
In the last chapter, we worked with binary
trees, and we’ll continue doing so in this

chapter, but with a variant that is stored with-
out the need for dynamic memory: heaps. Heaps

allow for easy implementation of a new abstract data type
(ADT), a good performance sorting method, and a new
structure for an enhanced version of binary search trees.
We’ll consider implementing heaps (in particular, binary
max heaps, but other types too), and we’ll look at using
heaps for priority queues, sorting arrays with heapsort,
and searching with another new structure called treaps.

In the next chapter, we’ll follow with another representation for heaps
that uses dynamic memory and allows for more freedom and better perfor-
mance for some new operations.

14
H E A P S

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

318 Chapter 14

Binary Heaps
A binary heap, usually referred to simply as a heap, is a type of binary tree
with two particular properties: a structure property that determines the shape
of the tree and a heap property that specifies the relationship between the key
of a parent node and those of its children.

The Structure Property
Heaps are a subset of binary trees, and the structure property requires
that the tree must be complete and that all leaves on the last level must be
located on the left. Consider the trees in Figure 14-1. Only one qualifies as
a heap while the other two fail. Can you tell which is which?

Figure 14-1: Of these three heap candidates, which is the right one?

The tree on the left in Figure 14-1 is the only heap. The tree in the mid-
dle has an incomplete middle level, and in the tree on the right, the bottom
children are not all on the left.

Given this rule, you can store a heap in a common array without dynamic
memory or pointers to simplify implementation. (See question 14.18 to
consider an alternative.) Place the root at the first position of the array, fol-
lowed by the nodes at the second level from left to right, then the nodes at
the third level (also from left to right), and so on. Figure 14-2 shows how
the array looks for a sample case. The numbers in the nodes correspond to
indices in the array.

1 2

3 4 5

0

6

7 8 9

Figure 14-2: Storing a heap’s
nodes in an array

In this representation, the heap’s root is always at position 0. The left
and right children of the node at position p are placed in consecutive adja-
cent positions, 2*p+1 and 2*p+2, respectively—unless they fall beyond the

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 319

end of the heap, in which case the node has fewer children. The parent of a
non-root node at position p is found at the Math.floor((p-1)/2) position.

You can verify those rules with a few examples. The children of the
root (at position 0) are at positions 2*0 + 1=1 and 2*0 + 2=2. Node 4 has a single
child at position 2*4 + 1=9, because the other child would be beyond the
heap size. The parent of node 9 is at position Math.floor((9-1)/2)=4. The par-
ent of node 2 is at position Math.floor((2-1)/2)=1.

These rules let you implement algorithms without needing any point-
ers; a simple array suffices. As with complete trees in Chapter 12, if a heap
has up to n = 2h–1 nodes, its height will be h, so its height is bounded by log n,
a result that will feature in order calculations.

The Heap Property
The second property of heaps is simple: the key of a node must be greater
than or equal to the keys of its children. This is an important contrast from
binary search trees: in heaps, there’s no difference between a left child and
a right child (either could be greater than the other), although they both
will be smaller than or equal to their parent. Any tree that follows both
the structure property and the heap property is called a binary max heap or,
more simply, a heap.

N O T E Why do I say the word heap means “max heap” by default? The song “New York,
New York” may give us a clue: Frank Sinatra describes wanting to be “king of the
hill” or “top of the heap.” This suggests the root (top) of the heap should be the greatest
value, doesn’t it?

You can reverse the condition and specify that the parent’s key be smaller
than or equal to those of its children, meaning the root would be the mini-
mum value of the heap. This variant is called a min heap, and you can use it
(among other scenarios) to merge several linked lists, which requires finding
the minimum of many elements repeatedly (see question 14.5). The heap
shown in Figure 14-3 satisfies both the structure and heap properties.

56 34

40 12 22

60

9

11 24 4

Figure 14-3: A valid heap

As mentioned previously, this tree also could be represented by an array
where 60 (the root) is at position 0 of the array, as shown in Figure 14-4.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

320 Chapter 14

60 56 34 40 12 22 09 11 24 04

0 1 2 3 4 5 6 7 8 9

Figure 14-4: The same heap shown in
Figure 14-3, as stored in an array

The heap property has an immediate consequence: the highest value in
the heap will necessarily be at its root; can you see why? Where in the heap
will you find its second highest value? The third highest? The fourth? (See
question 14.13.) This result will be key for a sorting algorithm called heap-
sort, which we’ll study later in this chapter.

Heap Implementation
To implement a heap, you need only a simple array. A heap is a data struc-
ture with a few operations, as shown in Table 14-1.

Table 14-1: Operations on Heaps

Operation Signature Description

Create → H Create a new heap .

Empty? H → boolean Determine whether the heap is empty .

Top H → key Given a heap, produce its top value .

Add H × key → H Given a new value, add it to the heap .

Remove H → H × key Given a heap, extract its top value and update the
structure correspondingly .

The functions you’ll implement for those operations are:

newHeap() Creates a new heap

isEmpty(heap) Determines whether the heap is empty

top(heap) Gets the value of the topmost (maximum) element of the heap

add(heap, value) Adds a new element to the heap

remove(heap) Removes the topmost element of the heap

The first three functions are very short:

1 const newHeap = () => [];

2 const isEmpty = (heap) => heap.length === 0;

3 const top = (heap) => {
 if (isEmpty(heap)) {
 return undefined;
 } else {
 return heap[0];
 }
};

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 321

Creating a new empty heap is the same as returning an empty array 1.
The size of the heap is heap.length, so checking it for 0 tells you whether the
heap is empty 2. Also, the top of the heap (unless the heap is empty, in
which case this code returns undefined) is at the first position of the array 3,
so the implementation details are straightforward.

Adding to a Heap

To add a new value to the heap, follow these steps:

 1. Add the new value at the end of the array.

 2. If the value is greater than its parent, exchange places with it
repeatedly.

 3. When the value is smaller than its parent or when it gets to the top of
the heap, stop.

Let’s see how this works. Start with the heap shown in Figure 14-5.

34 40

22 24 11

60

4

12 9

Figure 14-5: An initial heap,
before adding a new value

If you want to insert a new value of 56, the first step is to add it at the
end of the heap, so you’d get the result shown in Figure 14-6.

34 40

22 24 11

60

4

12 9 56

Figure 14-6: The new value (56)
starts at the end of the heap.

Let’s see if the new value should bubble up. Comparing 56 with its par-
ent (24) shows that they need to be swapped, resulting in a new heap con-
figuration (see Figure 14-7).

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

322 Chapter 14

34 40

22 56 11

60

4

12 9 24

Figure 14-7: If the new value is greater
than its parent, it has to “bubble” up.

After bubbling up, keep checking recursively, and a new upward move-
ment is required (see Figure 14-8).

56 40

22 34 11

60

4

12 9 24

Figure 14-8: Bubbling up continues until the added value
is not greater than its parent or at the root of the heap.

The last step led to a situation where the inserted value is not greater
than its parent, so the algorithm stops.

Our version of add() is short and to the point:

const add = (heap, keyToAdd) => {
1 heap.push(keyToAdd);
2 _bubbleUp(heap, heap.length – 1);
 return heap;
};

As described, the new value was added at the end of the heap 1, and
it was forced to bubble up to its final position 2 by using the _bubbleUp()
auxiliary function.

As before, a recursive implementation is easiest. If the element has
moved up, apply _bubbleUp() recursively to keep it moving:

const _bubbleUp = (heap, i) => {
1 if (i > 0) {
 2 const p = Math.floor((i - 1) / 2);
 3 if (heap[i] > heap[p]) {
 4 [heap[p], heap[i]] = [heap[i], heap[p]];

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 323

 5 _bubbleUp(heap, p);
 }
 }
};

If the element is not already at the top of the heap 1, use math (as in
“The Structure Property” on page 318) to determine the parent p of posi-
tion i 2. If you need to swap elements 3, destructuring makes it easy 4,
and you can keep bubbling up (if needed) by using recursion 5.

Removing from a Heap

Next you need the remove() method. Remember that the whole heap must
become one element smaller, so what happens after removing the top of the
heap? If the heap is empty, there’s nothing to remove; throw an exception, and
you’re done. Otherwise, pick the last element of the heap, place it at the top,
and then reduce the heap size by one. If the element doesn’t have any children,
stop. If the element is greater than the greatest of its children, also stop. Oth-
erwise, exchange the element with its greatest child and keep moving it down.

Here is an example of how this works. Start with the heap in Figure 14-9.

56 34

40 24 12

60

4

11 9 22

Figure 14-9: An initial heap before
removing its top

The first step involves removing the top value (60), replacing it with the
last value in the heap (22), and shortening the heap by one, which leads
to the situation shown in Figure 14-10. The value that needs to be moved
downward to restore the heap is highlighted.

56 34

40 24 12

22

4

11 9

Figure 14-10: After removing the top, replace
it with the last element of the heap (22).

Now start sifting down. Comparing 22 with its children, it needs to be
swapped with 56, which results in the new situation shown in Figure 14-11.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

324 Chapter 14

22 34

40 24 12

56

4

11 9

Figure 14-11: If the new top isn’t greater
than its children, it must “sink” down.

Recursively, compare 22 with its new children, and again, it needs to
sink down, as shown in Figure 14-12.

40 34

22 24 12

56

4

11 9

Figure 14-12: Sinking down proceeds
until the value is greater than its
children or reaches a leaf.

In this situation, 22 is now greater than its children, so the sinking-
down procedure ends. If the value 40 had been a 20, the 22 would have
been exchanged with the 24, and the shifting-down procedure would have
finished as well, since 22 would have no children.

Take a look at the following code, which uses a recursive _sinkDown()
auxiliary function to push a value down the heap:

const _sinkDown = (heap, i, h) => {
1 const l = 2 * i + 1;
2 const r = l + 1;
3 let g = i;
 if (l < h && heap[l] > heap[g]) {
 g = l;
 }
 if (r < h && heap[r] > heap[g]) {
 g = r;
 }
 if (g !== i) {
 4 [heap[g], heap[i]] = [heap[i], heap[g]];
 5 _sinkDown(heap, g, h);
 }
};

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 325

Calculate l and r, the children of the parent at i; you can use the for-
mula discussed earlier in “The Structure Property” section on page 318 1
and find r just by adding 1 2, since r follows l in the array. Use g to
determine the greatest value at positions i, l, and r 3. If the value at i isn’t
greater than its children, swap it 4 and keep sinking it down recursively 5.

At this point, you can finally write the remove() function:

const remove = (heap) => {
1 const topKey = top(heap);
2 if (!isEmpty(heap)) {
 3 heap[0] = heap[heap.length – 1];
 4 heap.length--;
 5 _sinkDown(heap, 0, heap.length);
 }
6 return [heap, topKey];
};

This code closely follows the description in the previous example.
When you get the top (which may be undefined, if the heap is empty) 1,
and if the heap isn’t empty 2, place its last value at the top 3, reduce the
heap’s length by one 4, and sink the new top down 5. Finally, return the
top value and the updated heap 6.

Considering Performance for Heaps

Table 14-2 shows the performance of the algorithms just explored.

Table 14-2: Performance of Operations
for Heaps

Operation Performance

Create O(1)

Empty? O(1)

Top O(1)

Add O(log n)

Remove O(log n)

Three operations work in constant time: creating a heap, testing
whether it’s empty, and getting the top value. The other two operations,
adding and removing, are more complex. Adding an element may make it
bubble up from the bottom of the heap all the way up to the top. Since you
know that the heap’s height is log n, this operation requires logarithmic
time. Similarly, removing an element implies placing a new one at the top
and possibly sinking it down to the bottom. It’s the same number of opera-
tions as in adding a value, but in reverse (also logarithmic time).

Let’s move on to consider a new ADT, and compare the performance of
heaps versus the other structures already discussed.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

326 Chapter 14

Priority Queues and Heaps
Priority queues (PQs) are different from the queues discussed in Chapter 10,
because each element has an associated priority, which determines what
element is removed first. In a PQ, the first element to be removed is the one
with the highest priority, not the first one that was added, as in a first in,
first out (FIFO) strategy.

N O T E There’s a problem with the English language! The term priority one implies the
highest priority, but 1 is the lowest-priority number. If you order tasks by priority and
the lowest numbered task is the one you should tackle first, then lower numbers have
a higher priority. However, some tools (like Microsoft Project) assume that 0 is the
lowest priority and higher numbers are higher priority, so there’s no clear-cut case.
Regardless, if you actually need a min heap instead of a max heap, see question 14.4.

PQs are used in multiple algorithms and many different situations.
Operating system schedulers use priorities to select what process will be the
next to run. Discrete event simulations decide the next step to apply based
on a timestamp (and in this case, lower timestamps equal higher priori-
ties). Dijkstra’s shortest path algorithm (which we’ll consider in Chapter 17)
requires finding the vertex with the minimum distance to another given ver-
tex. Prim’s algorithm for finding a minimum spanning tree for a graph also
needs to find the vertex with the smallest (cheapest) connection to another
vertex. Huffman’s coding algorithm builds a tree and repeatedly needs to
find the two nodes with the smallest probabilities to replace them with a new
node with the sum of those probabilities. All of these things require PQs.

In terms of an ADT, the description for a PQ then requires the follow-
ing operations shown in Table 14-3 (other versions that add more opera-
tions are considered later).

Table 14-3: Operations on Priority Queues

Operation Signature Description

Create → PQ Create a new PQ .

Empty? PQ → boolean Determine whether the PQ is empty .

Top PQ → key Given a PQ, produce its top value .

Add PQ × key → PQ Given a new key, add it to a PQ .

Remove PQ → PQ × key Given a PQ, extract its top value and update
the PQ correspondingly .

In terms of the provided operations, a heap matches the requirements
of a PQ, so implementation is straightforward. For the sake of variety,
though, take a look at other simple ways of implementing PQs and compare
their performances:

•	 With an unordered array or list, getting the top value would be O(n).
Removing it would also be O(n), because you have to go through all the
values to find it, and adding a new element would be O(1).

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 327

•	 With an ordered array (the top value at the last position), getting and
removing the top would be O(1), but adding a new element would be O(n);
after finding where the element goes, which is O(log n) with binary search,
you have to move the elements physically to make space, and that’s O(n).

•	 With an ordered list (the top value in the first place), the results are the
same as with an ordered array.

•	 With a balanced binary search tree, all three operations would be
O(log n). If you have an extra pointer to the maximum value, getting
the top value becomes O(1), but insertions and deletions will be a tad
slower because they have to maintain the added pointer.

This list of possible implementations for PQs isn’t complete, but it
should be enough to show how the heap is one of the best ways of imple-
menting them, with extra points for low complexity. In the following chap-
ter, we’ll consider some extra operations you may need, which will lead to
other implementations of PQs.

Heapsort
Heaps can be used to create a well-performing sorting method. Given a set
of values, with a heap, you can easily find the highest value of the set. After
removing it and restoring the heap, you can find the second-highest value
of the set, and so on. The basic algorithm structure is as follows:

 1. Build a heap out of the values to be sorted.

 2. Then, until no more values are left, swap the heap’s top element with its
last, reduce the heap size by one, and restore the heap condition.

Take a look at how this algorithm works and then consider an
enhancement.

Williams’ Original Heapsort
First, here is an example implementation of the heapsort algorithm,
invented by John W. J. Williams in 1964. You can reuse the _bubbleUp() and
_sinkDown() functions from earlier without any change (so I won’t list them
here), and what’s added is just the following:

function heapsort_original(v) {
1 for (let i = 1; i < v.length; i++) {
 _bubbleUp(v, i);
 }

2 for (let i = v.length - 1; i > 0; i--) {
 3 [v[i], v[0]] = [v[0], v[i]];
 4 _sinkDown(v, 0, i);
 }

 return v;
}

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

328 Chapter 14

The first stage of heapsort goes from the beginning to the end of
the array, making each element bubble up to its correct place 1. The second
stage 2 swaps the top element with the last one of the (current) heap 3 and
sinks it down, using the second argument to _sinkDown() to limit how far it
can sink 4.

Here is the algorithm in action. The building phase goes through the
stages shown in Figure 14-13. The highlighted area corresponds to the heap
that’s being built, and the rest are the values that haven’t yet been added to
the heap.

09 22 60 34 24 40 04 12 56 11

22 09 60 34 24 40 04 12 56 11

60 09 22 34 24 40 04 12 56 11

60 34 22 09 24 40 04 12 56 11

60 34 22 09 24 40 04 12 56 11

60 34 40 09 24 22 04 12 56 11

60 34 40 09 24 22 04 12 56 11

60 34 40 12 24 22 04 09 56 11

60 56 40 34 24 22 04 09 12 11

60 56 40 34 24 22 04 09 12 11

Figure 14-13: The first phase of heapsort is to build up
the heap (highlighted area) one value at a time.

In every step of the algorithm, a new value is added to the heap as it is so
far, bubbling up as needed, until you get a heap with one more element than
before. After the building phase is done, the second part of the algorithm
starts. The top element of the heap is swapped with the last value of the
heap, which shrinks down in size by one, and the new value at the top sinks
down to restore the heap, as shown in Figure 14-14.

56 34 40 12 24 22 04 09 11 60

40 34 22 12 24 11 04 09 56 60

34 24 22 12 09 11 04 40 56 60

24 12 22 04 09 11 34 40 56 60

22 12 11 04 09 24 34 40 56 60

12 09 11 04 22 24 34 40 56 60

11 09 04 12 22 24 34 40 56 60

09 04 11 12 22 24 34 40 56 60

04 09 11 12 22 24 34 40 56 60

04 09 11 12 22 24 34 40 56 60

60 56 40 34 24 22 04 09 12 11

Figure 14-14: In the second phase of heapsort, the top
value is repeatedly removed to build up the sorted array.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 329

In the first step, the top value (60) is exchanged with the last value of
the heap (11). The 11 sinks down, and 56 moves up to the top. In the next
step, 56 is exchanged with the last value (again 11), and 11 sinks down as 40
goes to the top. This continues step by step, and when the heap is at size 1,
the array is sorted.

Heapsort Analysis
What’s the order of heapsort? Without going too deep into mathematical
details, if you are sorting n items, you call the _bubbleUp() function n times,
and each time, an element may bubble up to the top of the heap, which is
log n high, so that’s O(n log n). Similarly, when removing elements from the
heap to produce the ordered array, call _sinkDown() n times, and elements
may sink down to the bottom of the heap, so that’s O(n log n) again; the
conclusion is that the algorithm is O(n log n).

An interesting property is that this behavior is guaranteed. No set of
data will lead to a worse case, as in quicksort, which could become O(n²).
Also, since we’ve established that O(n log n) is the best possible order for
comparison-based sorting algorithms, you can see that heapsort is a solid
algorithm with consistent performance, often used in libraries and in other
algorithms that may require sorting.

Finally, heapsort isn’t a stable sort in the sense shown in Chapter 6 (see
question 14.12 for an example).

Floyd’s Heap-Building Enhancement
Williams’ version of the algorithm is quite efficient, but a possible enhance-
ment, thanks to Robert Floyd, speeds up the heap-building part to O(n),
although we won’t go into the math here. The reason for this result is that
most of the elements are near the bottom, so sinking them down is much
faster than bubbling them up. Very few are near the top, where sinking
them is slower than bubbling up, all of which is enough to change the order
of heap building. Since the second part of the procedure is still O(n log n),
the algorithm’s total order won’t change, but it will run faster in any case.

Instead of making each element bubble up to its position, the algo-
rithm builds small heaps, which are then made larger by joining them
together, until you get the complete heap. Initially, you can consider all the
leaves of the tree to be small one-sized heaps. Then, take two leaves and
their parent and reorganize them (if needed) so that those three values
form a heap. Keep doing this, and eventually, you’ll get to the top of the
heap and be done.

Take a look at the code first and then at an example. The code for this
new heapsort version will depend on the previous _sinkDown() code, which
you’ll use unchanged. The rest of the algorithm is as follows:

function heapsort_enhanced(v) {
 for (let i = Math.floor((v.length - 1) / 2); i >= 0; i--) {
 _sinkDown(v, i, v.length);
 }

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

330 Chapter 14

 for (let i = v.length - 1; i > 0; i--) {
 [v[i], v[0]] = [v[0], v[i]];
 _sinkDown(v, 0, i);
 }
 return v;
}

The code for the second part of the algorithm (exchanging and
restructuring) is the same; the only difference is where you build up the
heap using _sinkDown(). Figure 14-15 shows just the heap-building part of
this code in action—specifically, how more parts of the array successively
become a heap. At each step, the part of the array that becomes a “mini
heap” is highlighted.

09 22 60 34 24 40 04 12 56 11

09 22 60 34 24 40 04 12 56 11

09 22 60 56 24 40 04 12 34 11

09 22 60 56 24 40 04 12 34 11

09 56 34 2460 40 04 12 22 11

60 56 40 34 24 09 04 12 22 11

Figure 14-15: The enhanced heap-building algorithm
creates the heap out of smaller, previously created ones.

To better understand Figure 14-15, look at the heap at different stages.
Initially, the array looks like Figure 14-16 and obviously isn’t a heap.

22 60

34 24 40

9

4

12 56 11

Figure 14-16: An initial array, which
doesn’t fulfill the heap property

After two steps, subheaps out of 11 and 24 are built (which were left
as they were) as well as 12, 34, and 56 (where 34 sifted down and 56 took
its place).

Figure 14-17 shows two more steps.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 331

22 60

56 24 40

9

4

12 34 11

Figure 14-17: After some rotations,
a few subheaps are built.

The heap is practically done with root 56 (the 22 value sank down
and 56 took its place) and another with root 60 (where no changes
were needed). You are just one step away from finishing, as shown in
Figure 14-18.

56 60

34 24 40

9

4

12 22 11

Figure 14-18: More and more subheaps
are built, reaching to the top.

The last step completes the heap; the 9 value sinks down to its place,
being replaced by 60. Figure 14-19 shows the finished heap.

56 40

34 24 9

60

4

12 22 11

Figure 14-19: Upon reaching the top,
the array has become a heap.

Floyd’s enhanced algorithm has two advantages: a faster first phase (the
second phase, which generates the sorted result, is the same) and shorter
code. You can take advantage of this method for your heap logic and mod-
ify the newHeap() function (see question 14.8).

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

332 Chapter 14

Treaps
In Chapter 12, we discussed binary search trees and several ways to try to
keep them balanced in order to avoid slow searches. In 1989, a new struc-
ture was invented that mixes the characteristics of trees and heaps: treaps.
These trees are balanced, although their heights are not guaranteed to be
O(log n); rather, randomization and the heap property are used to main-
tain balance with high probability.

The (invented) term treap is a portmanteau of the words tree and heap.
How does this mix come about? Basically, every key is associated with a ran-
dom priority, and when you build the binary search tree, take care to satisfy
the heap property, so a parent node always will have a priority greater than
those of its children. (The structure property will not be satisfied; nodes
are linked by pointers, not an array.) Note that instead of using a random
number generator, you can apply a hash function to the key, and thus pro-
duce its “random” priority. Mathematical analysis of treaps depends on
truly random numbers, but the form of randomness generated by hashing
also works. And in terms of testing algorithms, hashing has the advantage
of determinacy.

Let’s think about this a bit more. If you happened to order the keys
by priority and insert them in the tree in decreasing order of priority, the
resulting tree would satisfy the heap property. (Can you see why?) This
means that assigning random priorities is equivalent to taking a random
permutation of the keys before inserting them in the tree, which will proba-
bilistically provide a good shape for the resulting tree, with an expected
height that is O(log n), as with balanced trees.

Given a set of distinct keys and their corresponding (also distinct) pri-
orities, the resulting treap is unique, and we can construct a recursive proof
for this. First, the root of the treap must be the key with the highest priority.
Then, all the smaller keys will go into the root’s left subtree and the greater
keys will go into the right subtree, and we can apply the same reasoning
recursively to prove that those two subtrees will also be unique.

You can also modify the binary search tree algorithms from Chapter 12
to create treaps. The code is simpler than code for AVL or red-black trees,
yet it provides competitive performance, often better than that of its more
complex alternatives.

Creating and Searching a Treap
Given that treaps are just binary search trees at heart, most of the code dis-
cussed in Chapter 12 will still work. Start coding treaps as follows:

const {
 find,
 inOrder,
 isEmpty,
 maxKey,
 minKey,
 postOrder,
 preOrder

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 333

1 } = require("../binary_trees/binary_search_tree.func.js");

const newTreap = () => null;

const newNode = (key) => ({
 key,
 left: null,
 right: null,
2 priority: Math.random()
});

The treap is based on the previous binary search tree 1, and many of
the functions written there are still valid. When creating a new node, add a
random priority 2, but that’s all that will change here.

N O T E If you want to test your code and need deterministic results, you could compute prior-
ity as a hash of the key; as long as the results are random enough, it will do.

Let’s move on to adding a new key, which requires some extra coding.

Adding a Key to a Treap
Insertion into a treap requires basically the same logic as for binary search
trees, except that after having added the node in its place, you may need
to do some rotations to maintain the heap property. Adding new keys to a
treap is possible using the _rotate() method introduced in previous chap-
ters. The basic idea is first to place the new node in the tree according to its
value and then rotate it, if needed, in a way that the binary search tree con-
dition is kept but that also satisfies the heap condition. Figure 14-20 shows
the basic rotations.

–

+

A B

C

–

+

A

B C

Figure 14-20: Rotations also make the binary search tree become a heap.

The minus sign represents a smaller key value than the plus sign. If the
node placed lower (the minus) has a higher priority than its parent (the
plus), which is shown in the left side of the figure, you can apply a right rotation
and produce the situation on the right, which would satisfy the heap prop-
erty. Conversely, if you have the situation on the right and the lower node
(plus) has a higher priority than its parent (minus), you can apply a left
rotation to get the situation on the left. In both cases, the resulting tree is

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

334 Chapter 14

still a binary search tree, but the nodes are shifted around so that the final
parent node has a greater priority than its children.

Here is an example of how the add() algorithm should work. Start with
the treap shown in Figure 14-21, where priorities are shown to the right
of nodes.

22 56

9 34

40

60

4

0.9

0.7

0.2

0.6

0.5

0.3

0.4

Figure 14-21: In a treap, keys form a binary search tree and
priorities form a heap.

If you want to add a 12 node with a (random) priority of 0.8, the first
step is to insert the new node, without worrying about priorities and the
heap property, which will be sorted out later. This insertion (done in the
standard way for binary search trees, as described in Chapter 12) leads to
the tree shown in Figure 14-22.

22 56

9 34

40

60

4

0.9

0.7

0.2

0.6

0.5

0.3

0.4

12 0.8

Figure 14-22: After standard insertion, the resulting binary
search tree may no longer be a heap.

The treap works for searches, but the heap property isn’t satisfied,
because the priority for the 12 node is higher than the priority of its parent.
You can fix that problem by doing a left rotation, leading to the tree shown
in Figure 14-23.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 335

22 56

12 34

40

60

9

0.9

0.7

0.2

0.6

0.5

0.4

0.8

4 0.3

Figure 14-23: Rotations are applied until the heap property is satisfied,
but this tree is still wrong.

The rotation still leaves a valid binary search tree, but the process hasn’t
ended, because the heap property isn’t yet fully satisfied. The 12 node has a
higher priority than its parent; perform a right rotation to solve this, which
leads to the tree shown in Figure 14-24.

12 0.8

22

56

9

34

40

60

4

0.9

0.7

0.20.6

0.50.3

0.4

Figure 14-24: Now the heap property is satisfied.

After this second rotation, you can check that the heap property is satis-
fied, thus the addition to the treap was done correctly.

The final code follows, and there’s a single line that’s different from
common binary search trees:

const add = (tree, keyToAdd) => {
 if (isEmpty(tree)) {
 return newNode(keyToAdd);
 } else {
 const side = keyToAdd <= tree.key ? "left" : "right";
 tree[side] = add(tree[side], keyToAdd);
 return tree[side].priority <= tree.priority ? tree : _rotate(tree, side);
 }
};

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

336 Chapter 14

The line in bold makes sure that the heap property is satisfied. After
adding the new key on tree[side], if the priority of that subtree is not
greater than the priority of the root, you’re done; otherwise, apply a rota-
tion on that side to bring up the greater priority.

The last method needed is to remove a key from a treap.

Removing a Key from a Treap
The algorithm for removing a key from a binary search tree involves finding
it first, possibly finding its successor, and putting it in the removed node’s
place. With treaps, given that you must maintain the heap property, it’s a
tad more complex, but just as with insertions, you can use rotations to make
things come out right. To remove a node, use a different logic from earlier
with binary search trees:

•	 If you search for a key to remove in an empty tree, there’s nothing to
be done.

•	 If the key to remove is lower than the key at the root, delete the key
from the tree at the root’s left child.

•	 Otherwise, if the key to remove is greater than the key at the root,
delete the key from the tree at the root’s right child.

•	 Otherwise, if the key has neither a left child nor a right child, just
delete it.

•	 Otherwise, if it has a right child but no left child, set it to the right child.

•	 Otherwise, if it has a left child but no right child, set it to the left child.

•	 Finally, if it has both left and right children, apply a rotation to move
the key lower in the tree and attempt to delete it again.

The last step is the one that may be surprising, and it’s certainly differ-
ent from binary search trees. With the rotations shown earlier when insert-
ing in a treap, it’s possible to rotate a node with one of its children, and the
rotated node will be lower in the treap. If you carefully choose what rota-
tion to use, you can keep satisfying the heap property; so if you had a valid
treap before the rotation, you’ll still have a valid one after it. And finally,
as the key to delete moves lower and lower, it can’t always keep having two
children. At some point, it will have one or none, and then you can finish
the job quickly.

Consider a more complex case. Start with the treap shown in
Figure 14-25 and remove the 9 node (as in the section “Adding a Key to a
Treap” on page 333, the priorities are shown to the right of the nodes).

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 337

9 56

4 12

24

60

2211

0.9

0.7

0.4

0.8

0.5

0.20.1

0.3

Figure 14-25: An initial treap, with a node to
be removed

After finding the node, it happens that it has two children, so you need
to do a rotation. The right child of 9 has greater priority, so apply a left
rotation, leaving the intermediate situation shown in Figure 14-26 (notice
that the heap property is not satisfied, but it will be after you remove the
9 node).

9

56

4

12

24

6022

11

0.9

0.7

0.40.8

0.5

0.2

0.10.3

Figure 14-26: A left rotation brings down the node
to be removed.

The 9 node again has two children, so do a new rotation. This time, the
child with the greater priority is the left one, so you can do a right rotation,
resulting in a new situation (Figure 14-27).

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

338 Chapter 14

4

5612

24

6022

9

0.9

0.7

0.40.3

0.5

0.2

0.8

11 0.1

Figure 14-27: A new rotation moves the node
to be deleted further down the treap.

Now you’ve reached a simple case, since the 9 node has only one child,
which allows you to remove it, resulting in the final treap (Figure 14-28).

4

5612

24

6022

11

0.9

0.7

0.40.3

0.5

0.2

0.1

Figure 14-28: The final treap after removing
the node you want to delete

The code for removing a key is as follows (notice that the implementa-
tion closely follows the previous bulleted list):

const remove = (tree, keyToRemove) => {
 if (isEmpty(tree)) {
 // nothing to do
 } else if (keyToRemove < tree.key) {
 tree.left = remove(tree.left, keyToRemove);
 } else if (keyToRemove > tree.key) {
 tree.right = remove(tree.right, keyToRemove);
 } else if (isEmpty(tree.left) && isEmpty(tree.right)) {
 tree = null;
 } else if (isEmpty(tree.left)) {
 tree = tree.right;
 } else if (isEmpty(tree.right)) {
 tree = tree.left;
1 } else {

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 339

 2 const [side, other] =
 tree.left.priority < tree.right.priority
 ? ["right", "left"]
 : ["left", "right"];
 3 tree = _rotate(tree, side);
 4 tree[other] = remove(tree[other], keyToRemove);
 }
 return tree;
};

The code is the same as for common binary search trees, except that
when a key is found that has two children 1, you decide which rotation you
need 2, apply it 3, and go down recursively to attempt deleting the key 4.
If you had done a left rotation, the original root (with the key you wanted
to delete) would be displaced to the left subtree, so the removal process
continues there. With a right rotation, the process would continue at the
right subtree.

You’ve now used heaps to extend binary search trees. Let’s look at the
results of this change.

Considering the Performance of Treaps
As mentioned earlier, the expected height of treaps is O(log n), which
means that adding, removing, and finding keys all have that same expected
order. The randomization implied by the assignment of priorities does not
ensure, however, that there won’t be bad cases, and in fact, the worst-case
scenario is the same as with binary search trees: trees having O(n) depth
and an effect on the algorithms’ performance.

A main difference with common binary search trees is that in practice,
getting a “bad” sequence of data may not be unexpected, always leading
to bad trees. However, in a treap, because of the random priorities, the
probability of building a “bad” treap is very low, no matter the order of the
original data. In fact, to get a badly balanced treap, priorities would have
to be correlated with the key values, which is very unlikely to happen with
random numbers. Thus, the average performance of algorithms will be
independent of the sequence of key insertions (see Table 14-4).

Table 14-4: Performance of Operations for Treaps

Operation Average performance Worst case

Create O(1) O(1)

Add O(log n) O(n)

Remove O(log n) O(n)

Find O(log n) O(n)

Traverse O(n) O(n)

The key to treaps is that randomization makes it highly probable that
some balance will be achieved, thus providing high performance. (This was

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

340 Chapter 14

the same argument for randomized binary search trees.) In addition, treaps
allow you to implement other methods, like partitioning a treap into two or
rejoining two treaps to make one. We won’t discuss those methods directly
here, but see questions 14.15 and 14.16 at the end of the chapter.

Ternary and D-ary Heaps
If binary heaps are a good structure for priority queues, the logical general-
ization is that as with B-trees, having more children at each level makes
for a shorter tree and faster algorithms, such as with ternary (also known
as trinary) heaps, in which each node has three children, or quaternary
heaps with four children, and in general d-ary heaps with d children for
each node.

Basically, all the differences are in the _bubbleUp() and _sinkDown() meth-
ods, which now have to deal with more than two children, as shown:

const { newHeap, isEmpty, top } = require("./heap.func.js");

1 const ORDER = 3; // with ORDER===2, we get classic heaps

const _bubbleUp = (heap, i) => {
 if (i > 0) {
 2 const p = Math.floor((i - 1) / ORDER);
 if (heap[i] > heap[p]) {
 [heap[p], heap[i]] = [heap[i], heap[p]];
 _bubbleUp(heap, p);
 }
 }
};

const _sinkDown = (heap, i, h) => {
3 const first = ORDER * i + 1;
4 const last = first + ORDER;
 let g = i;
5 for (let j = first; j < last && j < h; j++) {
 if (heap[j] > heap[g]) {
 g = j;
 }
 }
 if (g !== i) {
 [heap[g], heap[i]] = [heap[i], heap[g]];
 _sinkDown(heap, g, h);
 }
};

const add = (heap, keyToAdd) => { ...exactly as before... }

const remove = (heap) => { ...exactly as before... }

Take a look at the changes in the code. We added an ORDER variable
(here set to 3) to store the order of the new heap 1. Calculating the parent

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 341

of a node requires using a corrected formula; instead of dividing by 2 as
in binary heaps, divide by the heap order 2. Then make the same change
(substituting the heap order for the 2) to find the children of an element 34.
Since you may have any number of children for a node, loop over them to
find the greatest 5.

If you create a new heap (ternary, in this case) and add values 22, 9,
60, 34, 24, 40, 11, 12, 56, 4, and 58, in that order, you’ll get the heap in
Figure 14-29 (shown as both a tree and an array).

60 40 56 58 09 24 11 12 22 04 34

40 58

9 11 34

60

24 22

56

12 4

0 1 2 3 4 5 6 7 8 9 10

Figure 14-29: In a ternary heap, the implementation
is similar to binary heaps.

What about the order of d-ary heaps in general? Since the height of the
tree is always O(log n), the order for all operations is the same. However,
some operations may have better or worse performance. For instance, bub-
bling up becomes faster (because the tree is flatter), but sinking down is
slower (because you have to find the largest out of more values).

Summary
This chapter introduced a new data structure, a heap in several variants:
binary and d-ary, as well as min and max heaps. We saw how heaps could be
used to implement a new ADT: priority queues. Another usage of heaps was
a sorting algorithm with good constant performance. Finally, we applied
the heap concept to create a randomized binary search tree: a treap. In the
next chapter, we’ll continue exploring related concepts and consider some
variants of heaps that allow for new operations.

Questions
14.1 Is It a Heap?

Given an array, write a function that returns whether the array is a
max heap. You don’t need to build a heap; just answer whether it
already is one.

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

342 Chapter 14

14.2 Making Do with Queues

Suppose you could work only with priority queues but not with stacks or
queues. How could you emulate those two ADTs with a priority queue?
(Hint: since stacks and queues do not use a priority field, you can assign
them whichever values you want.)

14.3 Max to Min

Suppose you have a max heap; can you convert it into a min heap in
linear O(n) time?

14.4 Max or Min

What changes would you have to apply to your max heaps in order to
get min heaps instead?

14.5 Merge Away!

Suppose you are given several ordered lists and want to merge them
into a single list. Implement this algorithm using a min heap to decide
what node to choose at each step.

14.6 Searching a Heap

Even though it makes little sense (because the heap isn’t structured for
it), how could you implement a find() function to search for a value in
a heap?

14.7 Removing from the Middle of a Heap

In a heap, you always remove the value at the top, and if you want to
remove the last value of a heap, it’s trivial, but can you write an algo-
rithm that allows you to remove any element whatsoever from a heap?

14.8 Faster Build

Floyd’s enhancement builds a heap in O(n) time. Modify newHeap() so if
given an array of values, it will use Floyd’s method to initialize the heap.

14.9 Another Way of Looping

In the heapsort_original function, you could have easily used forEach() to
build up the heap; can you see how?

14.10 Extra Looping?

In the heapsort_enhanced function, what would have happened if you had
done a complete loop when building up the heap? More specifically,
what if that code had been written as follows:

for (let i = v.length - 1; i >= 0; i--) {
 sinkDown(i, v.length);
}

14.11 Maximum Equality

What’s the order of heapsort if you use it to sort an array filled with the
same value?

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

Heaps 343

14.12 Unstable Heap?

Heapsort isn’t stable, and trying to sort a short array is enough to verify
this. Can you produce such an example and show the lack of stability?
Tip: you won’t need a very large array.

14.13 Trimmed Selection

You can use a heap to select the k greatest values out of n by removing
the top of the heap k times. However, if k << n, you may speed up things
a bit. Show that the k greatest values must be found in level 1 (the root)
up to level k (but not beyond), and use this finding to prune the heap
before doing the selection.

14.14 Is It a Treap?

Given a binary tree whose nodes have key and priority fields, can you
write a function that will check whether that tree is actually a treap?

14.15 Splitting a Treap

Given a treap and a limit value, partition it into two separate treaps:
one with all the keys smaller than the limit value and the other with
all the keys larger than the limit. Assume that the limit value isn’t in
the treap.

14.16 Rejoining Two Treaps

Consider the inverse to question 14.15: assume that you have two sepa-
rate treaps, such that all keys in the first are smaller than all keys in
the second. Can you find a way to join those two treaps to form a
single one?

14.17 Removing from a Treap

If in the remove() method for a treap you changed the line

tree[other] = remove(tree[other], keyToRemove);

to

tree = remove(tree, keyToRemove);

would it still work? For reference, this is how the code would look (the
changed line is in bold):

const remove = (tree, keyToRemove) => {
 if (isEmpty(tree)) {
 // nothing to do
 } else if (keyToRemove < tree.key) {
 tree.left = remove(tree.left, keyToRemove);
 } else if (keyToRemove > tree.key) {
 tree.right = remove(tree.right, keyToRemove);
 } else if (isEmpty(tree.left) && isEmpty(tree.right)) {
 tree = null;

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

344 Chapter 14

 } else if (isEmpty(tree.left)) {
 tree = tree.right;
 } else if (isEmpty(tree.right)) {
 tree = tree.left;
 } else {
 const [side, other] =
 tree.left.priority < tree.right.priority
 ? ["right", "left"]
 : ["left", "right"];
 tree = _rotate(tree, side);
 tree = remove(tree, keyToRemove);
 }

 return tree;
};

14.18 Trees as Heaps

What would happen if you used binary search trees to represent heaps?
What would the performance be of the three basic operations: add(),
remove(), and top()? Can you think of ways to make top() faster?

Data Structures and Algorithms in JavaScript (Sample Chapter) © 10/30/24 by Federico Kereki

