
5
B I N A R Y  S E A R C H  T R E E S

Binary search trees use the concepts under-
pinning the binary search algorithm to 

create a dynamic data structure. The key 
word here is dynamic. Unlike sorted arrays, 

binary search trees support the efficient addition and 
removal of elements in addition to searches, making  
them the perfect blend of the algorithmic efficiency of binary search and 
the adaptability of dynamic data structures. They also make for wonderful 
decorative mobiles for any room.

In addition to introducing binary search trees, this chapter discusses 
algorithms for searching for values, adding new values, and deleting values. 
It shows how to use pointers to create branching structures more power-
ful than the list-based structures in previous chapters. You’ll learn how, by 
carefully structuring the relationships among the values, we can encode the 
approach used for binary search into the very structure of the data itself.
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56   Chapter 5

Binary Search Tree Structure
Trees are hierarchical data structures composed of branching chains of 
nodes. They are a natural extension of linked lists, where each tree node is 
permitted two next pointers that point to subsequent nodes in disjoint lists. 
Figure 5-1 shows a sample binary search tree. 
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8

Figure 5-1: An example  
binary search tree

A node contains a value (of a given type) and up to two pointers to 
lower nodes in the tree, as shown in Figure 5-2. We call nodes with at least 
one child internal nodes and nodes without any children leaf nodes.

Left
child

Right
child

Value

Figure 5-2: The required  
components of a binary  
search tree node

Tree nodes may contain other information, depending on their use. 
We often store a pointer back to the node’s parent, for instance. This single 
piece of additional information allows us to traverse the tree from the bot-
tom up as well as from the top down, which comes in handy when we con-
sider removing nodes. 

Formally, we specify a binary search tree node as a data structure with this 
minimal information: a value (or key), pointers to two child nodes (either of 
which can be set to null if no corresponding child exists), and an optional 
pointer to the parent node.

TreeNode {
    Type: value
    TreeNode: left
    TreeNode: right
    TreeNode: parent
}

We might also want to store auxiliary data. Storing and searching for 
individual values are useful, but using these values as keys for looking up 
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Binary Search Trees   57

more detailed information greatly extends the power of the data structure. 
For example, we could use the names of our favorite coffees as the node’s 
values, allowing us to efficiently look up records for any coffee. In this 
case, our auxiliary data would be a detailed record of everything we know 
about that coffee. Or our values could be timestamps, and the nodes could 
contain indications of which coffee we brewed at that time, allowing us to 
efficiently search our historical coffee consumption. The tree node data 
structure can either store this auxiliary data directly or include a pointer to 
a composite data structure located somewhere else in memory.

Binary search trees start at a single root node at the top of the tree and 
branch into multiple paths as they descend, as shown in Figure 5-3. This 
structure allows programs to access the binary search tree through a single 
pointer—the location of its root node.
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Root node

Figure 5-3: The root node indicates the top of the  
binary search tree and is the starting location  
for operations.

Botanical purists may draw trees with the root node at the bottom of 
the tree and nodes branching upward, instead of starting from the top as 
in Figure 5-3. However, the representations are equivalent. In truth, both 
the top-down and bottom-up illustrations hide the actual complexity of the 
binary search tree. Like a linked list, a search tree’s individual nodes can be 
scattered throughout the computer’s memory. Each node is only linked to 
its children and parents through the power and flexibility of pointers. 

The power of the binary search tree stems from how values are orga-
nized within the tree. The binary search tree property states: 

For any node N, the value of any node in N ’s left subtree is less 
than N ’s value, and the value of any node in N ’s right subtree is 
greater than N ’s value.

In other words, the tree is organized by the values at each node, as shown in 
Figure 5-4. The values of the data in the left node and all nodes below it are 
less than the value of the current node.  Similarly, the values of the data in 
the right node and all nodes below it are greater than the value of the cur-
rent node. The values thus serve two roles. First, and most obviously, they 
indicate the value stored at that node. Second, they define the tree’s struc-
ture below that node by partitioning the subtree into two subsets. 

The above definition implicitly restricts the binary search tree to con-
tain unique values. It is possible to define binary search trees that allow 
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58   Chapter 5

duplicate values by modifying the binary search tree property accordingly. 
Other references may vary in whether they allow duplicate values and thus 
how they handle equality in the binary search tree property. This chapter 
focuses on the case of non-duplicate values to stay consistent with other 
indexing data structures we will explore in the book, such as skiplists and 
hash tables, though the algorithms presented can be adapted to handle 
duplicates.
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Figure 5-4: The values of the nodes in a binary search  
tree are ordered by the binary search tree property.

We could compare a binary search tree’s structure to a public relations 
department that is organized by level of humor. Each employee measures 
their humor level with a single numerical value, the number of funny illus-
trations in a 30-minute presentation. A score of 0 represents the serious 
presenter who includes only technical diagrams. A score of 100 or above 
represents the aspiring comedian who adds multiple jokes to every slide. 
The entire department structures itself around this one metric. Internal 
nodes represent managers with either one or two direct reports. Each man-
ager considers their own humor level and partitions their suborganization 
accordingly. Team members who include more jokes (a larger humor level) 
go in the right subteam. Those who include fewer jokes (a smaller humor 
level) go in the left subteam. Each manager thus provides both a partition-
ing function and a middle ground between the two subteams.

Although this ordering of nodes might not seem like a lot of structure, 
keep in mind the amount of power we got from using a similar property 
within binary search. The binary search tree property is effectively keeping 
the data within the tree sorted with respect to its position in the tree. As we 
will see, this allows us to not only efficiently find values in the tree but also 
efficiently add and remove nodes.

Searching Binary Search Trees
We search a binary search tree by walking down from the root node. At 
each step, we determine whether to explore the left or right subtree by 
comparing the value at the current node with the target value. If the target 
value is less than the current value, the search progresses to the left. If the 
target value is greater than the current value, the search progresses to the 
right. The node’s value thus serves the same function as those helpful signs 
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Binary Search Trees   59

in hotels that tell us rooms 500–519 are to the left and rooms 520–590 are 
to the right. With one quick check, we can make the appropriate turn and 
ignore the rooms in the other direction. The search ends when either the 
target value is found or it reaches a node with no children in the correct 
direction. In the latter case, we can definitively say that the target value is 
not in the tree.

Iterative and Recursive Searches
We implement this search with either an iterative or recursive approach. 
The following code uses a recursive approach, where the search function 
calls itself using the next node in the tree, initially called on the root node 
of the tree. The code returns a pointer to the node containing the value, 
allowing us to retrieve any auxiliary information from the node.

FindValue(TreeNode: current, Type: target):
  1 IF current == null:
        return null
  2 IF current.value == target:
        return current
  3 IF target < current.value AND current.left != null:
        return FindValue(current.left, target)
  4 IF target > current.value AND current.right != null:
        return FindValue(current.right, target)
  5 return null

This algorithm performs only a few tests at each node; if any of the 
tests pass, we end the function by returning a value. First, the code checks 
that the current node is not null, which can happen when searching an 
empty tree. If it is null, the tree is empty and, by definition, does not con-
tain the value of interest 1. Second, if the current node’s value equals 
our target value, the code has found the value of interest and returns the 
node 2. Third, the code checks whether it should explore the left subtree 
and, if so, returns whatever it finds from that exploration 3. Fourth, the 
code checks whether it should explore the right subtree and, if so, return 
whatever it finds from that exploration 4. Note that in both the left and 
right cases, the code also checks that the corresponding child exists. If 
none of the tests trigger, the code has made it to a node that doesn’t match 
our target value and does not have a child in the correct direction. It has 
reached a dead end and is forced to admit defeat by returning a failure 
value such as null 5. A dead end occurs whenever there is no child in the 
correct direction, so it is possible for an internal node with a single child to 
still be a dead end for a search.

 Suppose we used this strategy to search Figure 5-5 for the value 63. 
We start at the root node and compare its value (50) to that of our target. 
Since 50 is less than 63, we know that the target value is not in the left-hand 
branch, where every node has a value less than 50. This simple fact allows 
us to prune the entire left-hand subtree from our search. We can avoid 
checking 11 of the 22 nodes in our tree with a single comparison. This test 
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60   Chapter 5

is effectively the same as the pruning we did within the binary search algo-
rithm from Chapter 2: we test a single element against our target value and 
use that to prune out a large section of our search space. 
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Figure 5-5: The first step in the search of a binary search  
tree. The search begins at the root node.

Our search progresses down the right-hand subtree to the node with 
value 67, as shown in Figure 5-6. We again employ the binary search tree 
property to rule out half the remaining search space. In this case 63 is 
less than 67, so we choose the left subtree. Anything in node 67’s right-
hand subtree must be larger than 67, and thus it cannot contain 63. We’ve 
pruned another 5 nodes.
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Figure 5-6: The second step in the search of a binary s 
earch tree

At this point, we can make definitive statements about the remaining 
search space underneath the current node. Since we branched right at 50 
and left at 67, we know that all nodes in the new subtree will have values 
greater than 50 and less than 67. In fact, each time we take a right-hand 
branch, we’re tightening the lower bound of the remaining search space. 
Whenever we take a left-hand branch, we’re tightening the upper bound.

The search continues down the tree, traversing each of the shaded 
nodes as shown in Figure 5-7. The search passes through 4 of the 22 nodes 
before finding the target value.
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Figure 5-7: The complete path of a search of a binary  
search tree for value 63

Consider this search in the context of the public relations department 
organized by humor metric. Suppose the department head needs to find a 
speaker for an informal presentation at an industry conference. After some 
consideration, they determine a humor level of 63 jokes per 30 minutes will 
be optimal for this audience. The department head (root node) consid-
ers their own humor level, realize they are too serious, and therefore asks 
their right-hand report to find someone within the report’s organization. 
Everyone in the right-hand subtree is more comedic than the department 
head. That manager repeats the same steps of comparing their own humor 
level (67) with the target value and delegating to their appropriate report.

Of course, the search does not need to progress all the way down to 
a leaf node. As shown in Figure 5-8, the node in question might sit in the 
middle of the tree. If we search the same tree for the value of 14, we take 
two left branches and end at the appropriate internal node. The manager 
at this intermediate level perfectly fits our humor criterion and can give the 
talk. Thus, as we descend the tree, we need to check whether the current 
node is equal to our target value and terminate the search early if we find a 
match. 
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Figure 5-8: The search of a binary search tree can  
conclude at an internal node where the value matches  
our target value.

502604c05.indd   61502604c05.indd   61 4/28/22   1:31 PM4/28/22   1:31 PM

Data Structures the Fun Way (Sample Chapter) © 2022 by Jeremy Kubica



62   Chapter 5

The iterative approach to searching a binary search tree replaces the 
recursion with a WHILE loop that iterates down the tree. The search again 
starts at the tree’s root.

FindValueItr(TreeNode: root, Type: target):
  1 TreeNode: current = root
  2 WHILE current != null AND current.value != target:
      3 IF target < current.value:
            current = current.left
        ELSE:
            current = current.right
  4 return current

The code starts by creating a local variable current to point to the cur-
rent node in the search 1. Initially, this will be the root node, which may 
be null in an empty tree. Then a WHILE loop keeps iterating down the tree 
until it either hits a dead end (current == null) or finds the correct value 
(current.value == target) 2. Within the loop, the code checks whether the 
next child should be to the left or right 3 and reassigns current to point 
to the corresponding child. The function concludes by returning current, 
which is either the found node or, if the tree is empty or the value is not 
found, null 4. 

The computational cost of both the recursive and iterative searches is 
proportional to the depth of the target value in the tree. We start at the 
top of the tree and proceed down a single path. The deeper the tree, the 
more comparisons we need to perform. Structuring the tree to minimize its 
depth thus increases search efficiency.

Searching Trees vs. Searching Sorted Arrays
The skeptical reader might protest, “Chapter 2 already taught us how to do 
an efficient search on sorted data. Binary search scales logarithmically with 
the size of the data. You had illustrations and everything. Why bother put-
ting the data in a tree rather than a sorted array? Are we adding unneces-
sary complexity and overhead with all these pointers?”  

These concerns are reasonable. However, it’s important to consider 
how the data structure and search will be used in a wider context. If our 
data is already in a sorted array and we want to search through it a single 
time, building a tree rather than simply performing a binary search does 
not help. In fact, building the tree itself is more expensive than a single 
linear scan. Similarly, if the data does not change, then sorting it once and 
using the sorted array may be preferable. We avoid the memory overhead 
of the tree structure itself. The tradeoffs change as our data becomes more 
dynamic.

Imagine the case where employees join or leave the PR department. In 
addition to the normal paperwork, the department needs to update its data 
structure of humor levels. Each new employee represents an addition to the 
list of humor levels. Each departure represents a deletion. Instead of using 
the reporting hierarchy, the department could use the office assignments to 
sort employees by humor level. The least humorous person is in office 1 and 
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Binary Search Trees   63

the most humorous in office 100. The manager can still efficiently search 
for the correct speaker. However, they now need to fix the office assign-
ments with each new addition or departure. For a large department or a 
high number of changes, the overhead increases. In highly dynamic envi-
ronments, such as a list of pending restaurant orders, the costs can become 
significant.

The power of binary search trees, and dynamic data structures in gen-
eral, arises in cases where the data is changing. As we will see in the next 
sections, binary search trees allow us to efficiently add and remove data 
points. In a sorted array, we would need to constantly update the array as 
we add and remove data, which can be expensive. In contrast, the binary 
search tree keeps the data in an easily searchable structure as the data itself 
changes. If we are doing many searches over a dynamic data set, this combi-
nation of efficiencies becomes critical. 

Modifying Binary Search Trees
The root node always deserves special care when using or modifying a 
binary search tree. When searching for a node in the tree, we always start at 
the root node. When inserting the first node into the tree, such as the first 
person joining our PR department, we make that node our new root. And, 
as we will see later in the chapter, when removing a node from a binary 
tree, we must treat the root node as a special case.

We can simplify the logic for using binary search trees by wrapping the 
entire tree in a thin data structure that contains the root node: 

BinarySearchTree {
    TreeNode: root
}

While this might seem like a waste (more complexity and an extra data 
structure), it provides an easy-to-use interface for the tree and greatly sim-
plifies our handling of the root node. When using a wrapper data structure 
(or class) for our binary search tree, we also need to provide top-level func-
tions to add or find nodes. These are relatively thin wrappers with a special 
case for handling a tree without any nodes. 

To search a tree, the code again starts by checking whether the tree is 
empty (tree.root == null):

FindTreeNode(BinarySearchTree: tree, Type: target):
    IF tree.root == null:
        return null
    return FindValue(tree.root, target)

If the tree is empty, it immediately returns null to indicate the search failed 
to find a match. Otherwise, the code recursively searches the tree using 
FindValue. Performing the null check here can even take the place of the 
check at the start of FindValue, requiring us to perform it only once for the 
entire tree instead of at each node.
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Adding Nodes
We use the same basic algorithm to add values to a binary search tree as 
we do to search it. We start at the root node, progress down the tree as if 
searching for the new value, and terminate once we hit a dead end: either 
a leaf node or an internal node with a single child in the wrong direction. 
The primary difference between our search and insertion algorithms comes 
after we hit the dead end, when the insertion algorithm creates a new node 
as a child of the current node: a left-hand child if the new value is less than 
that of the current node or a right-hand child otherwise.

Here we can see a clear difference in behavior between trees that allow 
duplicates and ones that do not. If our tree allows duplicate values, we keep 
going until we hit a dead end and then insert a new copy of that value into 
our tree. If the tree doesn’t allow duplicates, we might replace or augment 
the data stored at the matching node. For example, one simple piece of 
auxiliary data we could track is a counter—the number of times the value 
has been added to the tree. Below we focus on the case of overwriting data 
to stay consistent with other indexing data structures we will explore in the 
book. 

As with our search function, we start with a wrapper function for addi-
tion that handles the case of empty trees:

InsertTreeNode(BinarySearchTree: tree, Type: new_value):
    IF tree.root == null:
        tree.root = TreeNode(new_value)
    ELSE:
        InsertNode(tree.root, new_value)

First, the code checks whether the tree is empty (tree.root == null). If 
so, it creates a new root node with that value. Otherwise, it calls InsertNode 
on the root node, kicking off the recursive process from below. Thus, we 
can ensure that InsertNode is called with a valid (non-null) node.

Here is the InsertNode code:

InsertNode(TreeNode: current, Type: new_value):
  1 IF new_value == current.value:
        Update node as needed
        return
  2 IF new_value < current.value:
      3 IF current.left != null:
            InsertNode(current.left, new_value)
        ELSE:
            current.left = TreeNode(new_value)
            current.left.parent = current 
    ELSE:
      4 IF current.right != null:
            InsertNode(current.right, new_value)
        ELSE:
            current.right = TreeNode(new_value)
            current.right.parent = current

502604c05.indd   64502604c05.indd   64 4/28/22   1:31 PM4/28/22   1:31 PM

Data Structures the Fun Way (Sample Chapter) © 2022 by Jeremy Kubica



Binary Search Trees   65

The InsertNode code starts by checking whether it is at a node with 
a matching value and, if so, updating the node’s data as needed 1. 
Otherwise, the code searches for the correct location to insert the new 
value by following either the left- or right-hand paths, based on the com-
parison of the new value and the current node’s value 2. In either case, 
the code then checks that the next node along that path exists 3 4. If the 
next node exists, the code follows the path, progressing deeper into the 
tree. Otherwise, the code has found a dead end, indicating the correct loca-
tion to insert the new node. The algorithm inserts nodes by creating a new 
node, linking the parent’s corresponding child pointer (left or right), and 
setting the parent link. 

For example, if we want to add the number 77 to the binary search tree 
in Figure 5-9, we progress down through nodes 50, 67, 81, and 78 until we hit 
a dead end at the node with value of 78. At this point, we find ourselves with-
out a valid child in the correct direction. Our search is at a dead end. We 
create a new node with the value of 77 and make it the node 78’s left child.
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176 4227 6359 78

1 29 95217 917758

23

92

Figure 5-9: Inserting the value 77 into our binary search tree

The cost of inserting a new node into the tree is again proportional 
to the depth of the branch along which we insert the new node. We per-
form a single comparison for each node along the path until we hit a dead 
end, and, as with the search operation, we ignore all the nodes in other 
branches. Therefore, the worst-case cost of an insertion will scale linearly 
with the depth of the tree. 

Removing Nodes
Removing nodes from a binary search tree is a more complicated process 
than adding them. There are three cases of node removal to consider: 
removing a leaf node (with no children), removing an internal node 
with a single child, and removing an internal node with two children. As 
you’d expect, the job becomes more complex as the number of children 
increases.

To remove a leaf node, we just delete that node and update its parent’s 
child pointer to reflect the fact it no longer exists. This might make the 
parent node into a leaf. For example, to remove node 58 in Figure 5-10, we 
would just delete node 58 and set its parent’s left child pointer to null.
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Figure 5-10: Remove a leaf node from a binary search  
tree by deleting it and updating the pointer from its  
parent node.

Removing leaf nodes shows the value of storing a pointer to the parent 
node: it allows us to search for the node to delete, follow the parent pointer 
back to that node’s parent, and set the corresponding child pointer to null. 
Storing this single piece of additional data makes the deletion operation 
much simpler.

In the example of our public relations department, a leaf node that gets 
deleted corresponds to an employee with no direct reports leaving the com-
pany. After the farewell party and cake, the rest of the organization returns 
to work. The only change in the hierarchy is that the former employee’s 
boss has one less person on their team. In fact, they might have no one 
reporting to them now.

If the target node has a single child, we remove it by promoting that 
single child to be the child of the deleted node’s parent. This is like remov-
ing a manager from our reporting hierarchy without shuffling anyone else 
around. When the manager leaves, their boss assumes management of the 
former employee’s single direct report. For example, if we wanted to remove 
node 17 from our example tree, we could simply shift node 21 up to take its 
place as shown in Figure 5-11. Node 14 now links directly to node 21.
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Figure 5-11: Remove an internal node with a single child by changing the pointers (left) and shifting that child 
up (right).
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This way of removing a single-child node works even if the node we are 
shifting up has its own subtree. Since the node being moved up was already 
in the parent’s subtree, all of its descendants will continue to respect the 
binary search tree property.

The complexity ramps up substantially when we try to remove an inter-
nal node with two children. It is no longer sufficient to just delete the node 
or shift a single child up. In our public relations department, a node’s two 
children represent two distinct employees with different humor levels. We 
can’t just choose one to promote and let the other accidentally disappear 
from the hierarchy, no longer anchored to the root node through the frag-
ile chain of pointers. We must preserve the integrity of the rest of the tree 
and ensure it continues to follow the binary search tree property.

To remove a node with two children, we swap that node out for another 
node in the tree that will preserve the binary search tree property. We do 
this by finding the successor of the node to be deleted—the next node we 
would encounter if we traversed the nodes in sorted order. We swap the suc-
cessor into the location of the deleted node. This swapped node might also 
have a child node that needs to be handled when it is removed from its old 
location. In order to remove the successor node from the binary tree with-
out breaking any of its pointers, we reuse the delete procedure on the node 
to be swapped. We find the successor, save a pointer to that node, and then 
remove it from the tree.

For example, if we wanted to delete value 81 in Figure 5-12, we need to 
first swap in the node with a value of 91. We do this by saving pointers to 
the node to delete and the successor node (Figure 5-12(1)). Then we set the 
successor node to be the child of the deleted node’s parent (Figure 5-12(2)). 
Finally, we update the successor node’s children to those of the recently 
deleted node, effectively swapping it into place (Figure 5-12(3)).

In order to perform the deletion, we need to be able to efficiently find 
a node’s successor. While this might seem like a daunting task, we have one 
critical advantage. Since we are only considering cases where the node in 
question has two children, we can always find the successor in the node’s 
right-hand subtree. Specifically, the successor will be the minimum (or 
leftmost) node in the right-hand subtree. As a bonus, the successor node 
is guaranteed to have at most one (right-hand) child. If the candidate suc-
cessor node had a child to the left, then that child (or a node down its own 
left-hand subtree) would be the true successor.
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Figure 5-12: To remove an internal node with two children,  
we first swap the node’s successor into that position. 

Listing 5-1 provides (admittedly verbose) pseudocode to demonstrate 
removing the three types of nodes we’ve just discussed from a binary search 
tree. Shorter implementations are possible. However, breaking the cases 
out explicitly helps to illustrate the complexities involved. Also note that we 
delete a node using its pointer instead of its value. Thus, in order to delete 
the node with a given value, we would first find a pointer to the node using 
FindTreeNode and then call delete with that pointer.
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RemoveTreeNode(BinarySearchTree: tree, TreeNode: node):
  1 IF tree.root == null OR node == null:
        return

    # Case A: Deleting a leaf node.
  2 IF node.left == null AND node.right == null:
        IF node.parent == null:
            tree.root = null
        ELSE IF node.parent.left == node:
            node.parent.left = null
        ELSE:
            node.parent.right = null
        return

    # Case B: Deleting a node with one child.
  3 IF node.left == null OR node.right == null:
      4 TreeNode: child = node.left
        IF node.left == null:
            child = node.right

      5 child.parent = node.parent
        IF node.parent == null:
            tree.root = child
        ELSE IF node.parent.left == node:
            node.parent.left = child
        ELSE:
            node.parent.right = child
        return

    # Case C: Deleting a node with two children.
    # Find the successor and splice it out of the tree.
  6 TreeNode: successor = node.right
    WHILE successor.left != null:
        successor = successor.left
    RemoveTreeNode(tree, successor)

    # Insert the successor in the deleted node's place.
  7 IF node.parent == null:
        tree.root = successor
    ELSE IF node.parent.left == node:
        node.parent.left = successor
    ELSE:
        node.parent.right = successor
  8 successor.parent = node.parent

  9 successor.left = node.left
    node.left.parent = successor

    successor.right = node.right
    IF node.right != null:
        node.right.parent = successor

Listing 5-1: Removal of a node from a binary search tree
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As with the wrapper functions for insertion and search, the code starts 
by checking whether the tree is empty 1 and, if so, returning null. It also 
checks whether there is a valid node to delete (node != null), which is useful 
in cases where we want to combine the search and deletion into a single line:

RemoveTreeNode(tree, FindTreeNode(tree, target))

Since FindTreeNode returns null if the node is not found, we handle this case 
explicitly.

The code then considers the three cases in order. In case A, where it is 
removing a leaf node 2, the code only needs to change the correct child 
pointer of the removed node’s parent. First, it checks whether the node to 
be deleted has a parent node. If not, the code is removing the root itself 
and modifies the root node pointer to null, effectively removing the root. 
If the removed node was the parent’s left-hand child, the code sets that 
pointer to null. Likewise, if the removed node was the parent’s right-hand 
child, the code sets that pointer to null. The code can then return, having 
successfully removed the target leaf node from the tree.

In case B, removing a node with a single child 3, the code starts by iden-
tifying which of the node’s two child pointers links to the child by checking 
which of the two pointers is not null 4. The code stores a pointer to that child 
node for later use. Next, it fixes the pointers between the newly promoted 
node and its new parent 5. The code sets the child’s parent pointer to its pre-
vious grandparent, splicing the removed node out of the tree in the upward 
direction. Finally, the code fixes the correct child pointer within the removed 
node’s parent, including handling changes to the root node as a special case. 
The code takes the pointer that previously pointed to the removed node and 
redirects it to point to that node’s single child. If the removed node doesn’t 
have a parent, the code is dealing with the root node and needs to modify that 
pointer accordingly. Once the code has spliced out the correct node, it returns.

In case C, where the node to be removed has two children, the code 
starts by identifying the successor node and removing that from the tree 6. 
Note that, as described above, the recursive call to RemoveTreeNode can-
not itself trigger case C because the successor will have at most a single 
(right-hand) child. The code maintains a pointer to this successor even 
after removing it from the tree because it will use this node to replace the 
deleted node. The code then replaces the deleted node with the successor 
through the following series of steps: 

1. Modifying the deleted node’s parent to set the correct child pointer to 
the successor 7.

2. Modifying the successor’s parent pointer to point to its new parent 8.

3. Setting the links to and from the left and right children of the succes-
sor 9. The code takes extra care when dealing with the right child, as 
it is possible that it has already deleted that child with the RemoveTreeNode 
operation above (in the case where the successor was the immediate 
right child of node). It therefore needs to check whether the right-hand 
child is null before trying to assign the right child’s parent pointer.
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Depending on the programming language and how the code will be 
used, we might also want to set node’s outgoing pointers to null as part of 
the deletion. This will clean up references from the deleted node to other 
nodes in the tree. We can do this by including the following lines at the end 
of each of the three cases (before the return statements in cases A and B 
and before the end of the function for case C):

node.parent = null
node.right = null
node.left = null

As with both search and insertion, the deletion operation involves at most 
traversing the tree from top to bottom along one path. In cases A and B, this 
trip happens before the RemoveTreeNode function (as part of the earlier call to 
FindTreeNode to get the pointer to the node itself). Case C adds an additional 
traversal from the internal node to be removed to its successor. Thus, the 
worst-case runtime of deletion is still proportional to the depth of the tree. 

The Danger of Unbalanced Trees
The time it takes to perform searches, additions, and deletions on a perfectly 
balanced binary search tree is, in the worst case, proportional to the depth 
of the tree, making these operations highly efficient in trees that are not 
too deep. A perfectly balanced tree is one in which, at every node, the right 
subtree contains the same number of nodes as the left subtree. In this case, 
the depth of the tree grows by 1 each time we double the number of nodes 
in the tree. Thus, in balanced trees, the worst-case performance of all three 
operations grows proportionally to log2(N), the logarithm of the number of 
elements N.

Binary search trees are still efficient as long as the trees are mostly, 
if not perfectly, balanced. But if the tree becomes highly unbalanced, its 
depth could grow linearly with the number of elements. In fact, in the 
extreme case, our splendid binary search tree becomes nothing more than 
a sorted linked list—all the nodes have a single child in the same direction 
as shown in Figure 5-13.
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53

55

56

61

...

Figure 5-13: An example of an unbalanced binary search tree
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Highly unbalanced trees can easily occur in many real-world applica-
tions. Imagine we are storing our coffee log in a binary search tree indexed 
by timestamp. Every time we drink a cup of coffee, we insert the relevant 
information into our tree. Things go bad quickly. Due to the monotonically 
increasing timestamps, we insert every entry in sorted order, and we create 
a linked list using only the right-hand child pointers. 

Operations on an unbalanced tree can be extremely inefficient. 
Consider a tree with N nodes. If our tree is balanced, our operations take 
time logarithmic in N. In the opposite case, where our tree is a list, our 
operations can take time linearly proportional to N. 

There are a variety of augmentations, such as red-black trees, 2-3 trees, 
and B-trees, that we can use to keep trees balanced while undergoing 
dynamic insertions and deletions. The tradeoff for any of these approaches 
is increased complexity in the tree operations. We consider B-trees in more 
detail in Chapter 12 and show how their structure keeps them balanced.

The next section introduces a straightforward approach to building a 
balanced binary search tree from an initial set of values. Bulk construction 
allows the algorithm to choose which nodes split the data so as to balance 
the number of nodes on each side. This is a good approach when we have 
many of the values up front but need to be careful with future insertions, as 
they could result in an unbalanced tree.

Bulk Construction of Binary Search Trees
We can easily construct a binary search tree by iteratively adding nodes: we 
create a single new node and label that our root, then for each remaining 
value, create a new node and add that node to the tree. This approach has 
the advantages of being simple and reusing the algorithms that we defined 
previously. Unfortunately, it can lead to unbalanced trees. As we saw above, 
if we add values in sorted order, we end up with a sorted linked list. We can 
do better when creating a tree from an initial set of numbers. 

We create balanced binary search trees from a sorted array, such as the 
one shown in Figure 5-14, by recursively dividing the elements into smaller 
subsets. At each level, we choose the middle value to be the node at that 
level. If there is an even number of elements, we can use either of the two 
middle elements.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5-14: A sorted array used for bulk construction of  
a binary search tree

We create a new node with the value equal to the middle element in 
our array and split the remaining elements among the two child nodes, as 
shown in Figure 5-15. We recursively create subtrees for each of those child 
nodes using the same process. Values less than the middle element go on 
the left, while larger values go on the right.
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1 2 3 4 5 6 8 9 10 11 12

7

Figure 5-15: After the first split, we have a single node  
and two separate arrays.

We don’t need to create new copies of the input array at each split. 
Instead, we can take a page from the binary search algorithm and just 
track the current range of the array under consideration, as shown in 
Figure 5-16. Each of our splits partitions the array into coherent halves,  
so we only need to worry about two bounds: the indices of the highest  
and lowest values that fall into the current branch.

L H

1 2 3 4 5 6 7 8 9 10 11 12

7

Figure 5-16: A high and low index can be used to track the subset  
of the array currently under consideration.

Once we’ve created the new node, we use the same approach to build 
each of the left and right subtrees independently. Specifically, we select the 
middle value, create a new node from that value, partition the remaining 
ranges, and use those ranges to create the subtrees. The process ends when 
there is only a single value left in our range. In that case, we create a new 
leaf node with that value and no children. 

Why This Matters
Binary search trees demonstrate how we can adapt dynamic data structures 
to specific problems. The trees use a branching structure to capture and 
maintain ordering information in the data values. This allows them to 
facilitate efficient searches. Further, the pointer-based structure of binary 
search trees allows them to continuously adapt as new data is added. This 
interplay of data, problem, and computation provides the foundation that 
allows us to solve increasingly complex computational challenges.

Throughout later chapters, we will continue to build on the concepts of 
dynamic data structures, adapting the structure of the data to the problem 
itself and using branching data structures to allow efficient pruning. These 
techniques pop up in a range of different data structures. Understanding 
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the fundamentals, such as how these techniques allow efficient searches in 
dynamic binary search trees, is critical to understanding how to work with 
more advanced data structures and algorithms. The next chapter intro-
duces the trie, showing how the tree-based concepts of the binary search 
tree can be extended to multiway branches in order to improve the effi-
ciency of certain types of searches.
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