Listing 3-46.
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plot_simulated_particles(imaged_particle)

Listing 3-46: Rendering images of the particle

Figure 3-19 shows the resulting examples of simulated particles.

Figure 3-19: The simulated particle images

At the moment, the simulation pipeline is completely deterministic so
that the particle will always have the same properties and be at the same
position. This is why the six images are exactly the same. In the following
section, you’ll see how to make images of particles with a range of random
properties.

Varying Particle Properties
To simulate images representative of the experimental dataset, you need to
vary the particle’s position, radius, and refractive index. You can do this by
defining the particle’s properties as functions that return a random value
within a given range, updating Listing 3-43 as shown in Listing 3-47.

particle = dt.scatterers.MieSphere(

position=lambda: np.random.uniform(image_size / 2 - 5,

image_size / 2 + 5, 2),

z=lambda: np.random.uniform(-1, -1),

radius=lambda: np.random.uniform(500, 600) * 1e-9,

refractive_index=lambda: np.random.uniform(1.37, 1.42),

position_unit="pixel",

)

imaged_particle = brightfield_microscope(particle)

Listing 3-47: Simulating a particle with variable properties (by modifying Listing 3-43)

This code defines the particle’s properties as lambda functions that re-
turn a random value within a given range. Lambda functions are small anony-
mous functions in programming that have a simple expression. The ranges
are chosen to match the experimental conditions.

The position of the particle is a lambda function that returns two random
values defined in the range from image_size / 2 - 5 to image_size / 2 + 5, its
z-coordinate is a lambda function that returns a random value drawn from a
uniform distribution defined in the range from –1 to 1, its radius is a lambda
function that returns a random value in the range from 500 nm to 600 nm,
and its refractive index is a lambda function that returns a random value
defined in the range (1.37, 1.42). The code then resets imaged_particle to use
the new particle.
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When you plot examples of the resulting particle images with Listing 3-46,
you should get particle images like those shown in Figure 3-20.

Figure 3-20: The simulated particle images with random parameters

These particle images are different each time imaged_particle is updated.

Generating Noisy Images
Although now the simulated images reproduce the variability encountered
in experiments, they are still lacking the noise always present in experimen-
tal images. You can generate noisy images by adding a Poisson noise source
to the simulation pipeline, as shown in Listing 3-48.

noise = dt.Poisson(

min_snr=5, max_snr=20, background=1,

¶ snr=lambda min_snr, max_snr: np.random.uniform(min_snr, max_snr),

)

noisy_imaged_particle = imaged_particle >> noise

plot_simulated_particles(noisy_imaged_particle)

Listing 3-48: Adding noise to the simulation pipeline

This code adds noise to the simulated images of the particles, defining
the minimum signal-to-noise ratio (SNR) as 5 and the maximum SNR as 20.
Then a lambda function is defined to determine the SNR as a random value
between the minimum and maximum SNR ¶, which is also a good example
of a lambda function with two inputs. The code also defines the background
intensity as 1, which is used to calculate the signal of the image. Finally, the
code adds the noise source to the simulation pipeline by using the >> opera-
tor and plots some examples of the resulting images, shown in Figure 3-21.

Figure 3-21: The simulated particle images with noise

Finally, to ensure that the neural network inputs are consistently scaled,
facilitating more-stable and efficient learning, you should normalize the im-
ages to the range of 0 to 1 with Listing 3-49.
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normalization = dt.NormalizeMinMax(lambda: np.random.uniform(0.0, 0.2),

lambda: np.random.uniform(0.8, 1.0))

image_pipeline = noisy_imaged_particle >> normalization

Listing 3-49: Normalizing the simulated images

This code defines the normalization function, setting the minimum and
maximum values of the normalization to random values in the range (0, 0.2)
and (0.8, 1), respectively. Then the normalization function is added to the
simulation pipeline via the >> operator.

Getting Particle Positions
Now you need to extract the particle’s position from the simulated image to
use as the ground truth when training the neural network:

pipeline = image_pipeline & particle.position

This code uses the & operator to create a pipeline to get both the simulated
image and the particle position, which you can get as follows:

image, position = pipeline.update().resolve()

Then update the plot_simulated_particles() function to also plot the posi-
tions of the particles, as shown in Listing 3-50.

def plot_simulated_particles_with_positions(pipeline):

"""Plot simulated particles with positions."""

--snip--

for i, ax in enumerate(axes.flatten()):

image, position = pipeline.update().resolve()

ax.imshow(np.squeeze(image), cmap="gray")

ax.scatter(position[1], position[0], s=500, facecolors="none",

edgecolor="g", linewidth=6)

--snip--

Listing 3-50: The function to plot the images of simulated particles with their position (by
modifying Listing 3-45)

Use this function to plot the simulated particles with their ground-truth
positions:

plot_simulated_particles_with_positions(pipeline)

The resulting images should look like those in Figure 3-22.

Figure 3-22: The simulated particles with ground-truth positions
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As expected, the ground-truth positions (plotted as circles) are perfectly
at the center of the simulated images of particles, providing the data you
need to train the neural network.

Preprocessing the Simulated Data
Modify the AnnotatedDataset class to work with the simulation pipeline instead
of the annotated data, creating the SimulatedDataset class in Listing 3-51.

class SimulatedDataset(torch.utils.data.Dataset):

"""Dataset with simulated particles."""

def __init__(self, pipeline, data_size):

"""Initialize simulated dataset."""

images, positions = [], []

for _ in range(data_size):

¶ image, position = pipeline.update().resolve()

· images.append(image), positions.append(position[[1, 0]])

self.images, self.positions = np.array(images), np.array(positions)

--snip--

def __getitem__(self, idx):

"""Get next image and annotated position."""

¸ im = torch.tensor(self.images[idx]).float().permute(2, 0, 1)

¹ pos = torch.tensor(self.positions[idx] / im.shape[-1] - 0.5).float()

return [im, pos]

Listing 3-51: Implementing a custom dataset for the simulated data (by modifying
Listing 3-39)

In its initialization, this updated class creates the required number of sim-
ulations ¶, from which it saves as class attributes the images themselves and
the relative ground-truth positions ·. When getting an item, the __getitem__()

method returns the image ¸ and the relative position ¹ already prepared as
float PyTorch tensors.

Use this class to create the training and test data loaders, as shown in
Listing 3-52.

train_sim_dataloader = dl.DataLoader(

SimulatedDataset(pipeline=pipeline, data_size=10_000), batch_size=32,

)

test_sim_dataloader = dl.DataLoader(

SimulatedDataset(pipeline=pipeline, data_size=100), batch_size=32,

)

Listing 3-52: Creating the data loaders for the simulated data

This code creates a training data loader with a dataset of 10,000 images,
many more than what you could manually annotate in a reasonable amount
of time. For the test dataset, you can still use just 100 images.
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Training with Simulated Data
Now you’re all set to train the neural network with simulated data:

cnn_sim_regressor = cnn_regressor_template.create()

cnn_sim_trainer = dl.Trainer(max_epochs=50, accelerator="auto")

cnn_sim_trainer.fit(cnn_sim_regressor, train_sim_dataloader)

This code creates a new instance of cnn_regressor_template and a new trainer,
and proceeds to train this second neural network with the simulated dataset.

Testing the Trained Neural Network
Test the trained neural network:

test_sim_results = cnn_sim_trainer.test(cnn_sim_regressor, test_sim_dataloader)

MAE_sim = test_sim_results[0]["testMeanAbsoluteError_epoch"] * image_size

print(f"Mean pixel error (MAE): {MAE_sim:.3f} pixels")

This code computes and prints the MAE of the neural network trained with
simulated data, expected to be below 0.1 pixels. This represents a signifi-
cant improvement in the neural network’s precision compared to the model
trained on manually annotated data. The improvement primarily stems
from the systematic nature of the simulated data, which eliminates human-
induced inconsistencies, as well as from the larger size of the dataset, which
is crucial for deep learning models.

As an interesting exercise, you could analyze the impact of varying the
size of the training dataset on the model’s performance, gaining insights
into the scalability and adaptability of the neural network to different data
volumes.

Plotting the Predictions vs. the Ground Truth
To further evaluate the network’s performance, you can plot the predicted
particle positions versus the true particle positions, using Listing 3-53.

preds, gts = [], []

for image, position in iter(test_sim_dataloader):

¶ preds.append(cnn_sim_regressor(image))

· gts.append(position)

preds = torch.cat(preds, dim=0).detach().numpy()

gts = torch.cat(gts, dim=0).numpy()

fig, axs = plt.subplots(1, 2)

for i, ax, coordinate in zip([0, 1], axs, ["x", "y"]):

gt, pred = gts[:][:, i], preds[:][:, i]

ax.scatter(gt, pred, alpha=0.2)

ax.plot([np.min(gt), np.max(gt)], [np.min(pred), np.max(pred)], c="k")

ax.set_title(f"{coordinate}-coordinates")

ax.set_xlabel("Prediction")

ax.set_ylabel("Ground truth")

ax.set_aspect("equal")
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ax.set_xlim([-0.07, 0.07])

ax.set_ylim([-0.07, 0.07])

ax.label_outer()

plt.show()

Listing 3-53: Plotting the predictions versus the ground truth

In the for loop, this code iterates over each item in the test data loader.
For each item, the neural network predicts the particle position and appends
it to the preds list ¶. Correspondingly, the actual ground-truth position from
the data item is appended to the gts list ·. After completing the loop, the
lists of predictions and ground truths are concatenated into tensors, and
then converted into NumPy arrays for ease of handling and visualization.
Finally, they are plotted in the predictions-versus-ground-truth plots shown in
Figure 3-23.
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Figure 3-23: Ground-truth versus predicted positions

The predicted particle positions are in good agreement with the true
particle positions, demonstrating the high quality of the training.

Comparing with the Annotated Data
Let’s compare the positions obtained by the neural network trained on sim-
ulated data with your manual annotations:

test_ann_results_with_cnn_sim = \

cnn_sim_trainer.test(cnn_sim_regressor, test_ann_dataloader)

MAE_ann_with_cnn_sim = (test_ann_results_with_cnn_sim[0]

["testMeanAbsoluteError_epoch"] * image_size)

print(f"Mean pixel error (MAE): {MAE_ann_with_cnn_sim:.3f} pixels")

In this case, the MAE obtained from this test will strongly depend on your
manual annotations.

As a last check, you can plot both the manual annotations and the net-
work predictions on top of the experimental images, using Listing 3-54,
which is a modification of Listing 3-42.
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--snip--

predictions = cnn_sim_regressor(torch.stack(images))

--snip--

Listing 3-54: Plotting the predictions of the simulated data–trained neural network in
comparison with the manual annotations (by modifying Listing 3-42)

Figure 3-24 shows the resulting images.

Annotation
Prediction

Figure 3-24: The manual annotations and predictions of the neural network trained on
simulated data

The neural network predictions and the manual annotations are quite
close—at least in this example, as this will strongly depend on the quality of
your manual annotations.

NO T E Code Example 3-B, “Localizing Microscopic Particles,” is available at https://
github.com/DeepTrackAI/DeepLearningCrashCourse. Navigate to the
Ch03_CNN folder and then ec03_B_particle_localization. The particle
_localization.ipynb notebook provides a complete code example that trains a convo-
lutional neural network with a dense top, using annotated and simulated data, and
then applies the trained neural network to experimental videos of an optically trapped
particle.

Project 3C: Creating DeepDreams
In this project, you’ll explore DeepDreams—a concept conceived by Google
engineer Alexander Mordvintsev. The fundamental question at the heart of
DeepDreams is: How can an image be transformed to maximally activate a
specific layer in a trained convolutional neural network?

This approach essentially flips the neural network training process on its
head. Instead of tuning the weights of the network layers for optimal perfor-
mance, you’ll use backpropagation and gradient ascent to morph the input
image into a form that highly activates a target layer. This method gives you
a unique look into what a particular layer in a neural network is most respon-
sive to, or “sees.”

The DeepDreams algorithm has been aptly named for its ability to pro-
duce dreamlike, almost hallucinogenic imagery through a process of deliber-
ate overprocessing. Interestingly, this process was named Inceptionism, which
is a reference to InceptionNet, the first convolutional neural network used
to generate DeepDreams, and the movie Inception.

For this project, you’ll implement the DeepDreams algorithm and apply
it to transform an image. Prior to starting this project, it’s essential that you
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are already acquainted with the concepts introduced in Project 3A, particu-
larly those relating to hooks and layer activations.

Loading an Image
You’ll start by loading the image in the neuraltissue_with_colorlabels.png file.
This image, sourced from the Drosophila ssTEM dataset at https://figshare
.com/articles/dataset/Segmented_anisotropic_ssTEM_dataset_of_neural_tissue/
856713, features a cross-section of neural tissue from the ventral nerve cord
of a fruit fly larva (scientifically known as Drosophila melanogaster). Load the
image with Listing 3-55.

from PIL import Image

image_file = "neuraltissue_with_colorlabels.png"

im = Image.open(image_file).convert("RGB").resize((256, 256))

Listing 3-55: Loading the image

This code uses Pillow, the common Python package for image process-
ing, to load the image, convert it to RGB, and resize it from the original
1024×1024 pixels to 256×256 pixels for computational convenience.

Once the image is loaded, plot it by using Listing 3-56.

import matplotlib.pyplot as plt

plt.imshow(im)

plt.axis("off")

plt.show()

Listing 3-56: Plotting the image

Figure 3-25 shows the resulting image.

Figure 3-25: A transmission electron microscopy
image of the neural tissue of a fruit fly larva
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In the image, various neural structures are labeled with different shades
to facilitate identification. In particular, the roundish shapes are the neuron
mitochondria. Each pixel corresponds to a square with a side of length 18.4
nm (in the original image, before downsampling, it’s 4.6 nm).

Loading a Pretrained Neural Network
To create DeepDreams, you need to use a pretrained network. So, you’ll im-
port the VGG16 model, a pretrained neural network known for its profi-
ciency in image-recognition tasks, using Listing 3-57.

from torchvision.models import vgg16, VGG16_Weights

model = vgg16(weights=VGG16_Weights.IMAGENET1K_V1)

model.eval()

model.requires_grad_(False)

Listing 3-57: Loading the VGG16 pretrained neural network

This code loads the VGG16 model with weights trained on the ImageNet
dataset. This large-scale, extensively annotated image database, designed for
use in research on visual object recognition software, contains millions of
images categorized according to a hierarchy of descriptive labels. The code
then sets the model to evaluation mode with the eval() method and freezes
all weights to prevent further changes with the requires_grad_(False) method.

When you print the VGG16 model with print(model), you get Listing 3-58.

VGG(

(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): ReLU(inplace=True)

(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(3): ReLU(inplace=True)

(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ...

(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(6): ReLU(inplace=True)

(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(8): ReLU(inplace=True)

(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ...

(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU(inplace=True)

(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(13): ReLU(inplace=True)

(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(15): ReLU(inplace=True)

(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ...

(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(18): ReLU(inplace=True)

(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(20): ReLU(inplace=True)
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(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(22): ReLU(inplace=True)

(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ...

(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(25): ReLU(inplace=True)

(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(27): ReLU(inplace=True)

(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(29): ReLU(inplace=True)

(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ...

)

(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))

(classifier): Sequential(

(0): Linear(in_features=25088, out_features=4096, bias=True)

(1): ReLU(inplace=True)

(2): Dropout(p=0.5, inplace=False)

(3): Linear(in_features=4096, out_features=4096, bias=True)

(4): ReLU(inplace=True)

(5): Dropout(p=0.5, inplace=False)

(6): Linear(in_features=4096, out_features=1000, bias=True)

)

)

Listing 3-58: Printout of the VGG16 model

The VGG16model is structured hierarchically, starting with a features

module composed of a series of convolutional (Conv2d) and ReLU (ReLU) layers.
These layers progressively increase the number of featuremaps, starting from
64 channels and going up to 512, with each convolutional layer using 3×3
kernel sizes and 1×1 strides, often followed by ReLU for nonlinear activation.
This module also includes multiple max pooling layers (MaxPool2d) with a 2×2
kernel and a stride of 2, reducing the spatial dimensions after certain stages.

The avgpool module, which is an adaptive average pooling layer, follows
the features module, resizing the output to a fixed size of 7×7, independent
of the size of the input image—hence its adaptive nature.

Finally, the classifier module comprises three fully connected layers
(Linear), each with 4,096 neurons (except the last one, which has 1,000 neu-
rons corresponding to the classes of the ImageNet dataset), interspersed
with ReLU activations and dropout layers to prevent overfitting.

When using the VGG16 model, it’s crucial to normalize the input images
by using the mean and standard deviation values specific to the ImageNet
dataset’s color channels. This ensures that the input data aligns with the
data distribution the model was originally trained on. You can do this with
Listing 3-59.

import numpy as np

import torch

mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)

std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
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low = torch.tensor((- mean / std).reshape(1, -1, 1, 1))

high = torch.tensor(((1 - mean) / std).reshape(1, -1, 1, 1))

Listing 3-59: Defining the normalization parameters for VGG16

This code defines the normalization parameters. The mean array contains
the mean values for the red, green, and blue channels, while the std array
holds the standard deviations for these channels.

Implementing the DeepDreams Algorithm
Now that you’ve loaded the image you want to transform into a DeepDream
and the neural network you want to use to do so, you can proceed to imple-
ment the DeepDreams algorithm.

Before actually implementing the algorithm, recall how a neural network
works: When an image is fed into the network, the activations of the different
layers of the neural network depend on which features they’ve been trained to
detect. Early layers might detect simple features like edges and textures, while
deeper layers recognize more-complex features like shapes or specific objects.

The DeepDreams algorithm reverses this process. Instead of using the
network to detect features, the algorithm modifies the original image to
amplify the features that the network detects. This is done by applying gra-
dients to the image that transform it to increase the activation of certain
layers. The core technique is gradient ascent in the input space. This tech-
nique involves asking the network’s layers not just to detect features in an
image but to enhance the features they detect. For example, if a cloud looks
slightly like a bird, the DeepDreams algorithm will adjust the image to make
it look even more like a bird.

The DeepDreams process is iterative. An image is put through the net-
work, tweaked slightly to enhance its features, and then put through the net-
work again, in a loop. With each pass through the network, the image is fur-
ther modified to enhance its features—creating familiar shapes and patterns
where none existed, often resulting in surreal, dreamlike images that have
swirling patterns or fantastical creatures.

Using Gradient Ascent
First, you need to convert the image into a PyTorch tensor. You can do this
with the image_to_tensor() function shown in Listing 3-60.

import torchvision.transforms as tt

def image_to_tensor(im, mean, std):

"""Convert image to tensor."""

normalize = tt.Compose([tt.ToTensor(), tt.Normalize(mean, std)])

return normalize(im).unsqueeze(0).requires_grad_(True)

Listing 3-60: The function to convert an image to a tensor

This function defines the normalize transformation sequence, which first
converts the image into a tensor and then normalizes it via the provided
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mean and std values. The normalized image tensor is then expanded by one di-
mension via unsqueeze(0) to make it into a batch that can be passed to VGG16.
Finally, gradient calculation is enabled for the image tensor via requires_grad

_(True), which is essential to transform the image through gradient ascent.
Now use this function to convert the image into a PyTorch tensor:

im_tensor = image_to_tensor(im, mean, std)

Next, write the core of the DeepDreams algorithm, shown in Listing 3-61.

¶ layer = model.features[1]

iter_num = 100

eta = 0.1

hookdata = {}

def hook_func(layer, input, output):

"""Hook for activations."""

hookdata["activations"] = output

for _ in range(iter_num):

handle = layer.register_forward_hook(hook_func)

try:

· _ = model(im_tensor)

except Exception as e:

print(f"An error occurred during model prediction: {e}")

finally:

handle.remove()

¸ loss = hookdata["activations"].mean()

¹ loss.backward()

grad_mean = torch.mean(im_tensor.grad.data)

grad_std = torch.std(im_tensor.grad.data)

º normalized_grad = (im_tensor.grad.data - grad_mean) / (grad_std + 1e-8)

» im_tensor.data = im_tensor.data + eta * normalized_grad

¼ im_tensor.grad.zero_()

½ im_tensor.data.clamp_(low, high)

Listing 3-61: Performing the DeepDreams gradient ascent

This script calculates the DeepDreams version of the image that maxi-
mizes the activation of the first ReLU layer ¶ (the second layer of the features

module of model).
The iterative process transforming the image by gradient ascent per-

forms the following steps:
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1. Applies a forward hook (defined by the hook_func() function) to cap-
ture layer activations ·. No output is needed, as you need just the
activations calculated in the forward pass and saved by the hook in
hookdata.

2. Calculates the mean activation of the layer to be used as loss ¸.

3. Propagates the loss backward to calculate the gradients in the
image ¹. No gradients are calculated for the VGG16 model, as it’s
set in evaluation mode and its weights are frozen.

4. Normalizes the gradient of the image º.

5. Updates the image based on the calculated gradients performing
the gradient ascent ».

6. Clears the gradient in preparation of the next iteration ¼.

7. Clamps the image data to the bounds of the normalized image val-
ues to ensure that the image’s pixel values are valid ½.

NO T E In implementing algorithms like DeepDreams, choosing the right number of itera-
tions (iter_num) and step size (eta, which is quite similar to the learning rate that
you’ve seen in the backpropagation algorithm) is crucial and often involves a bit of
trial and error. Typically, iter_num ranges from 10 to 100, affecting the depth of the
image transformation (more iterations lead to more-complex changes but could intro-
duce noise). The value of eta is usually set from about 0.01 to 0.1 and dictates the
magnitude of each image update. A larger step size makes more drastic changes per
iteration, while a smaller step size results in subtler, more gradual alterations. The
key is to balance these parameters to achieve meaningful transformations without
excessively distorting the original image.

Next, you need convert the image tensor back to the image format. You
can do this with the tensor_to_image() function shown in Listing 3-62.

def tensor_to_image(image, mean, std):

"""Convert tensor to image."""

¶ denormalize = tt.Normalize(mean=- mean / std, std=1 / std)

im_array = denormalize(image.data.clone().detach().squeeze()).numpy()

· im_array = np.clip(im_array.transpose(1, 2, 0) * 255, 0, 255)

¸ im_array = im_array.astype(np.uint8)

¹ return Image.fromarray(im_array, "RGB")

Listing 3-62: The function to convert a tensor back to an image

This function first defines a denormalization operation ¶, which re-
verses the effect of the previous normalization by using negative mean val-
ues and reciprocal standard deviation values. Next, the function applies
the denormalization to the image tensor after cloning it, detaching it from
the current computation graph, and squeezing it to remove the batch di-
mension. Finally, it converts image to the im_array NumPy array. This array is
transposed to adjust the channel order from CHW (channels, height, width)
to HWC ·, scaled back to the original 0-to-255 range, clipped to ensure that
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the values stay within this range, and converted to an unsigned 8-bit integer
format ¸. The final step is to create and return a Pillow Image from this ar-
ray, specifying RGB as the color mode ¹.

Now use this function to convert the tensor back to the image format:

im_deepdream = tensor_to_image(im_tensor, mean, std)

Finally, you can render your first DeepDream, using Listing 3-63.

plt.imshow(im_deepdream)

plt.title("DeepDream for Layer 1")

plt.axis("off")

plt.show()

Listing 3-63: Plotting a DeepDream

You should get something similar to Figure 3-26.

DeepDream for Layer 1

Figure 3-26: The DeepDream corresponding
to the first layer

In this DeepDream corresponding to layer 1 of the neural network, the
abundance of dot-like patterns and textures reflects this layer’s focus on de-
tecting basic features such as edges and simple textures in the input image.

Refactoring the DeepDreams Code as a Function
To improve the organization and reusability of your code, you can refactor
the DeepDreams code into the deepdream() function shown in Listing 3-64.

def deepdream(im, layer_index, iter_num=100, eta=0.1):

"""Generate DeepDream."""

mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)

std = np.array([0.229, 0.224, 0.225], dtype=np.float32)

low = torch.tensor((-mean / std).reshape(1, -1, 1, 1))

high = torch.tensor(((1 - mean) / std).reshape(1, -1, 1, 1))
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im_tensor = image_to_tensor(im, mean, std)

hookdata = {}

--snip--

layer = model.features[layer_index]

for _ in range(iter_num):

--snip--

im_deepdream = tensor_to_image(im_tensor, mean, std)

plt.imshow(im_deepdream)

plt.title(f"DeepDream for Layer {layer_index}")

plt.axis("off")

plt.show()

Listing 3-64: The function to generate a DeepDream (by modifying Listing 3-61 and
combining it with Listings 3-59 and 3-63)

This function accepts as inputs the image (im), the index of the layer
whose activation is maximized by the DeepDreams algorithm (layer_index),
the iteration number (iter_num), and the step size (eta). The rest of the code
is sourced from Listings 3-59, 3-61, and 3-63.

When you call this function with

deepdream(im, layer_index=1, iter_num=100, eta=0.1)

you should get the DeepDream shown in Figure 3-26.
Thanks to this refactoring of the code, next you can easily add new func-

tionalities, as you’ll do in the following sections.

Improving the DeepDreams Function with a Context Manager
You can now use a context manager for the hook. A context manager in Python
is a special construct that provides a clean way to automatically allocate and
release resources. It allows you to set up a temporary context for your code,
ensuring that resources are properly managed and cleaned up after the code
block is executed, typically using the with statement.

To do so, write the Fwd_Hook class, as shown in Listing 3-65.

class Fwd_Hook():

"""Forward hook."""

def __init__(self, layer):

"""Initialize forward hook."""

self.hook = layer.register_forward_hook(self.hook_func)

def hook_func(self, layer, input, output):

"""Save activations."""

self.activations = output

def __enter__(self, *args):
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"""Enter context management."""

¶ return self

def __exit__(self, *args):

"""Exit context management and remove hook."""

· self.hook.remove()

Listing 3-65: The class to context-manage the hook to the activation of a layer

When the Fwd_Hook class is initialized with the __init__() method, the
class registers a forward hook on the specified layer, which ensures that
the designated hook_func() method is called every time the layer completes
its forward pass. This hook method captures the output of the layer, stor-
ing it in the activations attribute for later use. The methods __enter__() and
__exit__() define the class as a context manager. When entering the context
(using a with statement), an instance of Fwd_Hook is returned ¶, and upon ex-
iting, the context manager ensures cleanup by removing the hook ·. This
approach provides an elegant and Pythonic way to temporarily attach and
safely remove hooks.

To use this context manager, you need to modify the deepdream() func-
tion as shown in Listing 3-66.

def deepdream(im, layer_index, iter_num=100, eta=0.1):

--snip--

im_tensor = image_to_tensor(im, mean, std)

layer = model.features[layer_index]

for _ in range(iter_num):

with Fwd_Hook(layer) as fh:

_ = model(im_tensor)

loss = fh.activations.mean()

loss.backward()

--snip--

Listing 3-66: The function to generate a DeepDream with a context manager for the hook
(by modifying Listing 3-64)

Verify that this updated deepdream() function still works:

deepdream(im, layer_index=1, iter_num=100, eta=0.1)

This should again generate the DeepDream in Figure 3-26.

Creating DeepDreams from Deeper Layers
Now it’s time to play with your code and generate DeepDreams from deeper
layers:

for layer_index in [1, 3, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29]:

deepdream(im, layer_index, iter_num=100, eta=0.1)
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Figure 3-27 showcases a collection of DeepDreams generated from var-
ious layers of the neural network, visualizing the complex patterns and fea-
tures that each layer has learned to recognize.

DeepDream at Layer 3 DeepDream at Layer 6

DeepDream at Layer 8 DeepDream at Layer 11

DeepDream at Layer 18 DeepDream at Layer 29

Figure 3-27: DeepDreams maximizing the activation of deeper layers
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In the early layers, such as layers 3 and 6, the patterns are simple and
repetitive, focusing on basic shapes and edges with vibrant colors. As you
progress to intermediate layers like 8 and 11, the complexity increases, with
the DeepDreams beginning to feature more-abstract motifs that suggest a
transition from simple to more-complex feature recognition.

In the deeper layers, 18 and 29, the images become increasingly surreal,
with elaborate, dreamlike amalgamations of shapes and textures that resem-
ble eyes and biological forms, illustrating the network’s higher-level feature
detection that interprets the visual data in more-abstract ways.

Using Multiple Layers at Once
You can also generate DeepDreams by maximizing the activation of multiple
layers at once. To do this, you need to capture the activations of multiple
layers, which requires modifications to the context manager class, as shown
in Listing 3-67.

class Fwd_Hooks():

"""Forward hooks."""

def __init__(self, layers):

"""Initialize forward hooks."""

self.hooks, self.activations_list = [], []

for layer in layers:

¶ self.hooks.append(layer.register_forward_hook(self.hook_func))

def hook_func(self, layer, input, output):

"""Save activations."""

self.activations_list.append(output)

--snip--

def __exit__(self, *args):

"""Exit context management and remove hooks."""

for hook in self.hooks:

· hook.remove()

Listing 3-67: The class to context-manage the hooks to the activations of multiple layers at
once (by modifying Listing 3-65)

This new context manager class contains, as attributes, lists of hooks and
activations, one for each layer. When the context manager is initialized, a
hook function is attached to each layer ¶ and, when the context manager
exits, all the functions are removed ·.

Finally, modify the deepdream() function further to accept multiple input
layers, as shown in Listing 3-68.

def deepdream(im, layer_indices, iter_num=100, eta=.1):

--snip--

layers = [model.features[layer_index] for layer_index in layer_indices]
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for _ in range(iter_num):

¶ with Fwd_Hooks(layers) as fh:

_ = model(im_tensor)

losses = [activations.mean() for activations in fh.activations_list]

· loss = torch.stack(losses).sum()

loss.backward()

--snip--

plt.title(f"DeepDream for Layers {layer_indices}")

--snip--

Listing 3-68: The function to generate a DeepDream from multiple layers (by modifying
Listing 3-66)

This is the definitive version of the deepdream() function. It accepts as
input multiple layers’ indices and extracts the corresponding layers. Then
it uses the context manager for hooks in multiple layers ¶. The loss is now
calculated by summing up the losses for the activation of each layer ·.

Now you can get a DeepDream that maximizes feature activations from
multiple layers of VGG16 simultaneously:

deepdream(im, layer_indices=[1, 8, 11, 18, 25, 27, 29], iter_num=100, eta=0.1);

This should generate the DeepDream in Figure 3-28.

DeepDream at Layers [1, 8, 11, 18, 25, 27, 29]

Figure 3-28: The DeepDream maximizing
the activation of multiple layers at once

This multilayered approach creates a densely packed tapestry of features
that vary in complexity. The image is a vibrant collage of textures and pat-
terns, with visual elements that range from the geometric shapes found in
the earliest layers to the more-complex, almost biological structures remi-
niscent of eyes and organic forms that emerge from the deeper layers. This
visual complexity is a result of targeting a combination of layers, each con-
tributing its own learned representations to the final image.
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NO T E Code Example 3-C, “Creating DeepDreams,” is available at https://github.com/
DeepTrackAI/DeepLearningCrashCourse. Navigate to the Ch03_CNN folder
and then ec03_C_deepdream. The deepdream.ipynb notebook provides a com-
plete code example that loads an image and the VGG16 pretrained neural network,
and uses them to create DeepDreams.

Project 3D: Transferring the Style of Images
In this last project of this chapter, you’ll explore neural style transfer, which
answers this question: How can the stylistic elements of one image be im-
posed onto the content of another image while preserving the original con-
tent’s structure?

For example, imagine you have a photograph (content image) and a
painting (style image). You want to re-create the photograph in the unique
artistic style of the painting. You can achieve this by using a deep neural net-
work trained to understand and identify various features in images. During
neural style transfer, you ask the neural network to keep the large-scale struc-
tures from the photograph, but to paint them with the textures and patterns
you see in the painting.

As you’ve seen many times by now, a deep network comprises multiple
layers, each responsible for recognizing different levels of the image’s de-
tails. The first layers might detect simple edges and textures typically more
related to the style. The last layers capture the larger-scale complex struc-
tures that define the content. You can then instruct the computer to mini-
mize the difference between the content of your photograph and the con-
tent recognized in a particular layer of the network, while simultaneously
minimizing the difference between the style of your painting and the style
recognized in other layers.

Through an iterative process of adjustments, the neural network blends
the content and the style, keeping the essential elements of the photograph’s
structure while casting it in the colors, brush strokes, and textures of the
painting, creating a hybrid image that looks like a painted version of the
photograph. You’ll see how this works in more detail in the rest of this
project. You’ll learn how to apply the texture of the Trencadís Lizard (created
by Antoni Gaudí in Barcelona’s Parc Güell) to a microscopic image of the
neural tissue of a fruit fly larva.

Before you begin this project, you should have a solid understanding of
the concepts introduced in Projects 3A and 3C, particularly regarding the
use of hooks and context managers to access the activations of layers.

Loading the Content and Style Images
Start by loading the content image:

from PIL import Image

content = (Image.open("neuraltissue_with_colorlabels.png").convert("RGB")

.crop((100, 170, 100 + 256, 170 + 256)))

158 Chapter 3

Deep Learning Crash Course (Sample Chapter) © 2025 by Giovanni Volpe, Benjamin Midtvedt, 
Jesús Pineda, Henrik Klein Moberg, Harshith Bachimanchi, Joana B. Pereira, and Carlo Manzo

https://github.com/DeepTrackAI/DeepLearningCrashCourse
https://github.com/DeepTrackAI/DeepLearningCrashCourse


This is the same image you used in Project 3C to generate DeepDreams.
The only difference is that you are now cropping a square of 256×256 pix-
els from the image.

Then plot this crop:

import matplotlib.pyplot as plt

plt.imshow(content)

plt.axis("off")

plt.show()

The content image is shown on the left side of Figure 3-29.

Figure 3-29: The content (left) and style (right) images for the neural style transfer

Next, load the image you’ll use for the style. You’ll use a photograph of
a detail of Gaudí’s lizard, which is in the lizard.png image file:

style = Image.open("lizard.png").convert("RGB").resize((256, 256))

This loads the style image, converts it to RGB, and finally resizes it to 256×256
pixels.

You can then plot the style image:

plt.imshow(style)

plt.axis("off")

plt.show()

The resulting image is shown on the right side of Figure 3-29.

Loading a Pretrained Neural Network
Now you need to import a pretrained neural network. As with the Deep-
Dreams in Project 3C, you’ll import the VGG16 model and freeze its weights
with Listing 3-57. The printout with the architecture of the VGG16 model is
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in Listing 3-58. Furthermore, since this is a pretrained model, it needs nor-
malization, which is again the same as in Project 3C (Listing 3-59).

Implementing Style Transfer
To implement style transfer, you’ll reuse several tools developed already
for the DeepDreams in Project 3C. In particular, you’ll reuse the Fwd_Hooks

class (Listing 3-67) and the image_to_tensor() and tensor_to_image() functions
(Listings 3-60 and 3-62).

Start by implementing the additional gram() function to calculate the
Gram matrix between all the activations of a specific layer, as shown in
Listing 3-69.

from torch import bmm

def gram(tensor):

"""Gram matrix."""

¶ batch_size, num_channels, height, width = tensor.size()

· features = tensor.view(batch_size, num_channels, height * width)

gram_matrix = bmm(features, features.transpose(1, 2)) / (height * width)

return gram_matrix

Listing 3-69: The function to calculate the Gram matrix

The Gram matrix represents the correlations between different feature
maps (or channels) of a convolutional layer’s output. The gram() function
unpacks the dimensions of the input tensor ¶. Then gram() reshapes the
tensor into a 2D matrix · (the batch_size will be equal to 1). Finally, the
function computes the Gram matrix as the product of the matrix by its
transpose, normalizing it by the number of elements in each feature map
(height * width).

You can implement the style transfer with the style_transfer() function
in Listing 3-70, which is quite similar in structure to the deepdream() function
in Listing 3-68.

def style_transfer(image, content, style, content_layers, style_layers,

lr=1, iter_num=100, beta=1e3):

"""Perform style transfer."""

mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)

std = np.array([0.229, 0.224, 0.225], dtype=np.float32)

image_tensor = image_to_tensor(image, mean, std)

with Fwd_Hooks(content_layers) as fh:

_ = model(image_to_tensor(content, mean, std))

¶ con_activ_list = [activ.detach() for activ in fh.activations_list]

with Fwd_Hooks(style_layers) as fh:

_ = model(image_to_tensor(style, mean, std))

· target_gram_list = [gram(activ.detach()) for activ in fh.activations_list]
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optimizer = torch.optim.LBFGS([image_tensor], lr=lr)

mse_loss = torch.nn.MSELoss(reduction="sum")

def closure():

"""Closure function for the optimizer."""

--snip--

return total_loss

for i in range(iter_num):

print(f"iteration {i}")

¸ optimizer.step(closure)

plt.imshow(tensor_to_image(image_tensor, mean, std))

plt.title(f"Iteration {i}")

plt.axis("off")

plt.show()

Listing 3-70: The function for implementing style transfer

This function transforms the input image into a PyTorch tensor with the
image_to_tensor() function, normalizing the image with the predefined mean
and standard deviation values. Then forward hooks are used within context
managers to capture content activations from specified layers when the con-
tent image is passed through the model ¶, and to calculate the Gram matrix
representations of style activations when the style image is processed ·.

As optimizer, this code uses the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm because of its efficiency in handling
the large number of variables involved in style transfer. This optimizer is
responsible for iteratively tweaking the image tensor to minimize the loss
function that measures the difference between the content and style features
of the current image and the desired targets. The closure() function is es-
sential in this context because L-BFGS requires the reevaluation of the loss
within each iteration to update the weights, and this function provides the
mechanism to recalculate the loss and its gradients every time the optimizer
takes a step, as you’ll see in detail in Listing 3-71.

In each interaction, after the optimization step ¸, the current state of the
image tensor is converted back to an image via the tensor_to_image() function
and displayed, allowing for visually tracking the style-transfer process.

Now, add the necessary closure() function to the style_transfer() func-
tion provided in Listing 3-71.

def style_transfer(...):

--snip--

mse_loss = torch.nn.MSELoss(reduction="sum")

def closure():

"""Closure function for the optimizer."""

¶ optimizer.zero_grad()
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with Fwd_Hooks(content_layers) as fh:

_ = model(image_tensor)

im_con_activ_list = fh.activations_list

content_loss = 0

for im_con_activ, con_activ in zip(im_con_activ_list, con_activ_list):

num_feats = im_con_activ.shape[1]

· content_loss += mse_loss(im_con_activ, con_activ) / num_feats ** 2

¸ content_loss = content_loss / len(im_con_activ_list)

with Fwd_Hooks(style_layers) as fh:

_ = model(image_tensor)

¹ im_gram_list = [gram(activ) for activ in fh.activations_list]

style_loss = 0

for im_gram, target_gram in zip(im_gram_list, target_gram_list):

num_feats = im_gram.shape[1]

º style_loss += mse_loss(im_gram, target_gram) / num_feats ** 2

» style_loss = style_loss / len(im_gram_list)

print(f"content_loss={content_loss} style_loss={style_loss}")

¼ total_loss = content_loss + beta * style_loss

½ total_loss.backward()

return total_loss

--snip--

Listing 3-71: The closure function for the optimizer of the style transfer (by modifying
Listing 3-70)

This closure function is evaluated several times during each step of the
L-BFGS optimization loop to compute the gradient of the loss function and
provide it to the optimizer. This function performs the following operations:

1. Resets the optimizer’s gradients to 0 ¶. This is necessary to prevent
the accumulation of gradients from multiple backward passes.

2. Computes the content loss by comparing the activations from the
current image tensor to those from the original content image. The
function computes the MSE loss between each corresponding set
of activations and then normalizes it by the number of features
squared ·. The total content loss is the average of these losses over
all content layers ¸.

3. Calculates the style loss in a similar way, but instead of using the raw
activations, it uses the Gram matrices of the activations to capture
the style information ¹. The function calculates the MSE loss be-
tween the Gram matrix of the current image tensor and the Gram
matrix of the style image, normalizes the loss by the number of el-
ements in the Gram matrix squared º, and averages over all style
layers ».
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4. Combines the content loss and style loss to form the total loss ¼,
with the style loss being scaled by the beta regularization factor to
balance the two types of losses.

5. Calls the backward() method on the total loss ½, which computes the
gradient of the loss function with respect to the image tensor.

6. Returns the total loss.

Creating an Image in Gaudí’s Style
You are finally ready to create a new version of the neural tissue image in
Gaudí’s style. You can do this with the content image as a starting point,
using Listing 3-72.

style_transfer(

image=content, content=content, style=style,

content_layers=[model.features[l] for l in [14]],

style_layers=[model.features[l] for l in [0, 2, 5, 7, 10]],

lr=1, iter_num=50, beta=1e5,

)

Listing 3-72: Transforming the style of an image

This code transforms the original content image into an image that re-
tains the content seen by the 14th VGG16 layer, but features the style of the
style image seen by layers 0, 2, 5, 7, and 10 of VGG16.

Figure 3-30 shows the resulting style images in the first and last iterations.

Iteration 0 Iteration 49

Figure 3-30: The progression of the style transfer

As the iterations proceed, the output image becomes increasingly simi-
lar in style to Gaudí’s lizard.
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NO T E Code Example 3-D, “Transferring Image Styles,” is available at https://github
.com/DeepTrackAI/DeepLearningCrashCourse. Navigate to the Ch03_CNN
folder and then ec03_D_style_transfer. The style_transfer.ipynb notebook pro-
vides a complete code example that loads the content image, the style image, and the
VGG16 pretrained neural network, and uses them to transfer the style to the image.

Summary
In this chapter, you learned to use convolutional neural networks, which are
essential tools for image analysis. You began by exploring the concept of
convolution and its application to both 1D and 2D data. Then you contin-
ued with the practical implementation of convolutional neural networks, us-
ing PyTorch. You gained hands-on experience in constructing convolutional
layers, integrating ReLU activation functions, and mastering pooling and
upsampling techniques, all crucial for processing and transforming images.
The inclusion of dense layers and their role in image classification further
enriched your understanding.

In Project 3A, you applied convolutional neural networks to the task
of classifying malaria-infected blood smears. This project highlighted the
medical application of convolutional neural networks, involving loading and
preprocessing complex datasets, deploying both dense and convolutional
neural networks, and visualizing the convolutional filters and layer activations
to gain some understanding of the network’s decision-making process.

In Project 3B, you ventured into video analysis, using convolutional
neural networks to localize microscopic particles in video data. This project
highlighted the critical importance of having a reliable ground truth for
neural network training. To achieve this, you engaged in the demanding
task of manually annotating the particle images, providing the network with
ground-truth labels. You also explored the route of generating simulated
particle images, offering an alternative means of creating a robust training
dataset.

Project 3C introduced you to the artistic side of convolutional neural
networks with the creation of DeepDreams. This project illustrated the net-
work’s ability to enhance and alter images, revealing the patterns learned by
the network.

Project 3D explored the fascinating world of neural style transfer. You
learned to merge the content of one image with the style of another, further
showcasing the creative potential of convolutional neural networks.

Looking forward, this knowledge serves as a stepping stone to the next
chapters, where you’ll delve deeper into advanced neural network architec-
tures and techniques. Your newly acquired understanding of convolutional
neural networks paves the way for exploring encoder-decoders for latent
space manipulation, U-Nets for image transformation, and even generative
adversarial networks and diffusion models for image synthesis.
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Seminal Works and Further Reading
Yann LeCun et al. introduced the LeNet-5 architecture in “Gradient-Based
Learning Applied to Document Recognition,” published in 1998 in Proceedings
of the IEEE (volume 86, pages 2,278–2,324). LeNet-5 demonstrated that back-
propagation could be effectively used to train convolutional neural networks,
providing one of the first successful applications of convolutional neural
networks for image recognition.

A significant leap came with “ImageNet Classification with Deep Con-
volutional Neural Networks” by Alex Krizhevsky et al., published in 2012 in
Advances in Neural Information Processing Systems (NeurIPS, volume 25). This
work introduced AlexNet, which won the 2012 ImageNet competition by a
large margin, demonstrating the power of deeper convolutional architec-
tures combined with GPU acceleration for training large models. AlexNet’s
success was a major catalyst for the deep learning revolution in computer
vision.

“Very Deep Convolutional Networks for Large-Scale Image Recogni-
tion” by Karen Simonyan and Andrew Zisserman, published in 2014 on
arXiv (article number 1409.1556) and presented at the 2015 International
Conference on Learning Representations (ICLR), introduced the VGG net-
work. This architecture showed that increasing the depth of convolutional
neural networks by using smaller convolutional filters could yield significant
improvements in image-classification accuracy.

Christian Szegedy et al. introduced the Inception architecture (also
known as GoogLeNet) in 2015 in “Going Deeper with Convolutions,” pub-
lished in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR, pages 1–9). Inception utilized multiple filter sizes at
each layer, allowing for deeper networks while maintaining computational
efficiency.

The introduction of the ResNet architecture in “Deep Residual Learning
for Image Recognition” by Kaiming He et al., published in 2016 in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR, pages
770–778), addressed the vanishing gradient problem in deep networks by
using residual connections. This allowed for the successful training of very
deep networks, resulting in breakthrough performance in image classification
and numerous other computer vision tasks.

Project 3D is based on “Digital Video Microscopy Enhanced by Deep
Learning” by Saga Helgadottir et al., published in Optica (volume 6, pages
506–513). This work uses convolutional neural networks to accurately mea-
sure the position of microscopic particles.

Project 3D is inspired by “Image Style Transfer Using Convolutional
Neural Networks” by Leon A. Gatys et al., published in 2016 in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR, pages
2,414–2,423). The authors introduced an artistic algorithm that was able to
separate and recombine the image content and style of natural images.
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CHALLENGE PROJECTS

3-1: Advanced medical image classification Implement a convolutional
neural network to classify medical images beyond the malaria-infected blood
smears. Choose a medical imaging dataset from a Kaggle challenge to clas-
sify diseases or conditions (for example, the Chest CT-Scan Images dataset
or the COVID-19 Chest CT Image Augmentation GAN dataset). Compare
your results to those of the challenge participants.
3-2: Traffic sign recognition Develop a convolutional neural network to
recognize and classify traffic signs from real-world images. You can use
the German Traffic Sign Recognition Benchmark (GTSRB) dataset. Create a
model that can accurately identify various traffic signs from multiple angles,
distances, and lighting conditions. Compare the performance of your
model against traditional image-recognition methods.
3-3: Artistic style transfer with custom styles Extend the neural style trans-
fer project to explore how well your model can adapt to various styles and
how it handles style transfer with complex and abstract images.
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