
Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

PART II
L O G E X T R A C T I O N A N D

M A N A G E M E N T

Data engineers must often figure out how to get data
from remote hosts and into the security information
event manager (SIEM). In this part of the book, we’ll
cover tools that can run on the endpoints in your envi-
ronment, collect logs from them, and forward these logs
to a central location for storage or further processing.
In Chapter 4, we’ll focus on the extraction of logs from
an organization’s endpoints and network using a tool
called Filebeat. In Chapter 5, we’ll discuss the Windows
event log and how you can mine this critical data
source with Winlogbeat, a companion tool to Filebeat.
To centrally manage the log collection agents running
on devices across your environment, you might choose
to use Elastic Agent, covered in Chapter 6. Lastly, in
Chapter 7, we’ll explore the syslog logging format and
collect syslog data using Rsyslog.

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

All effective monitoring and security infra-
structures rely on the ability to collect data

from diverse sources across an organization.
We’ll begin our discussion of log collection with

Elastic Filebeat, which can extract dozens of log types
from endpoints and the network.

You’ll discover how to harvest local log files and listen to the network
for incoming data. Then, you’ll use Filebeat’s modules and processors to
convert data to the Elastic Common Schema (ECS) naming convention,
extract relevant fields from a filestream, apply tags to events to aid later
analysis, and read custom logs that Filebeat’s modules don’t support.

Once you’ve collected logs from endpoints, you’ll likely want to transmit
them to another tool. We’ll explore ways of outputting data to tools covered
in later chapters, including Kafka, Redis, Logstash, and text files.

4
E N D P O I N T A N D

N E T W O R K D A T A

4 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Collecting Logs with Filebeat
You can install Filebeat on any device running Linux, Windows, or macOS
to collect data from it. Filebeat reads logs on the host machine or from the
network; converts them into JSON; uses its internal processors to add, mod-
ify, or delete the content of events; and then sends the logs downstream to
Logstash, Kafka, Elasticsearch, or other tools. Its many modules allow it to
interpret events from various vendor technologies, including commercial
tools like Cisco and Palo Alto Networks and open source tools like Zeek.

Filebeat can also rename log values using the ECS naming convention,
which is helpful because different tools use distinct names to label the same
information. For example, they might include destination IP address fields
called dst_ip or dip; ECS would convert both names into destination.ip, mak-
ing searching for data from multiple sources much easier.

The tool provides several advantages over other log collectors we’ll
discuss later in this book, such as Elastic Agent and Rsyslog, covered in
Chapters 6 and 7, respectively. Unlike Rsyslog, it automatically converts
many log varieties into JSON and ECS by default, although Filebeat needs
Elasticsearch or Logstash for complex ECS conversions. Filebeat can also
prune and privatize data, and it requires relatively few configuration set-
tings to do so. Additionally, Filebeat can output logs to more destinations
than Elastic Agent can, including Redis and text files, and offers a lower
barrier to entry than Elastic Agent.

Another advantage of Filebeat over other traditional log file collectors
is that it provides backpressure support when outputting events directly to
Logstash and Elasticsearch. This means that if Logstash experiences a spike
in data that it needs time to process, it can notify Filebeat to slow things
down so it can catch up. Alternatives to Filebeat would continue to firehose
data, causing queue backups or potential data loss.

Filebeat could even replace the need for Logstash in environments
running technologies supported by Filebeat and Winlogbeat that consume
JSON downstream. Written in Golang, Filebeat is more lightweight than
Logstash, which is written in Java and Ruby. However, Filebeat supports only
one output destination at a time, whereas Logstash can send data to any of
several destinations by using conditional statements. Logstash also has a
much more robust filtering capability than Filebeat, but if an organization
needs only the features Filebeat can provide, Filebeat is the better option.

One downside to Filebeat is that it acts as a stand-alone agent rather
than a centrally managed one. Operators must manually upgrade and
reconfigure Filebeat, whereas they can modify and upgrade Elastic Agent
from a central server. We’ll explore Elastic Agent in Chapter 6 and compare
its functions to those of Filebeat. We’ll also use Ansible in Chapters 11 and 12
to demonstrate deploying Filebeat on multiple servers.

Another challenge is that Filebeat requires a unique socket for each
enabled module when receiving events from other tools. For instance, it
might receive some traffic on port 514/TCP, with the Cisco module listen-
ing on 5514/TCP for router and switch events and the Palo Alto module

Endpoint and Network Data 5

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

listening on 55514/TCP. If not managed properly, this can certainly lead to
configuration clutter and a multitude of firewall holes across the network.

Installation
The majority of this chapter will focus on reading logs from Linux hosts.
You can download Filebeat from the Elastic website in several file formats,
including DEB, RPM, Apt, Yum, Windows, and Mac and Linux tarballs.
Let’s use the tarball package, which makes it easier to start and stop
Filebeat frequently. The configurations you’ll make for the tarball package
are compatible with Apt and Yum installations.

On your Linux host, navigate to your user’s home Downloads directory
and download the Linux x86_64 tarball from Elastic’s Filebeat downloads
web page. Replace the version number in the filename as appropriate:

$ cd ~/Downloads/
$ wget https://artifacts​.elastic​.co​/downloads/
beats/filebeat/filebeat-X.Y.Z-linux-x86_64.tar.gz
$ tar xvzf filebeat-X.Y.Z-linux-x86_64.tar.gz
$ cd filebeat-X.Y.Z-linux-x86_64

We’ll cover Windows installation and configuration instructions in
“Windows” on page XX.

Enabling TLS
To protect our data, we need to create a TLS certificate for Filebeat so we
can encrypt the data it sends. In Chapter 2, we created root and intermedi-
ate CAs. Let’s use the intermediate CA to sign a new flex certificate request.

Creating a Configuration File
We’ll use OpenSSL to create a new TLS flex certificate. Store this file,
openssl-flex-filebeat.local.cnf, in the TLS configuration directory (~/tls/configs)
you created in Chapter 2. Open your preferred text editor and enter the
following:

###
[req]
prompt = no
default_bits = 4096
default_md = sha512
1 default_keyfile = tls/keys/filebeat.local.flex.key.pem
distinguished_name = flex_distinguished_name
req_extensions = flex_cert
###
2 [flex_distinguished_name]
countryName = US
stateOrProvinceName = MO

6 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

localityName = St. Louis
organizationName = Business, Inc.
organizationalUnitName = Information Technology
3 commonName = Filebeat Flex
emailAddress = none@localhost
###
[flex_cert]
4 nsComment = OpenSSL Certificate for Clients or Servers
5 subjectAltName = @alternate_names
###
[alternate_names]
6 DNS.1 = filebeat
7 DNS.2 = filebeat.local

OpenSSL will use this configuration to create a new private key 1 in
the tls/keys directory. Replace the location information in flex_distinguished_
name with your own 2 (unless you, like me, come from the land of toasted
ravioli and pork steaks). We’ll use the commonName 3 and nsComment 4 state-
ments to indicate that this is a client certificate for initiating and receiving
encrypted connections. The subject alternative names 5 include the base
name 6 and fully qualified domain name 7 of the server running Filebeat.

If you haven’t already done so, be sure to add your Filebeat IP address,
hostname, and Logstash information to your DNS server or to /etc/hosts so
that the hostnames resolve to the proper destinations. These entries should
look like the following; substitute your IP addresses as necessary:

--snip--
192.168.8.133 filebeat
192.168.8.133 filebeat.local
192.168.8.133 logstash
192.168.8.133 logstash.local
--snip--

Without the ability to resolve hostnames, Filebeat won’t be able to
establish TLS connections, since the certificate’s subject alternative name
doesn’t include IP addresses. Next, we’ll generate the private key and sign-
ing request.

Generating Certificate Signing Requests
Let’s create the key pair and a certificate signing request. We’ll also include
the key passphrase on the command line to skip being prompted for it, but
you shouldn’t type passwords on the command line in production:

$ openssl req -config tls/configs/openssl-flex-filebeat.local.cnf -new
-out tls/csr/filebeat.local.flex.csr -outform PEM -passout pass:abcd1234

Endpoint and Network Data 7

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Next, let’s use the intermediate CA from Chapter 2 to create the
signed certificate. Pass in the private key’s passphrase and specify the CA’s
signing_policy and flex_cert extensions:

$ openssl ca -batch -notext -config tls/configs/openssl-intermediateca.cnf -passin
pass:abcd1234 -policy signing_policy -extensions flex_cert -out
tls/certs/filebeat.local.flex.cert.pem -infiles tls/csr/filebeat.local.flex.csr

You should now have the signed certificate, filebeat.local.flex.cert.pem.
View it to check its extensions:

$ openssl x509 -in tls/certs/filebeat.local.flex.cert.pem -text -noout
--snip--
 X509v3 Extended Key Usage:
 1 TLS Web Client Authentication, TLS Web Server Authentication
 X509v3 Subject Alternative Name:
 2 DNS:filebeat, DNS:filebeat.local
--snip--

The certificate indicates that it’s for client and server connections 1,
and the DNS entries 2 show both the base name and the fully qualified
domain name (FQDN) we specified. Check that the certificate can be
authenticated using the CA chain file:

$ openssl verify -CAfile tls/certs/ca-chain.cert.pem tls/certs/filebeat.local.flex.cert.pem
tls/certs/filebeat.local.flex.cert.pem: OK

As we have a valid certificate with both the clientAuth and serverAuth
extensions, we can begin configuring Filebeat.

Configuration
Filebeat uses the filebeat.yml configuration file to centralize core settings.
This is where you’ll configure inputs, transformations not found in mod-
ules, and outputs, along with other settings.

The default outputs in filebeat.yml immediately try to connect to local
Elasticsearch and Kibana instances. So, instead of using the file as pro-
vided, we’ll slim it down and then fill it in over the course of this chapter to
better understand how it works.

For the purposes of this example, let’s say we used Project Discovery’s
network reconnaissance tools Subfinder and Httpx to acquire subdomain
information about https://owasp.org, resulting in JSON output files. We’ll edit
filebeat.yml to provide a path to these files and an ID for troubleshooting,
then explicitly enable the input.

First, copy the original file into a backup:

$ cp filebeat.yml filebeat.yml.original

8 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Then, edit the filestream input statement in the file to match the fol-
lowing slimmed-down version, substituting your username for j as needed:

filebeat​.inputs:

Input that reads local files from custom recon tooling
1 - type: filestream
2 id: recon-logs
 enabled: true
3 paths:
 - /home/j/example-logs/subfinder*.json
 - /home/j/example-logs/httpx*.json

Module location
4 filebeat​.config​.modules:
 path: ${path​.config}​/modules​.d​/*​.yml
5 tags: ["tags-for-everybody", "you-get-a-tag", "and-you-get-a-tag"]

6 output.logstash:
 enabled: true
 hosts: ["logstash.local:5044"]
7 ssl.enabled: true
8 ssl.verification_mode: full
9 ssl.certificate: "/home/j/tls/certs/filebeat.local.flex.cert.pem"
 ssl.key: "/home/j/tls/keys/filebeat.local.flex.key.pem"
 ssl.certificate_authorities:
 - /home/j/tls/certs/ca-chain.cert.pem

The filebeat​.inputs section contains one input, filestream 1. Adding an
id statement 2 is a best practice for troubleshooting missing or unexpect-
edly high-volume logs, as it allows us to easily identify a problematic con-
figuration block.

The paths statement 3 provides the locations of the files containing
the input. We’ve specified newline-delimited JSON (NDJSON) files that use
wildcards to match any file beginning with subfinder or httpx and ending in
the .json extension. This should let us read logs generated by the reconnais-
sance tools Subfinder and Httpx.

The filebeat​.config​.modules section 4 tells Filebeat where to find its
processing modules. We’ve left this section unchanged because these
modules are part of the downloaded tarball. We add custom tags 5 to
every event to categorize them for later analysis. Finally, output.logstash 6
describes where to send the data it outputs. Be sure that the IP address in
the output statement matches that of the Logstash instance you configured
in Chapter 2.

We enable TLS 7 and set the verification mode to full 8, requiring
Filebeat to verify the downstream server’s certificate against the CA and
match the domain name against the one listed in the downstream cer-
tificate. We also specify the signed client certificate 9, key file, and our
CA chain.

Endpoint and Network Data 9

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Let’s copy this new filebeat.yml to its own backup, which we’ll save in our
remote Git repository at the end of this chapter:

$ cp filebeat.yml filebeat.yml.backup

Next, open a new terminal in which to run Logstash so it can receive
data from Filebeat. Load the beats​-mtls​.conf Logstash pipeline we created in
Chapter 2 in another terminal and keep the Logstash instance running to
monitor the output on screen:

$ bin/logstash -f conf​.d​/beats​-mtls​.conf --config.reload.automatic

You can now view any output sent to Logstash on the screen in real
time. But while this is ideal for testing purposes, it probably won’t be useful
in production unless you can read at Matrix speeds. Let’s explore input and
output types and use Logstash to view the data processed by Filebeat.

Inputs
Filebeat extracts data by reading files on the host, listening to the network,
or reaching out to external systems like Redis or Kafka. We configure these
input sources in filebeat.yml, as shown in the previous section, or inside the
individual module configuration files. Multiple inputs can run at once
(though Filebeat can output data to only one location).

Reading Local Files
Filebeat will use the filestream inputs you configured in filebeat.yml to
vacuum up local logs and send them downstream. If you’re migrating to
Filebeat from tools like Rsyslog and Syslog-ng, this process should look
familiar; Filebeat reads the logs, parses them loosely into JSON and ECS
when able, and ships them off.

The tool also keeps track of where it left off in each file using a registry
of offsets, or byte positions. For the sake of testing, let’s write a short bash
script in the Filebeat directory, named clean-and-reload-filebeat.sh, that will
delete this registry so we can re-read the same logs multiple times, which
will make it easier to generate test data. Open your editor of choice:

$ vim clean-and-reload-filebeat.sh

Add these lines and then save and close the file:

#!/bin/bash
rm -rf data/
./filebeat -e

10 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Note that if you installed Filebeat using the DEB or RPM packages,
you’ll find your /data directory in /var/lib/filebeat, and you’ll need sudo privi-
leges to delete it.

The script will remove the cached positions and then restart Filebeat.
Make the script executable:

$ chmod +x clean-and-reload-filebeat.sh

Invoke Filebeat for the first time by running the following command
in its own terminal window. It should read the NDJSON files we listed as
inputs during configuration:

$./filebeat -e

The -e option sends all output to the standard error stream. Also note
the leading period before the slash.

N O T E 	 You might find it helpful to create a split terminal window using tools like Tmux
or Terminator. By placing Filebeat on the left side of the screen and Logstash on the
right side, you can watch both tools in action without navigating between terminals.

As a result of running the command, Filebeat will process the logs con-
figured earlier.

Applying Filestream Parsers
Parsers interpret or translate an input format into another format, typically
JSON unless otherwise specified. This may include reading a string contain-
ing JSON data and converting it into usable key-value pairs. Note that the
NDJSON we read as input in the previous section appeared in the Logstash
terminal as a giant blob in the message field:

{
 "log" => {
 "file" => {
 "path" => "​/home​/j​/example​-logs​/httpx​_owasp​.org​.json"
 },
 "offset" => 134706
 },
 "@timestamp" => 2099-04-28T20:29:57.884Z,
 "@version" => "1",
 "message" => "{\"timestamp\":\"2099-04-27T15:23:03.636525891-
 05:00\",\"csp\":{\"domains\":[\"https://
--snip--

To properly format these key-value fields, let’s add a parser inside of the
filebeat.yml file’s filestream statement. In this case, we’ll use a parser called
ndjson:

Endpoint and Network Data 11

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

filebeat​.inputs:
- type: filestream
 id: recon-logs
 enabled: true
 paths:
 - /home/j/example-logs/subfinder*.json
 - /home/j/example-logs/httpx*.json
1 parsers:
 2 - ndjson:
 3 target: "processed"
 4 add_error_key: true
 fields_under_root: true
5 fields:
 threat.tactic.name: "Reconnaissance"
 threat.tactic.id: "TA0043"
 threat.technique.name: "Gather Victim Network Information"
 threat.technique.id: "T1590"

We nest the parser under the type: filestream section 1. We specify
that it will read NDJSON from the event 2, nest the new JSON under the
processed key 3, and add an error message 4 if something unexpected
happens.

We also add ECS-aligned custom fields 5 to describe MITRE ATT&CK
framework values present in these log files. MITRE ATT&CK is a popular
system used to describe adversary behavior during threat modeling and
analysis. You could use these fields downstream to categorize these logs as
network reconnaissance activity.

Filebeat expects a dotted fieldname representing nested JSON objects,
meaning a field named abc.123.xyz would have a top-level key of abc and a
value of 123, which itself is a key containing the final string value xyz.

Now that we can parse NDJSON into a nested field of its own, run the
handy Filebeat cleaner script to wipe out the registry and reingest the files:

$./clean-and-reload-filebeat.sh

Much better! Filebeat can now parse the JSON fields, so other tools can
reference them later. We’ll also be able to use the custom threat fields for
filtering or analysis:

{
 1 "@timestamp" => 2099-05-08T09:00:47.133Z,
 "log" => {
 "file" => {
 "path" => "​/home​/j​/example​-logs​/httpx​_owasp​.org​.json"
 },
 "offset" => 134706
 },
 "threat" => {
 "technique" => {
 "id" => "T1590",
 "name" => "Gather Victim Network Information"

12 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

 },
 "tactic" => {
 "id" => "TA0043",
 "name" => "Reconnaissance"
 }
 }
 },
 2 "processed" => {
 "timestamp" => "2099-04-27T15:23:03.636525891-05:00",
 "method" => "GET",
 "content_length" => 74814,
 "webserver" => "Server",
 "scheme" => "https",
 "status_code" => 200,
 "host" => "...
--snip--

ECS uses @timestamp to label the time an event occurred, although addi-
tional time-related fields, such as event.start and event.end, can provide
more granular time information.

Notice a problem in this example: the @timestamp value 1 shows the time
at which the logs were read by Filebeat, instead of the value in processed​
.timestamp 2 representing the time of the actual event. The value is notably
wrapped in quotes when displayed, as Filebeat treats it as a string object,
not a date object. This is because we didn’t tell Filebeat to use processed​
.timestamp. We’ll discuss modifying this behavior in the “Processors” section
on page XX.

Let’s add another filestream input to ingest events from local files in ​
/var/log:

- type: filestream
1 id: local-syslog-files
 enabled: true
 paths:
 - /var/log/*.log
2 exclude_lines: ['.*UFW.*']
 parsers:
 3 - syslog:
 format: auto
 add_error_key: true

We set a new input ID 1 and exclude lines 2 that contain UFW, which
stands for Uncomplicated Firewall, the default firewall on Ubuntu. We also
use the syslog parser 3 with the auto format to detect both RFC 3164 and
5424 formats. Note that Filebeat also has a system module for reading files
in /var/log.

For the remainder of this chapter, whenever we enable a new input, we’ll
disable the previous one. This will allow us to become familiar with the out-
puts from each new input without getting lost in the flow from other inputs.

Endpoint and Network Data 13

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Listening to the Network
Filebeat has a variety of network inputs that allow it to receive data from
remote systems over Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), and Unix sockets. It can also act as an HTTP application
programming interface endpoint that accepts requests and sends HTTP
requests at specified intervals.

Add a new input type to filebeat.yml, below the filestream section, to lis-
ten for incoming syslog messages over the network using a plaintext (unen-
crypted) listener:

1 - type: syslog
 id: syslog-tcp-5514
 enabled: true
 # Can also specify rfc3164 and rfc5424
2 format: auto
3 tags: ["forwarded"]
4 protocol.tcp:
 5 host: "localhost:5514"
 exclude_lines: ['.*UFW.*']

The syslog input type 1 used with the auto format 2 will detect both
RFC 3164 and RFC 5424 syslog messages. Add the tag forwarded 3 to indi-
cate that the messages originated elsewhere. Filebeat will listen for TCP 4
connections on localhost port 5514 5 because ports below 1024 (including
the standard syslog port 514/TCP) require elevated permissions. Exclude
all lines containing the string UFW, as it’s best to track firewall logs separately
due to the volume of traffic they generate.

We’ll configure Rsyslog in Chapter 7, but if you already have it running,
you can add the following line to a new configuration at ​/etc​/rsyslog​.d​/send​-to​
-filebeat​.conf and then restart Rsyslog to output logs to Filebeat:

. @@localhost:5514

The double at symbol (@@) represents TCP. (To represent UDP, use a
single at symbol.) Now run Filebeat again, and notice the forwarded tag pres-
ent in the streaming data:

$./filebeat -e
--snip--
 "message" => "pam_unix(sudo:session): session closed for user root",
 "tags" => [
 [0] "tags-for-everybody",
 [1] "you-get-a-tag",
 [2] "and-you-get-a-tag",
 [3] "forwarded",
 [4] "beats_input_codec_plain_applied"
],
 "log" => {
 "source" => {
 "address" => "127.0.0.1:46474"

14 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

 }
 },
 "@version" => "1",
 "process" => {
 "program" => "sudo"
 },
 "syslog" => {
 "facility_label" => "security/authorization",
 "facility" => 10,
 "priority" => 86,
 "severity_label" => "Informational"
--snip--

Filebeat is now parsing events from a remote system and forwarding them.
You may have noticed that the process name sudo is now nested under

process.program and that the filestream input puts it under syslog.appname.
This is worth paying attention to, as you might want to copy the name into
the preferred process.name field using Logstash or a Filebeat processor. Most
modules in filebeat/modules.d that extract process information will correctly
place its name in process.name, but inputs defined in filebeat.yml don’t always
align all fields to ECS.

Connecting to External Systems
Filebeat can reach out to external systems to pull data from them, which
becomes useful when working with systems that cannot initiate the sending
of data, as well as systems that need a middleman to cross network boundar-
ies. For example, event stores such as Kafka don’t send data to other systems
directly; instead, producers send data into Kafka and consumers pull data
out. Filebeat performs both functions, as you’ll see shortly. We’ll discuss
Kafka in much greater depth in Chapter 10.

Filebeat’s Kafka input needs a few settings for the connection to succeed.
Add the following to filebeat.yml:

- type: kafka
 enabled: true
1 hosts:
 - kafka01:9093
 - kafka02:9093
2 topics: ["filebeat"]
3 group_id: "filebeat"
4 tags: ["from-kafka"]
 parsers:
 5 - ndjson:
 message_key: "message"
 target: "processed"
 overwrite_keys: true
 add_error_key: true

The hosts array 1 contains two Kafka brokers, which are server nodes
that process messages. Curiously, these might not represent the actual

Endpoint and Network Data 15

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

destinations to which Filebeat will send data. Instead, they’re often hosts
called bootstrap servers, which return metadata about the nodes inside of the
Kafka cluster. Filebeat will read this metadata and then send data to the
actual brokers.

Next, we specify the topic, which is a stream of events we want to sub-
scribe to so we can read data from them. We define topics as an array of
strings 2. In this example, we include a single topic, named filebeat, con-
taining data previously pushed into the cluster using the Kafka output we’ll
explore later in this chapter.

We set the consumer group using a group ID 3. A consumer group is a
collection of one or more subscribers that read the data in a topic as a single
unit. This allows Kafka to load-balance the data it sends out, increasing
total throughput. More importantly, it can avoid sending the same message
more than once to a given group.

In this example, we use the group ID filebeat, which specifies a unique
set of consumers that should receive data from a topic. If three Filebeat
instances belong to one consumer group, Kafka will load-balance outgoing
data by distributing it evenly among the instances. In this case, however, the
single Filebeat will receive all the data from the topic, as it’s the only group
member.

We also specify a parser 5 to read the message field and output the
JSON structure into the processed field, as before. Note that the from-kafka
tag 4 exists only at the top level of the JSON structure and not inside of
the nested processed fields we want to use downstream.

When Filebeat is running, the terminal should show output like the
following. You can see the tool sending the log to Kafka and then Logstash
retrieving it and displaying it on the screen:

--snip--
 "processed" => {
 "tags" => [
 [0] "tags-for-everybody",
 [1] "you-get-a-tag",
 [2] "and-you-get-a-tag",
 [3] "forwarded"
],
 "process" => {
 "program" => "sudo"
 },
 "message" => "pam_unix(sudo:session): session closed for user root",
 "syslog" => {
--snip--

Let’s use a processor to add the from-kafka tag to the processed field.

Processors
Like parsers, processors modify incoming events, yet they offer more
horsepower than parsers. For example, the processors enabled by default

16 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

in filebeat.yml add host-related data to events. Other processors might add
details about the network direction, decode base64 strings, perform DNS
lookups, or parse XML. A list of processors is available on Elastic’s website
at https://www​.elastic​.co​/guide​/en​/beats​/filebeat​/current​/filtering​-and​-enhancing​
-data​.html.

Let’s use a small add_tags processor to demonstrate adding the nested
from-kafka tag to the processed JSON field. The processor might look like
this:

1 processors:
2 - add_tags:
 3 tags: ["from-kafka"]
 4 target: "processed.tags"

Under the processors level 1, we use the add_tags processor 2 to
include a tag that indicates that the log came from Kafka 3. We then nest
the new field inside of processed.tags 4.

Earlier in this chapter, we discussed another opportunity to use a
processor: modifying the processed.timestamp field so that Filebeat can use it
as an event’s timestamp. To create such a processor, however, we’ll have to
write conditional statements.

Writing Conditional Statements
Conditional statements allow us to specify the conditions in which to run pro-
cessors. For example, we can use them to check whether a field contains a
certain value (or explicitly doesn’t contain it) and whether multiple fields
are equal; then we can run a processor only if the condition is met.

We nest conditional statements under a processor’s when statement and
define them using operators such as and, or, and not. Table 4-1 lists Filebeat’s
conditional operators. You can use a single conditional statement or nest
the statements to support complex comparisons.

Table 4-1: Filebeat’s Conditional Operators

Conditional operator Purpose

equals Compares strings or integer equality

and Meets all conditions in a list

or Meets one or more conditions in a list

contains Checks for a match in a string

regexp Uses regular expression statements

network Validates IP address membership in a network

range Checks a number in upper/lower bounds

has_fields Checks whether a field exists

not Negates the following comparison

Endpoint and Network Data 17

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Let’s use these conditionals to add processors that alter the processed
.timestamp field from the custom JSON logs. Though we can read the field,
we need to change its formatting so that Filebeat can understand its layout
and use it as the event’s timestamp:

2099-04-27T15:23:03.636525891-05:00

We must do two things to this value. First, we’ll truncate the timestamp
to millisecond resolution (the most granular resolution Logstash can han-
dle). Then, we’ll overwrite the top-level @timestamp field with this truncated
timestamp.

We’ll use the script processor to run custom JavaScript code that
extracts the date, time, and time zone. (The script processor uses an
implementation of ECMAScript written purely in Go.) Then we’ll use the
timestamp processor to overwrite the @timestamp field at the top of the JSON
structure, making the event ready for database entry.

Add these lines to filebeat.yml, inside of the processor block:

- script:
 lang: javascript
 # Example:
 # 2099-04-27T22:37:12.463504006-05:00
 # | 10 |23 |29
 source: >
 function process(event) {
 1 var t = event.Get("processed.timestamp")
 2 var front = t.slice(0, 23)
 var back = t.slice(29)
 3 var combined = front+back
 event.Put("processed.timestamp_fixed", combined)
 }
 4 when:
 has_fields: ["processed.timestamp"]

First, we fetch the timestamp from the nested data 1 and save it
as the variable t. Next, we create slices of it up to and including the
23rd character 2 (counting from position zero), saving it as front, and
make a second slice from character 29 onward to capture the time zone
offset, saving it as back.

Now that we’ve removed characters 24 through 28, we combine front
and back into a single string named combined 3, which we add to a new field,
process.timestamp_fixed, for the timestamp processor to pick up. This proces-
sor runs only if the when conditional is met and the processed.timestamp field
exists 4. Note that I’ve intentionally written this code in a contrived man-
ner to demonstrate running a code block inside of a processor; you might
find more efficient ways to perform this example.

18 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

The following snippet shows the timestamp value before and after using
the script processor to create the new timestamp_fixed field:

--snip--
 "processed" => {
 "timestamp" => "2099-04-27T15:23:03.636525891-05:00",
"timestamp_fixed" => "2099-04-27T15:23:03.636-05:00",
--snip--

The timestamp processor uses a reference time layout from the underly-
ing Go time package to recognize timestamps:

01/02 03:04:05PM '06 -0700'
Converted to the Filebeat-preferred layout
2006-01-02T15:04:05.999-07:00

Using this layout, it can understand the new string we just created with
the script processor. It can also test whether the conversion will work and
exit if it fails. The following snippet shows the processor in action:

- timestamp:
1 field: "processed.timestamp_fixed"
2 layouts:
 - '2006-01-02T15:04:05.999-07:00'
3 test:
 - '2099-04-27T22:37:12.463-05:00'
4 when:
 has_fields: ["processed.timestamp_fixed"]

The processor runs on the defined field we created (process.timestamp​
_fixed) 1 only when the field exists 4. The layout statement 2 forms a
template for the reference timestamp, and the unit test 3 will force the
module to exit if it fails during testing with an error message. Now Filebeat
will overwrite the timestamp value with the one extracted from the nested
JSON. You should see this output after running the timestamp processor:

--snip--
 "timestamp" => "2099-04-27T15:23:03.636525891-05:00",
"timestamp_fixed" => "2099-04-27T15:23:03.636-05:00",
 ...
 "@timestamp" => 2099-04-27T20:23:03.636Z
--snip--

We’ve updated the event timestamp to properly reflect the nested data,
and Filebeat has converted it to the Greenwich Mean Time time zone.

Dropping Fields from the Data
We can also use processors to screen out data, preventing unnecessary bytes
from flowing across the network and eating up storage. One way to drop
fields we don’t need is by using multiple conditional statements:

Endpoint and Network Data 19

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

processors:
 - drop_fields:
 1 fields: ["ecs", "agent.id", "agent.ephemeral_id"]
 when:
 2 or:
 - contains:
 log.file.path: "/home/j/example-logs/"
 - equals:
 input.type: "syslog"
 - contains:
 tags: "from-kafka"

We list fields to be dropped in an array 1 and nest the required con-
ditional logic 2 to specify when to drop the fields. Here, we use the equals
statement to match a field example, and we use contains to specify a portion
of a name, allowing us to match multiple fields or names that might change.

Note that you can’t drop the field event.original or any metadata fields
beginning with @ using the drop_fields processor. One way to remove these
fields is to set them to an empty string or to another desired value using
Filebeat processors or Logstash filters.

Modules
The true strength of Filebeat lies in its modules. Dozens of modules pro-
vide powerful transformation capabilities, and many of them contain sub-
modules, or filesets, related to multiple technologies by the same vendor.
Modules handle their own inputs; some can read files and network sockets,
while others connect outbound to an API and request logs. You define pro-
cessors directly in the module YML file to compartmentalize configurations
and add tags where necessary.

N O T E 	 Many modules use Elasticsearch ingest pipelines to rename fields to ECS. We’ll touch
on ingest pipelines in Chapter 6 when we discuss Elasticsearch and Elastic Agent
integrations.

To explore Filebeat’s modules, let’s work with Zeek, a popular network
traffic analyzer formerly known as Bro. Zeek provides metadata about hap-
penings on the wire, and Filebeat’s Zeek module converts local logs into
ECS if Zeek is configured to write JSON data. Here is a Zeek log in raw
JSON form:

{"ts":1688955554.952633,"uid":"CDYUvz2iep4cP5GKI6","id.orig_h":
"192.168.28.32","id.orig_p":62299,"id.resp_h":"239.255.255.250",
"id.resp_p":1900,"proto":"udp",
--snip--

20 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

To convert these hard-to-read logs into JSON and ECS, first enable the
Zeek module:

$./filebeat modules enable zeek

Next, open the module configuration file, modules.d/zeek.yml. Zeek cre-
ates individual logs for its dozens of supported protocol analyzers, and
Filebeat breaks them into individual statements that we can turn on or off:

- module: zeek
 capture_loss:
 1 enabled: true
 2 var.paths: ["/opt/zeek/spool/zeek/capture_loss.log"]
 connection:
 enabled: true
 var.paths: ["/opt/zeek/spool/zeek/conn.log"]
 dce_rpc:
 enabled: true
 var.paths: ["/opt/zeek/spool/zeek/dce_rpc.log"]
--snip--

We toggle each supported log type on or off by setting enabled to either
true or false 1. Also note that the configuration file specifies filename paths
inside arrays 2 in case Filebeat is running on a landing pad or middleman
server and needs to read from multiple sources for the same log type.

Zeek requires elevated privileges to listen to the network interface, and
it protects its logs accordingly. Add your username to the zeek group. The
following adds my account, j:

$ sudo usermod -aG zeek j

Log out and back in for the change to take effect. If the change doesn’t
kick in for some reason, run the command groups and check the contents
of /etc/group to make sure your username is in the zeek group. Try the newgrp
command if your username isn’t there:

$ groups
$ grep zeek /etc/group
$ newgrp zeek

Now test and start Filebeat again, then watch the converted log popu-
late in the Logstash terminal:

$./filebeat test config
$./filebeat test output
$./filebeat -e

The module converts the logs into lovely JSON, with most of the key
fields converted to ECS:

Endpoint and Network Data 21

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

 "source" => {
 "mac" => "11:50:56:c4:00:a2",
 "bytes" => 812,
 "packets" => 4,
 "port" => 62299,
 "address" => "192.168.28.32",
 "ip" => "192.168.28.32"
},
 "@timestamp" => 2099-07-10T02:20:22.191Z,
--snip--

Modules typically do a great job of converting fields to ECS, but there
are gaps in what Filebeat converts locally versus downstream. For example,
some Filebeat modules for technologies like Cisco and Palo Alto push ECS
conversions to Elasticsearch ingest pipelines if they’re deemed too complex
for Filebeat.

We can use processors within each fileset so that the global configura-
tions won’t bloat to dozens or hundreds of lines. These module-based pro-
cessors sit at the same level as the enabled and var.* statements and will run
alongside the processors defined globally in filebeat.yml. If needed, we can
add tags directly in the fileset using var.tags:

modules.d/zeek.yml
1 connection:
 enabled: true
 var.paths: ["/opt/zeek/spool/zeek/conn.log"]
 2 input:
 processors:
 - add_tags:
 tags: ["tag-in-connection-log"]
--snip--

Within the connection fileset 1, we add an input field 2 at the same level
as the other options, then define a processor within it. As expected, this
processor adds a tag to the output:

--snip--
 "tags" => [
 [0] "you-get-a-tag",
 [1] "zeek​.connection",
 [2] "tag-in-connection-log",
--snip--

These tags appear alongside those we added globally.

Outputs
Filebeat can define only one output at a time, leaving very little wiggle room
for modifications after you’ve established a pipeline. In most cases, Filebeat

22 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

sends data to Logstash or directly to Elasticsearch, but sending data to mes-
sage brokers such as Kafka and Redis is common, too.

Publishing to Kafka
Sending output to Kafka works similarly to reading input from it: we rely on
topics to determine where and how data gets pushed out.

We previously used consumer groups inside of filebeat.yml to define our
identity when reading data from Kafka:

group_id: "filebeat"

For servers sending data to Kafka, set the client_id value to the host-
name of the server running Filebeat or to some other value that will make
troubleshooting easier if things go sideways. (This setting defaults to beats,
which is unhelpful when you need to troubleshoot more than one server
running Filebeat!)

Kafka stores JSON fields in a single string field. Logstash needs to
decode the string back into usable JSON fields. Let’s add a conf​.d​/plain​-kafka​
-consumer​.conf file in the Logstash directory to consume messages and dis-
play them on standard output:

plain​-kafka​-consumer​.conf
input {
 kafka {
 1 bootstrap_servers => "kafka01:9093,kafka02:9093"
 2 group_id => "logstash"
 3 topics => ["filebeat"]
 }
}

filter {
 # convert data back into JSON
 4 json {
 source => "[event][original]"
 }
}

output {
 stdout { codec => rubydebug { metadata => true }}
}

Note that we send this data in plaintext; we’ll discuss configuring TLS for
Kafka in Chapter 10.

The Kafka input for Logstash lists bootstrap servers 1 used to acquire
cluster metadata in a comma-separated string, the consumer group ID 2,
and the topic 3 Logstash will pull from. The filter 4 will expand the event
.original field containing the string pulled from Kafka into the proper
JSON structure.

Endpoint and Network Data 23

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Navigate to the Logstash directory in another terminal and run the
Logstash pipeline:

$ bin/logstash -f conf.d/plain​-kafka​-consumer​.conf --config.reload.automatic

Inside of filebeat.yml, define the new Kafka output and then restart
Filebeat:

output.kafka:
 enabled: true
 hosts: ["kafka01:9093", "kafka02:9093"]
 topic: "filebeat"
1 client_id: "my-awesome-server-running-filebeat"
2 headers:
 - key: "category"
 value: "remoteaccess"
 when:
 equals:
 event.dataset: "zeek.ssh"
 - key: "category"
 value: "web"
 when:
 equals:
 event.dataset: "zeek.tls"

Like in the Kafka input, we define the bootstrap servers in an array, the
topic to write to, the unique client identifier of the server running Filebeat 1,
and conditionally applied optional headers for Kafka 2.

Kafka headers are key-value pairs that provide extra metadata for the
purposes of routing data and analyzing performance. They’re analogous
to the HTTP headers that track the details of who sent a message, what was
sent, when it was sent, and so on. You can add them to the outgoing mes-
sage, and their syntax supports conditional logic. You can also specify mul-
tiple keys with the same name, as they don’t need to be unique.

Specifying an array of hosts returns metadata about the cluster itself,
and Filebeat uses this information to connect to the actual addresses where
messages are sent. Kafka will do its best to load-balance itself by telling pro-
ducers and consumers where to connect.

Unlike inputs, outputs don’t directly support tags, which get applied
globally in filebeat.yml or using modules. You might find it useful to add
directional tagging in filebeat.yml when transmitting data in and out of
Kafka. If Filebeat writes to a topic and then Logstash consumes and
enriches that data before sending to a different topic, you might tag each
step to capture this lineage. The following is just one tag you may add:

tags: ["to-kafka-filebeat"]

24 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

After you start Filebeat, data should flow, appearing as usable JSON
fields:

--snip--
 "process" => {
 "program" => "sudo"
},
 "tags" => [
 [0] "tags-for-everybody",
 [1] "you-get-a-tag",
 [2] "and-you-get-a-tag",
 [3] "to-kafka-filebeat",
 [4] "forwarded"
],
 "message" => "pam_unix(sudo:session): session closed for user root",
 "input" => {
 "type" => "syslog"
},
--snip--

Logstash should display these JSON fields on the screen.

Publishing to Redis
Redis is an in-memory message broker that we can use as an intermedi-
ary between Filebeat and another system. Sending logs to Redis functions
mostly the same way as sending them to Kafka: we specify a key, which will
then store the values sent to it in a queue structure, along with a password
and network details.

The key statement in the Redis output block supports conditional state-
ments such as when, which is useful for routing per module or input type.
The following example uses nested subconditionals to check for the Zeek
module and either the SSH or the Telnet dataset:

output.redis:
 enabled: true
 hosts: ["localhost"]
 password: "YOUR-REDIS-PASSWORD"
1 key: "filebeat"
2 keys:
 - key: "remoteaccess"
 3 when:
 4 or:
 5 - contains:
 event.dataset: "zeek.ssh"
 - contains:
 event.dataset: "zeek.telnet"
 and:
 - equals:
 event.module: "zeek"
 ssl.enabled: true
 ssl.verification_mode: full

Endpoint and Network Data 25

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

 ssl.certificate: "/home/j/tls/certs/filebeat.local.flex.cert.pem"
 ssl.key: "/home/j/tls/keys/filebeat.local.flex.key.pem"
 ssl.certificate_authorities:
 - /home/j/tls/certs/ca-chain.cert.pem
--snip--

In this statement, we funnel Zeek SSH and Telnet events to a Redis list
named remoteaccess using the keys (plural) statement 2 and conditionals,
with a fallback to the filebeat list when key (singular) 1 is also specified
for logs that don’t meet the conditional statements. The when 3 conditional
contains multiple checks 4, which also have subconditions 5 defined.

Simply checking event.module is a slimmed-down approach to data rout-
ing, as it pushes routing complexity downstream, away from endpoints. In
the following snippet, we apply this approach using a single conditional:

output.redis:
 enabled: true
 hosts: ["localhost"]
 password: "YOUR-REDIS-PASSWORD"
 key: "filebeat"
 keys:
 - key: "zeek"
 when:
 1 equals:
 event.module: "zeek"
--snip--

Notice that the YML syntax changes when equals moves up a level 1, as
we don’t use the hyphenated list structure.

Writing to a File
One straightforward way to output processed data is to write it to a file on
disk that Filebeat has write access to. Unless we specify otherwise, Filebeat
will name this file using the mandatory path value, followed by the program
name and a timestamp, potentially with trailing numbers that increment,
such as /var/log/filebeat-20990501-1.ndjson. By default, files rotate every 10MB
and roll over every seven files, or every time the Filebeat process starts. The
default file permission mode is 0600, meaning that only the owner of the
Filebeat process can read or write to the file.

For example, the following output section would write 10 files that are
approximately 100MB each before rotating, for a total of about 1GB:

output.file:
 enabled: true
 path: /var/log/filebeat/
 rotate_every_kb: 100000
 number_of_files: 10

26 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Start Filebeat so we can monitor the creation of new output files by run-
ning the watch command. The following will list the new log files every sec-
ond and will highlight where byte sizes change or new files appear:

$ watch -n 1 -d ls -l /var/log/filebeat/
-rw------- 1 j j 33M May 1 22:53 filebeat-20990501-1.ndjson
-rw------- 1 j j 49M May 1 22:52 filebeat-20990501.ndjson

We can watch files being written to, and aged off, in real time. Cancel
the updating terminal with ctrl-C.

Sending Data to Logstash
Another output option is to send data to Logstash. Filebeat can receive
status checks from Logstash telling it to slow down to reduce congestion or
to apply backpressure, which results in smaller peaks and valleys in traffic vol-
ume across the network. Filebeat can also ramp up the level of compression
when sending traffic to Logstash to reduce load on the network, but at the
cost of slightly higher CPU usage by Logstash.

In this example, let’s use two worker threads and no load balancing
and crank the compression to 9 (the maximum). Use these lines for the
Logstash output in filebeat.yml:

output.logstash:
 enabled: true
 hosts: ["192.168.8.132:5044"]
 workers: 2
 compression_level: 9
--snip--

Filebeat and other Beats add metadata fields that aren’t typically dis-
played using the Logstash stdout output. To see this data in action, let’s
modify the beats​-mtls​.conf Logstash configuration by copying the invisible
@metadata field into a new one named metadata:

--snip--
filter {
 mutate {
 1 copy => { "@metadata" => "metadata" }
 }
}
--snip--

The mutate filter copies the @metadata field, which we can’t normally see,
into a metadata field we can see 1. The configuration should reload auto-
matically, since Logstash is still running in another terminal.

We can now see the metadata fields Filebeat generates about itself and
the peers from which it’s receiving data, along with the event data we care
about. Downstream, Elasticsearch will use the @metadata.beat and @metadata
.version to direct the indexing, or storage, of data in the database.

Endpoint and Network Data 27

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Although Filebeat sets fields such as agent.name, I’ve found that includ-
ing the static IP address of the host at that point in time also helps trouble-
shoot issues, as seen in metadata.beats.host.ip:

 --snip--
 "metadata" => {
 "beat" => "filebeat",
 "version" => "8.7.0",
 "truncated" => false,
 "type" => "_doc",
 "input" => {
 "beats" => {
 "host" => {
 1 "ip" => "192.168.8.134"
 --snip--
 "message" => "pam_unix(sudo:session): session closed for
 user root",
 "input" => {
 "type" => "syslog"
},
 "process" => {
 "program" => "sudo"
 --snip--

Having the IP address 1 of the node running Filebeat provides insight
if something in the pipeline goes awry.

Pruning and Privatizing Data
At some point, you’ll need to privatize or remove unnecessary data from
your logs. Perhaps an auditor is reviewing your company’s logs for compli-
ance reasons, or maybe a machine learning algorithm requires only certain
fields and nothing more.

Earlier in this chapter, we covered the drop_fields and script processors.
Let’s now use these to remove sensitive data. Say an auditor needs to review
metadata from a bank’s servers; we could replace all user.name values with a
generic term, such as BankUser. We could also drop everything irrelevant to
the auditor, such as tags and agent names:

processors:
1 - drop_fields:
 fields: ["agent", "ecs", "event.severity", "host",
 "input", "log", "syslog", "tags"]

2 - script:
 lang: javascript
 source: >
 function process(event) {
 3 event.Put("user.name", "BankUser")
 }
 when:
 has_fields: ["user.name"]

28 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

First, we drop the fields we don’t need to send 1. Next, a short script
overwrites all usernames 2 with a single value 3.

This results in an extremely truncated log (minus the otherwise invis-
ible @metadata fields) to send downstream:

{
 "process" => {
 "program" => "sudo"
 },
 "user" => {
 "name" => "BankUser"
 },
 "@version" => "1",
 "message" => "pam_unix(sudo:session): session opened for
 user root by (uid=0)",
 "@timestamp" => 2099-04-30T05:04:19.000Z,
 "hostname" => "server01"
}

This log meets the minimum requirements in our hypothetical audit
situation. It may also be ideal for your daily needs; keep in mind that the
bytes you store on disks come out of your budget!

Windows
Filebeat can read any log file on Windows that isn’t part of the Windows
Event Log. (To read events from the Windows Event Log, we use
Winlogbeat, discussed in Chapter 5.)

The fantastic web request tool cURL is now built into Windows, so
you can download the Filebeat ZIP file for Windows directly using curl.exe.
Don’t skip the .exe portion, as plain curl is an alias for the Invoke-WebRequest
PowerShell command. Download the latest version of Filebeat, substituting
X.Y.Z for a version number:

PS> curl.exe -O https://artifacts​.elastic​.co​/downloads/
beats/filebeat/filebeat-X.Y.Z-windows-x86_64.zip

Extract the ZIP somewhere and copy it into C:\Program Files\Filebeat\
using an administrator PowerShell prompt. Then, change directories into
that path:

PS> copy -r .\filebeat-8.x.x-windows-x86_64\ "C:\Program Files\Filebeat"
PS> cd "C:\Program Files\Filebeat"

Next, run the provided install script to create a Windows service:

PS>.\install-service-filebeat.ps1

Endpoint and Network Data 29

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

If you receive an error while running the script stating that running
scripts is disabled on the system, change the PowerShell execution policy
temporarily:

PS> Get-ExecutionPolicy
PS> Set-ExecutionPolicy Bypass

Run the install script and then set the execution policy back to the pre-
vious value identified with Get-ExecutionPolicy.

This script should install the Windows service with the startup type
Automatic (Delayed Start), which means it may take around a minute to
start. The Filebeat service will wait for other Windows services marked as
Automatic to fully load after the next reboot. For now, don’t manually start
the service or execute filebeat.exe.

You should also use this filebeat.yml instead of the ones shown earlier in
this chapter, as it contains a useful log file for testing data found on most
versions of Windows 10 and 11:

filebeat​.inputs:

Input that reads Edge update logs
- type: filestream
 enabled: true
 id: edgeupdate-logs
 paths:
 - C:/ProgramData/Microsoft/EdgeUpdate/Log/*.log
1 encoding: utf-16le-bom

Module locations
filebeat​.config​.modules:
 path: ${path​.config}​/modules​.d​/*​.yml

tags: ["windows", "tags-for-everybody", "you-get-a-tag", "and-you-get-a-tag"]

output.logstash:
 enabled: true
 hosts: ["logstash.local:5044"]
--snip--

We use little-endian UTF-16 encoding with a required byte order mark 1
to accurately read text files generated by Windows.

Keep the following filepath handy if you’re using Filebeat on a Windows
system: C:/ProgramData/Microsoft/EdgeUpdate/Log/*.log. When the Edge
browser checks for or performs an update, it appends an entry to this log,
making it an ideal data source when testing Filebeat on Windows.

Before we wrap up, let’s store our configurations in our Git repository.

30 Chapter 4

Data Engineering for Cybersecurity (Sample Chapter) © 3/7/25 by James Bonifield

Saving Configurations with Git
At the beginning of the chapter, we created Filebeat’s TLS configurations;
let’s store them safely in the project repository we created in Chapter 3
along with any command notes and filebeat.yml examples you may have cre-
ated. Change directories into your book-data-pipelines local repository and
make a directory for Filebeat. Copy any configurations and notes you wish
to preserve for reference into the new directory. Track the new files in your
local repository and check its status:

$ git add . && git status
On branch main
Your branch is up to date with 'origin/main'.
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: filebeat/filebeat.yml
--snip--

Finally, commit the changes and push them to the remote repository:

$ git commit -a -m "added Filebeat configs and TLS files"
$ git push

Your Filebeat configurations should be safely backed up.

Summary
Filebeat is a simple yet powerful tool for extracting data, transforming
it into something useful, and shipping it elsewhere. It formats data into
JSON early in the data pipeline, then offloads further complex processing
downstream. Filebeat’s processors can also format, drop, or privatize data
if needed, and its modules provide standardized field names by producing
output in the ECS. Filebeat also supports industry-standard, enterprise-
scale data engineering tools such as Kafka, Redis, and Logstash. In the
next chapter, we’ll use Elastic Winlogbeat to collect event logs from
Windows systems.

