
—-1
—0
—+1

In this chapter, we’re going to develop
a version of a virtual machine known as

CHIP-8, a platform from the early days of
personal computing that was primarily used

for playing games. Although our program will be able
to play CHIP-8 games, it’s not the games themselves
that interest us—it’s what building a CHIP-8 virtual
machine can teach us about low-level programming
and how a computer works at the register and instruc-
tion levels. These insights make building a CHIP-8
virtual machine a popular first step into the world of
programming emulators.

5
B U I L D I N G A C H I P - 8

V I R T U A L M A C H I N E

335-140114_ch01_1P.indd 115335-140114_ch01_1P.indd 115 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
116 Chapter 5

Virtual Machines
Think of a virtual machine (VM) as a computer that’s defined wholly in soft-
ware. Programs that are designed to run in a VM can run on any platform
that has an implementation of that VM. In this way, VMs enable truly por-
table software.

VMs are closely related to emulators. An emulator is a piece of software
that’s pretending to be a piece of hardware. This enables programs that
were written for that hardware to run on other machines that lack the
hardware. An emulator must follow the specification for the original hard-
ware carefully so that it re-creates all the functionality that the unknowing
programs running on the emulator expect. I say unknowing because the
software running on an emulator has no idea it isn’t running on the real
hardware; the emulator had better work exactly like the original hardware
if the program is going to function correctly.

A VM is also a piece of software that closely follows a specification of an
environment that software runs on top of. The difference is that while an
emulator follows a hardware specification, a VM follows a specification that
may be wholly defined as an abstraction in software terms.

Although one is a hardware specification and one is a software specifi-
cation, implementing a simple emulator is quite similar to implementing a
simple VM. In fact, they’re so similar that while the project completed in this
chapter is technically a VM project, it’s very commonly suggested as a first
emulation project. If you’re a newcomer to the emulator development com-
munity asking where you should start, CHIP-8 is almost always the answer.

Perhaps the most famous VM is the Java Virtual Machine (JVM). When
Java first came out in the mid-1990s, its “write once, run anywhere” phi-
losophy was touted. JVMs were developed for all major operating systems
(Windows, Linux, Mac OS, and so on), and the same Java program could be
compiled into the JVM’s native bytecode format and run on any computer
with a JVM unchanged, regardless of the underlying platform. That’s still
true today, but Java’s original write-once-run-anywhere niche has largely
been supplanted by web applications.

The CHIP-8 VM comes from a much earlier era. In the 1970s, Joseph
Weisbecker was a pioneering engineer who developed one of the first 8-bit
microprocessors, the RCA 1802. He and RCA built an early personal com-
puter using his invention.1 He wanted to have a way to program games for
the machine in a higher-level language than machine code, so he devel-
oped CHIP-8 (and its accompanying opcode language). His daughter,
Joyce Weisbecker, would go on to use CHIP-8 to become the first published
female video game developer.2 In the 1980s, CHIP-8 was ported to many
other platforms, including many graphing calculators. It therefore became
a truly portable VM, analogous to an early form of how we think about
VMs today.

335-140114_ch01_1P.indd 116335-140114_ch01_1P.indd 116 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

Building a CHIP-8 Virtual Machine 117

The CHIP-8 Virtual Machine
The CHIP-8 VM was originally designed for the incredibly resource-
constrained personal computers of the late 1970s, like the COSMAC VIP.
Released in 1977, the COSMAC VIP had an RCA 1802 8-bit microproces-
sor running at less than 2 megahertz (MHz), 2KB of RAM (expandable
to 4KB), and a 512-byte ROM. It also had specialized chips for displaying
1-bit graphics at a resolution of up to 64 × 128, reading and writing cassette
tapes, and playing a beep.3

It’s amazing by today’s standards that anything of value could have
been programmed on a machine like the COSMAC VIP, yet it was designed
for video games. In fact, those games even ran through another layer of
abstraction, the CHIP-8 VM. The most popular video game console of the
era, the Atari 2600, was also released in 1977 and had specifications that
were in the same ballpark. These limitations were simply par for the course.

When programming a VM or an emulator, the performance of the
tools you’re using is a paramount concern. The VM or emulator adds
another layer of abstraction between the program and the hardware, and
each layer of abstraction generally comes with some performance cost. To
achieve the intended speed of the original system, overhead has to be kept
to a minimum, and some programming languages (or rather, some program-
ming languages’ primary runtime implementations) get in the way. This is
why it’s common to see VMs and emulators programmed in low-level lan-
guages like C, C++, and Rust. That said, considering how limited CHIP-8’s orig-
inal target hardware was, it’s not difficult to create a performant CHIP-8
VM today on any modern system. Even a relatively slow programming lan-
guage runtime like CPython is sufficient. You wouldn’t want to program
a cutting-edge game console emulator in Python, or a JVM. But CHIP-8?
Python is more than fine for that.

To understand CHIP-8, let’s start by discussing its registers and memory
layout. Then, I’ll provide a general overview of the instructions that the VM
can execute, before getting into the nitty-gritty details of an implementation.

Registers and Memory
On a physical microprocessor, registers are the absolute fastest memory
available. They sit directly within the microprocessor and don’t require the
latency of accessing another chip. Putting data in registers is often the only
way to manipulate it, since most data manipulation instructions (for exam-
ple, arithmetic) that a microprocessor supports operate on data within the
registers. Separate load/store instructions transfer data between the regis-
ters and external RAM.

When it comes to registers, there’s a classic time-versus-space trade-
off: the registers are the fastest storage locations to hold data, but they’re
extremely limited in size. For example, a typical 8-bit microprocessor of the
late 1970s may only have had a few 8-bit registers (yes, each can only hold a
single byte), but it could address dozens of kilobytes of external RAM.

335-140114_ch01_1P.indd 117335-140114_ch01_1P.indd 117 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
118 Chapter 5

Most VMs, like the CHIP-8, also have registers, but those registers don’t
always map directly to physical hardware registers on the microprocessor.
As such, they’re not necessarily any faster than RAM. That may seem odd,
but the registers provide a substrate that the instructions can operate on.
There’s also nothing stopping a particular implementation of the VM from
mapping the virtual registers to real hardware registers for a performance
gain—as long as the number of virtual registers doesn’t exceed the number
of physical registers.

N O T E 	 In the following discussion, the same names are used to refer to the CHIP-8 registers
as will be used in the Python code for the implementation.

The CHIP-8 VM has 16 general-purpose 8-bit registers, referred to
as v[0] through v[15]. They can be used for any kind of data, and all the
main arithmetic and logic instructions operate on these registers. Of these
general-purpose registers, v[15] (or v[0xF] in hexadecimal) is special in that
it’s used for holding a flag. The index register, i, is for manipulations across
multiple memory locations at once and for indicating where data that needs
to be drawn to the screen exists in memory. The program counter, pc, is a
special register that keeps track of the memory address of the next instruc-
tion to be executed.

The vs, i, and pc constitute the main registers, but they’re backed up
by a couple pseudo-registers for timing. These two bytes, delay_timer and
sound_timer, are used for implementing a pause in the game or indicat-
ing how long the sound of a beep should be played. There are special-
ized instructions for modifying these timers. All the registers are listed in
Table 5-1. The registers were originally described in the RCA COSMAC VIP
CDP18S711 Instruction Manual.4

Table 5-1: CHIP-8 Registers and Pseudo-Registers

Register Name Description

v[0] to v[14] General-purpose registers Each can hold any kind of 8-bit data.

v[15] Flag register Stores a flag (1 or 0) after certain opera-
tions, like a carry flag after addition.

pc Program counter Keeps track of the 16-bit address in
memory of the current instruction being
executed.

i Memory index register Stores a 16-bit address used for complet-
ing instructions that span multiple contigu-
ous places in memory.

delay_timer Delay timer Stores an 8-bit value that’s decremented
60 times per second until it reaches 0.

sound_timer Sound timer Stores an 8-bit value that’s decremented
60 times per second until it reaches 0;
while it’s above 0, a beep is played by
the computer speaker.

335-140114_ch01_1P.indd 118335-140114_ch01_1P.indd 118 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

A typical CHIP-8 VM has 4KB of general-purpose RAM. This is in line
with the COSMAC VIP when loaded with expansion memory. However,
there’s a catch: on the VIP, the first 512 bytes of memory had to contain the
code for the actual CHIP-8 VM itself (yes, the whole VM fit into just 512
bytes of machine code—think about that as we write our version). That left
only 3.5KB of usable RAM. To be backward compatible today, our VM must
also reserve the first 512 bytes of RAM.

Instructions
The CHIP-8 VM was largely used to program games, so it includes special-
ized instructions for actions like moving sprites and playing a beep. Those sit
alongside all the mundane, utilitarian instructions you’d find in any micro-
processor instruction set or low-level programming language—instructions
for manipulating memory, doing arithmetic, overseeing control flow, handling
timers, and managing the display. In total, there are 35 instructions that
we’ll be implementing. All the instructions are specified in hexadecimal—
see “Hexadecimal” on page XX for more on that numbering system.

HE X A DECIM A L

Hexadecimal, or base-16, is the number system typically used for working with
low-level bytes on computing systems (RAM addresses, CPU instructions, and
the like). It can more compactly and consistently refer to values in bytes than
binary or standard decimal (base-10, the number system we’re used to). For
instance, you can represent any 8-bit number using two hexadecimal digits,
and helpfully, each of those two digits corresponds to exactly half of the byte
when written out in binary (half of a byte is known as a nibble). If you were a
programmer in the 1970s or 1980s, you would work with hexadecimal often,
but today the average Python developer seldom uses it outside of low-level
programming.

In hexadecimal, in addition to the 10 symbols 0–9, six further symbols are
provided, A–F, corresponding to the decimal values 10–15. In Python, hexa-
decimal literals start with the 0x prefix. For example, 0xFF is the same as the
decimal number 255, or the binary number 0b11111111. One F in the hexadeci-
mal version refers to the first half of the ones in the binary version (1111), and
the other F refers to the second set of ones (1111). This is the maximum value of
1 byte. To illustrate the conversion more clearly, the hexadecimal number 0xF0
can be written in binary as 0b11110000, with the F for the 1111 and the 0 for
the 0000.

To convert from hexadecimal to decimal, multiply each hex digit from right
to left by a power of 16, starting with 160. For example, 0xFF can be rewritten
as (15 × 160) + (15 × 161). The right digit (F) becomes 15 × 1 = 15, the left digit
becomes 15 × 16 = 240, and 240 + 15 = 255. Here’s another example: 0xA5B is
(11 × 160) + (5 × 161) + (10 × 162). This is equivalent to 2,651 in decimal.

Building a CHIP-8 Virtual Machine 119

335-140114_ch01_1P.indd 119335-140114_ch01_1P.indd 119 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
120 Chapter 5

The instructions are here as a quick reference and to give you a sense of
the “lay of the land.” We’ll get into the details of how each instruction works
in the code, but the reality is that most of the code is pretty self-explanatory
based on the instruction descriptions. The vast majority of instructions can
be implemented in just a couple lines of Python.

I spent a lot of time thinking about how to group the instructions for
this discussion. Ultimately, I decided to order them numerically so that they
appear in the same order here as they do in the code. Every instruction
in CHIP-8 is 16 bits, or in other words, 2 bytes or 4 nibbles, so it translates
to four hexadecimal digits. Any uppercase hexadecimal digit 0–F in an
instruction is a literal. Any lowercase letter indicates a value that will be
used as part of the implementation of the instruction. An underscore (_)
indicates the nibble is arbitrary. The instructions were originally described
in the RCA COSMAC VIP CDP18S711 Instruction Manual.5

N O T E 	 A few instructions listed here weren’t present in the original CHIP-8 specification
(for example, 8x_6 and 8x_E). Their functionality sometimes differs across varying
CHIP-8 implementations.

Screen Clearing and Basic Jumps

The first set of instructions are used for cleaning up the entire screen all
at once and for moving from one part of the program to another part of
the program.

00E0 ​  ​Clear the screen.

00EE ​  ​Return from a subroutine.

0nnn ​  ​Call the program at nnn, reset the timers and registers, and
clear the screen.

1nnn ​  ​Jump to address nnn without resetting.

2nnn ​  ​Call the subroutine at nnn.

Conditional Skips

The next set of instructions are for jumps to another part of the program if
a particular condition is true.

3xnn ​  ​Skip the next instruction if v[x] equals nn.

4xnn ​  ​Skip the next instruction if v[x] doesn’t equal nn.

5xy_ ​  ​Skip the next instruction if v[x] equals v[y].

General-Purpose Register Adjustments, Arithmetic, and Bit Manipulation

Next come standard instructions that you would find in any CPU or VM for
actions like doing math, setting registers, and shifting bits.

6xnn ​  ​Set v[x] to nn.

7xnn ​  ​Add nn to v[x].

8xy0 ​  ​Set v[x] to v[y].

335-140114_ch01_1P.indd 120335-140114_ch01_1P.indd 120 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

8xy1 ​  ​Set v[x] to v[x] | v[y] (bitwise OR).

8xy2 ​  ​Set v[x] to v[x] & v[y] (bitwise AND).

8xy3 ​  ​Set v[x] to v[x] ^ v[y] (bitwise XOR).

8xy4 ​  ​Add v[y] to v[x] and set the carry flag.

8xy5 ​  ​Subtract v[y] from v[x] and set the borrow flag.

8x_6 ​  ​Shift v[x] right one bit and set the flag to the least-significant bit.

8xy7 ​  ​Subtract v[x] from v[y] and store the result in v[x]; set the
borrow flag.

8x_E ​  ​Shift v[x] left one bit and set the flag to the most-significant bit.

Miscellaneous Instructions

These instructions don’t quite have a unified subject area, but their opcodes
are close to one another numerically.

9xy0 ​  ​Skip the next instruction if v[x] doesn’t equal v[y].

Annn ​  ​Set i to nnn.

Bnnn ​  ​Jump to nnn + v[0].

Cxnn ​  ​Set v[x] to a random integer (0–255) & nn (bitwise AND).

Dxyn ​  ​Draw a sprite that’s n high at (v[x], v[y]); set the flag on a collision.

Key and Timer Instructions

The next batch of instructions are for manipulating the VM’s timers and
checking on the status of various keys or waiting for a particular key to
be pressed.

Ex9E ​  ​Skip the next instruction if key v[x] is set (pressed).

ExA1 ​  ​Skip the next instruction if key v[x] is not set (not pressed).

Fx07 ​  ​Set v[x] to the delay timer.

Fx0A ​  ​Wait until the next key press, then store the key in v[x].

Fx15 ​  ​Set the delay timer to v[x].

Fx18 ​  ​Set the sound timer to v[x].

Register i Instructions

All the instructions in this last set are related to the memory index register (i).

Fx1E ​  ​Add v[x] to i.

Fx29 ​  ​Set i to the location of character v[x] in the font set.

Fx33 ​  ​Store the binary-coded decimal (BCD) value in v[x] at memory
locations i, i + 1, and i + 2. (See “Binary-Coded Decimal” on page XX
for more on this.)

Fx55 ​  ​Dump registers v[0] through v[x] in memory, starting at i.

Fx65 ​  ​Store memory from i through i + x in registers v[0] through v[x].

Building a CHIP-8 Virtual Machine 121

335-140114_ch01_1P.indd 121335-140114_ch01_1P.indd 121 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
122 Chapter 5

Consider for a moment how mundane these instructions sound. You
really don’t need any sophisticated mechanisms to have a working “com-
puter.” Contrast the 35 CHIP-8 instructions described here with the 8
instructions in our implementation of Brainfuck from Chapter 1. Both are
memory-constrained Turing machines, and they aren’t as different from
each other as their superficial instruction syntax may make it appear.

BIN A RY- CODED DECIM A L

Binary-coded decimal (BCD) is a way of storing decimal numbers in binary. It’s
not widely used today, but it was common in early computers. For example,
several microprocessors from the 1970s included explicit instructions for BCD
arithmetic, which offered more precision when dealing with decimal rounding
and to some extent made machine code more readable. For the average mod-
ern programmer, there isn’t much value in learning BCD except as a curiosity.
There were multiple different BCD schemes, and frankly I don’t think that learn-
ing the particular scheme used in the CHIP-8 VM is a valuable use of our space
in this book.

The Implementation
Now that we know the CHIP-8 architecture, we’re ready to implement our
VM. The file __main__.py will contain the main run loop that handles user
input, updates the display, manages timers, and most importantly, tells the
VM to step through the next instruction. This file is also where the com-
mand line argument that specifies the ROM file is parsed. Meanwhile, vm.py
is the actual VM.

ROMS

Did you ever wonder why the files that hold games used in emulators are called
ROMs? ROM stands for read-only memory. Most early video game systems
used plastic cartridges that were glorified holders for ROM chips that directly
plugged into the consoles. When the games were converted into files for emu-
lators, someone would have to go and plug the ROM chip into a specialized
device connected to their computer and “rip” the data from the ROM chip to
store it in a file. The file would have an exact copy of the data on the ROM
chip, perhaps with some extra header information depending on the emulation
ecosystem.

335-140114_ch01_1P.indd 122335-140114_ch01_1P.indd 122 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

While the original ROM chips couldn’t have their data modified, these
“ROM files” are just like any other files and can be modified to change the
games. Hence, the subculture of ROM hacking, in which developers change the
graphics or gameplay of games meant to be run in emulators.

We’ll utilize two external libraries in our implementation. Pygame, a
Python library designed for game development, provides an easy way to get
a window on the screen, fill that window with the pixels from our VM’s dis-
play, and handle keyboard input. NumPy, a numerical computing library,
can help create the two-dimensional array used as the backing buffer for
the Pygame window’s pixels. This array will serve as the “graphics RAM” of
our VM. Pygame natively works with NumPy arrays, and NumPy arrays are
more performant than anything in the Python standard library for repre-
senting this buffer. Make sure you’ve installed Pygame and NumPy before
running the program.

Like replicating a file format in Chapter 3, implementing a VM or emu-
lator requires a fair amount of low-level bit manipulation. See the appendix
to read up on Python’s bitwise operators.

The Run Loop
The run loop is responsible for advancing the VM by one instruction,
redrawing the screen, handling any events (key presses to be passed to the
VM), playing the beep sound, and updating CHIP-8’s two timers. Pygame
makes drawing, playing sounds, and reading keyboard input almost trivial;
it’s a very easy-to-use library. Let’s start with some initialization code and
continue through to the beginning of the run loop:

Chip8/__main__.py import sys
from argparse import ArgumentParser
from Chip8.vm import VM, SCREEN_WIDTH, SCREEN_HEIGHT
from Chip8.vm import TIMER_DELAY, FRAME_TIME_EXPECTED, ALLOWED_KEYS
import pygame
from timeit import default_timer as timer
import os

def run(program_data: bytes, name: str):
 # Startup Pygame, create the window, and load the sound
 pygame​.init()
 screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT),
 pygame.SCALED)
 pygame.display.set_caption(f"Chip8 - {os.path.basename(name)}")
 bee_sound = pygame.mixer.Sound(os.path.dirname(os.path.realpath(__file__))
 + "/bee.wav")
 currently_playing_sound = False
 vm = VM(program_data) # Load the virtual machine with the program data

Building a CHIP-8 Virtual Machine 123

335-140114_ch01_1P.indd 123335-140114_ch01_1P.indd 123 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
124 Chapter 5

 timer_accumulator = 0.0 # Used to limit the timer to 60 Hz
 # Main virtual machine loop
 while True:
 frame_start = timer()
 vm.step()
 if vm.needs_redraw:
 pygame.surfarray.blit_array(screen, vm.display_buffer)
 pygame.display.flip()

At the beginning of the run loop, the time is recorded with frame_start =
timer() to measure the duration of each iteration of the loop. This is
because CHIP-8’s timers need to be decremented 60 times per second (if
they’re above zero). The VM is then told to execute an instruction (and
therefore to move to the next instruction) via vm.step(). If indicated by
vm.needs_redraw, the display is then redrawn via two simple calls to Pygame.
One copies the VM’s display buffer to the screen, and the other shows it.

Note that the code uses the term frame a little differently than is typical.
In most programs, a frame is one full refresh of the entirety of the program’s
graphical output, but in this context, our run loop won’t necessarily redraw
the graphics every iteration, since vm.needs_redraw may not always be True.

What definitely will happen every “frame” is that one instruction will
be executed as a result of the call to vm.step(). As such, I thought about
using the word instruction rather than frame in this section of the code, for
example, instruction_start rather than frame_start. However, more than just
the execution of an instruction is happening in the run loop—there’s also
graphical output, keyboard handling, and sound output—so instruction
sounded too limited. But again, frame isn’t quite accurate either. It’s true
what they say: one of the hardest problems in computer science is naming.

The run loop finishes by handling keyboard events, playing a sound
when the VM’s boolean vm.play_sound indicates, and handling timing:

 # Handle keyboard events
 for event in pygame.event.get():
 if event.type == pygame.KEYDOWN:
 key_name = pygame.key.name(event.key)
 if key_name in ALLOWED_KEYS:
 vm​.keys[ALLOWED​_KEYS​.index(key​_name)] = True
 elif event.type == pygame.KEYUP:
 key_name = pygame.key.name(event.key)
 if key_name in ALLOWED_KEYS:
 vm​.keys[ALLOWED​_KEYS​.index(key​_name)] = False
 elif event.type == pygame.QUIT:
 sys.exit()

 # Sound
 if vm.play_sound:
 if not currently_playing_sound:
 bee_sound.play(-1)
 currently_playing_sound = True

335-140114_ch01_1P.indd 124335-140114_ch01_1P.indd 124 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

 else:
 currently_playing_sound = False
 bee_sound.stop()

 # Handle timing
 frame_end = timer()
 frame_time = frame_end - frame_start # time it took in seconds
 timer_accumulator += frame_time
 # Every 1/60 of a second decrement the timers
 if timer_accumulator > TIMER_DELAY:
 1 vm.decrement_timers()
 timer_accumulator = 0
 # Limit the speed of the entire machine to 500 "frames" per second
 if frame_time < FRAME_TIME_EXPECTED:
 difference = FRAME_TIME_EXPECTED - frame_time
 2 pygame.time.delay(int(difference * 1000))
 timer_accumulator += difference

Even though we aren’t using frames to measure traditional frames per
second (FPS), as you may be familiar with from gaming, the timing of each
iteration is still important. We need to keep track of timing to ensure the
VM’s countdown timers are ticked every 1/60 of a second as required by
the CHIP-8 specification 1, and to limit the overall speed of the VM 2.
If the VM runs too fast, games will be unplayable since they were designed
for the slow computers of the 1970s. You can adjust the speed of the VM,
and therefore any software running on it, by changing the FRAME_TIME_EXPECTED
constant in vm.py. In testing, I found that 500 “frames” per second, or in
other words, each “frame” being approximately 1/500 of a second, to be a
solid speed for most games.

Command Line Arguments
As in previous programs, we use ArgumentParser to handle command line
arguments:

if __name__ == "__main__":
 # Parse the file argument
 file_parser = ArgumentParser("Chip8")
 file_parser.add_argument("rom_file",
 help="A file containing a Chip-8 game.")
 arguments = file_parser.parse_args()
 with open(arguments.rom_file, "rb") as fp:
 file_data = fp.read()
 run(file_data, arguments.rom_file)

In this case, we have just a single command line argument—the name
of the file containing the program data for the CHIP-8 VM. The file’s raw
bytes are read and passed to run(), where they in turn are passed to the con-
structor of the VM.

Building a CHIP-8 Virtual Machine 125

335-140114_ch01_1P.indd 125335-140114_ch01_1P.indd 125 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
126 Chapter 5

VM Setup and Helper Functions
We’re ready for the actual VM implementation. We start, as we so often do,
with some constants:

Chip8/vm.py from array import array
from random import randint
import numpy as np
import pygame
import sys

RAM_SIZE = 4096 # in bytes, aka 4 kilobytes
SCREEN_WIDTH = 64
SCREEN_HEIGHT = 32
SPRITE_WIDTH = 8
WHITE = 0xFFFFFFFF
BLACK = 0
TIMER_DELAY = 1/60 # in seconds... about 60 hz
FRAME_TIME_EXPECTED = 1/500 # for limiting VM speed
ALLOWED_KEYS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
 "a", "b", "c", "d", "e", "f"]

The font set, hardcoded
FONT_SET = [
 0xF0, 0x90, 0x90, 0x90, 0xF0, # 0
 0x20, 0x60, 0x20, 0x20, 0x70, # 1
 0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2
 0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3
 0x90, 0x90, 0xF0, 0x10, 0x10, # 4
 0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5
 0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6
 0xF0, 0x10, 0x20, 0x40, 0x40, # 7
 0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8
 0xF0, 0x90, 0xF0, 0x10, 0xF0, # 9
 0xF0, 0x90, 0xF0, 0x90, 0x90, # A
 0xE0, 0x90, 0xE0, 0x90, 0xE0, # B
 0xF0, 0x80, 0x80, 0x80, 0xF0, # C
 0xE0, 0x90, 0x90, 0x90, 0xE0, # D
 0xF0, 0x80, 0xF0, 0x80, 0xF0, # E
 0xF0, 0x80, 0xF0, 0x80, 0x80 # F
]

Most of these constants are self-explanatory and in line with the origi-
nal CHIP-8 specifications. The VM has 4KB of main memory. It specifies
graphics in the form of a black-and-white output picture with a 64 × 32
resolution. The timers update 60 times per second. The original CHIP-8
systems had 16 keys you could press on the controller. We could probably
arrange them in a more ergonomic way for gaming by mapping them to
other keys, but in our implementation, we’ll just leave the keys where they
lie on the keyboard.

Probably the most unusual constant here is FONT_SET. This is 80 bytes
of graphical data for displaying the digits 0–9 and the letters A–F. Each

335-140114_ch01_1P.indd 126335-140114_ch01_1P.indd 126 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

character is specified by bits representing the pixels of the character should
it be shown on the screen. Think of it as a primitive font that only has 16
characters. Several games expect this data to live in the first 80 bytes of
memory so that they can write messages on the screen to the user.

Next, we have a helper function unrelated to the state of the VM:

def concat_nibbles(*args: int) -> int:
 result = 0
 for arg in args:
 result = (result << 4) | arg
 return result

The concat_nibbles() function takes an arbitrary number of integers and
concatenates one after another by shifting each 4 bits to the left and bitwise
OR-ing it with the next one. This will only be useful if the integers them-
selves are 4 bits. Suppose we have the integer 0111. Shifting it 4 bits to the
left will cause four zeros to follow the original 4 bits, as in 01110000. Now sup-
pose we have another 4-bit integer, 1010. If we OR it with 01110000, we obtain
the result 01111010, the concatenation of the original two 4-bit integers. We
can keep doing this for an arbitrary number of 4-bit integers to concatenate
them together.

Recall that a 4-bit integer is known as a nibble. The 16-bit instructions in
CHIP-8 are divided into four nibbles, and each nibble often has a separate
meaning. By default, we’ll divide each instruction into its four constituent
nibbles, but for a few instructions, we’ll need to use the value of a few com-
bined nibbles. Hence, the utility of the concat_nibbles() helper function.

The VM class starts with a constructor that initializes all of its mutable state
including registers, RAM, the stack, the display buffer (what today we would
call VRAM or video RAM), the timers, and a couple other helper variables:

class VM:
 def __init__(self, program_data: bytes):
 # Initialized registers & memory constructs
 # General Purpose Registers - CHIP-8 has 16 of these registers
 self.v = array('B', [0] * 16)
 # Index Register
 self.i = 0
 # Program Counter
 # Starts at 0x200 because addresses below that were
 # Used for the VM itself in the original CHIP-8 machines
 self.pc = 0x200
 # Memory - the standard 4k on the original CHIP-8 machines
 self.ram = array('B', [0] * RAM_SIZE)
 # Load the font set into the first 80 bytes
 self.ram[0:len(FONT_SET)] = array('B', FONT_SET)
 # Copy program into RAM starting at byte 512 by convention
 self.ram[512:(512 + len(program_data))] = array('B', program_data)
 # Stack - in real hardware this is typically limited to
 # 12 or 16 PC addresses for jumps, but since we're on modern hardware,
 # ours can just be unlimited and expand/contract as needed
 self.stack = []

Building a CHIP-8 Virtual Machine 127

335-140114_ch01_1P.indd 127335-140114_ch01_1P.indd 127 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
128 Chapter 5

 # Graphics buffer for the screen - 64 x 32 pixels
 self.display_buffer = np.zeros((SCREEN_WIDTH, SCREEN_HEIGHT),
 dtype=np.uint32)
 self.needs_redraw = False
 # Timers - really simple registers that count down to 0 at 60 hertz
 self.delay_timer = 0
 self.sound_timer = 0
 # These hold the status of whether the keys are down
 # CHIP-8 has 16 keys
 self.keys = [False] * 16

A few of these state variables have important default values. For exam-
ple, the program counter (pc) should always be set to location 0x200 (512 in
decimal) since the first 512 bytes of memory in CHIP-8 machines were orig-
inally used for storing the CHIP-8 VM itself. This means CHIP-8 programs
couldn’t use that memory and had to start at byte 512. I’ve extensively com-
mented the constructor to explain each variable as it’s declared. Notice
that the vast majority of our VM just uses the Python standard library for its
implementation, except for display_buffer, which is a NumPy array. This is
the format that Pygame expects.

Next, we have a trivial helper method, decrement_timers(), and a simple
dynamic property, play_sound:

 def decrement_timers(self):
 if self.delay_timer > 0:
 self.delay_timer -= 1
 if self.sound_timer > 0:
 self.sound_timer -= 1

 @property
 def play_sound(self) -> bool:
 return self.sound_timer > 0

Both decrement_timers() and play_sound were used in the run loop we
looked at earlier in __main__.py.

Graphics
CHIP-8 sees the screen as a 64 × 32 pixel plane with a cartesian coordinate
system having the origin, location (0,0), in the top left, and the y-axis ori-
ented downward. In other words, the x-coordinate increases as we travel
from left to right and the y-coordinate increases as we travel from top to
bottom. The bottom-right pixel is therefore at location (63,31). There
are no negative coordinates, and it isn’t possible to access pixel locations
beyond the screen.

Each pixel is represented in memory as a single bit. In our implemen-
tation, a 1 represents a white pixel and a 0 represents a black pixel. The
graphics memory (or “buffer”) is separate from the main program memory
and can only be manipulated indirectly using CHIP-8 instructions. Pygame
uses 32-bit integers to represent pixels on the screen in RGBA format

335-140114_ch01_1P.indd 128335-140114_ch01_1P.indd 128 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

(the A is for alpha, or transparency), so each of our 1-bit pixel values must
become a 32-bit integer when we store it in the display_buffer.

CHIP-8 draws using sprites, which are little bitmaps (or images, if you
like) that can move around the screen. Every sprite in CHIP-8 is 8 pixels
wide and can be anywhere between 1 and 15 pixels high. Figure 5-1 illus-
trates an 8 × 3 sprite representing the word HI being drawn on the screen at
location (28,15).

Figure 5-1: The word HI as an 8 × 3 sprite

Since each row in a CHIP-8 sprite is exactly 8 pixels, it’s represented
using 8 bits. Since 8 bits is 1 byte, each row of a sprite can therefore be rep-
resented by a single byte. Since the HI sprite is three rows high, it can be
represented by 3 bytes. In binary, those 3 bytes would look like this:

10100111
11100010
10100111

Notice how each 1 maps to a white pixel and each 0 maps to a black
pixel. With this information, hopefully the font set we defined earlier also
makes more sense now: each character in the font set is just an 8 × 5 sprite.

Drawing sprites is the only way to modify the display buffer, other than
clearing it, so the CHIP-8 VM has a single draw instruction, Dxyn. It draws a
sprite of a specified height residing at the memory location specified by the
i register. The D in the instruction is a constant nibble, and the x and y nib-
bles represent the indices into the v registers where the x- and y-coordinates
for the top left of the sprite should be located. In other words, the x-coordi-
nate is retrieved from register v[x] and the y-coordinate from register v[y].
The n nibble represents the height of the sprite. This is why sprites can’t be
taller than 15 pixels: a nibble is 4 bits, and 4 bits can maximally represent
the number 15.

The nibbles of Dxyn correspond to the parameters of the draw_sprite()
helper method:

 # Draw a sprite at *x*, *y* using data at *i* with a height of *height*
 def draw_sprite(self, x: int, y: int, height: int):
 flipped_black = False # did drawing this flip any pixels?
 for row in range(0, height):
 row_bits = self.ram[self.i + row]

Building a CHIP-8 Virtual Machine 129

335-140114_ch01_1P.indd 129335-140114_ch01_1P.indd 129 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
130 Chapter 5

 for col in range(0, SPRITE_WIDTH):
 px = x + col
 py = y + row
 if px >= SCREEN_WIDTH or py >= SCREEN_HEIGHT:
 continue # ignore off-screen pixels
 new_bit = (row_bits >> (7 - col)) & 1
 old_bit = self.display_buffer[px, py] & 1
 if new_bit & old_bit: # if both set, flip white -> black
 flipped_black = True
 # CHIP-8 draws by XORing
 new_pixel = new_bit ^ old_bit
 self.display_buffer[px, py] = WHITE if new_pixel else BLACK
 # Set flipped flag for collision detection
 self.v[0xF] = 1 if flipped_black else 0

CHIP-8 draws sprites using XOR operations. XOR, or exclusive or, is a
bitwise operation that returns a 1 if two bits are different and a 0 if they’re
the same. Python uses the ^ operator for XOR. Table 5-2 shows a truth table
for XOR.

Table 5-2: XOR Truth Table

0 ^ 0 0 ^ 1 1 ^ 0 1 ^ 1

0 1 1 0

The CHIP-8 draw instruction takes a sprite and XORs its pixels with the
pixels already on the screen at the location specified. If this screen location
is all black pixels, this will effectively just draw the sprite. However, if the
screen location contains some white pixels (1s), black pixels will be drawn
where the white pixels of the sprite overlap with the white pixels of the
screen. This is because 1 XOR 1 is 0. The CHIP-8 draw instruction tracks
whether any of these overlaps occur (a screen white pixel was turned to a
black pixel by drawing the sprite). If they do, it sets the flag register (v[0xF]).

The draw_sprite() method is a codification of this process. We iterate
through all of the rows and columns of a sprite that begins at the memory
location specified by register i, pulling out each pixel of the sprite using a
right shift operation and storing it in new_bit. The & operation on the data
going into new_bit ensures that only the single last bit of the shift opera-
tion is stored in new_bit. We compare each new_bit to the bit already on the
screen, old_bit, and if an old_bit will be flipped from white to black, we set
the flag register. We change the display buffer by taking the XOR of new_bit
and old_bit.

Why do we need a flag to track whether drawing a sprite causes a pre-
viously lit screen pixel to be turned off? It’s effectively a form of collision
detection. If a sprite hits something that was already on the screen, that’s
particularly helpful to know in a game. For example, if you are program-
ming a tennis game, you would want to know when the ball moves and hits
a racket already on the screen.

335-140114_ch01_1P.indd 130335-140114_ch01_1P.indd 130 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

Instruction Execution
Now it’s time for the heart of the VM. We have one method left, but it’s a
big one: we need to implement all of the VM’s instructions. This isn’t dis-
similar to executing the statements in our interpreters in Chapters 1 and 2.
Whether executing interpreter statements, VM instructions, or micropro-
cessor opcodes in an emulator, we need to do something pretty simple: rec-
ognize what the next instruction is and then execute a different few lines of
code that manipulate the state of the VM based on its intended operation.

For example, if we see an add instruction, we should add the two speci-
fied numbers together and store the result in a specified location. If we see
a jump instruction, we should move execution to a specified location in
memory. It’s literally about recognizing what instruction is being executed
and changing a few state variables representing memory, registers, and the
like based on that instruction. The simplest way to do this would be with a
large number of if statements. The pseudocode may look like this:

if instruction == ADD:
 add some numbers together and store the sum
elif instruction == JUMP:
 jump to a location by changing the program counter
elif instruction == DRAW:
 draw the sprite where specified by changing the display buffer
etc.

Beyond using a bunch of if statements, there are three common pat-
terns for writing the code that executes the instructions. The first is a giant
switch statement, a construct present in many languages but not quite in
Python in the same form. I assume most readers have seen a switch state-
ment before in a language like C or Java. If you haven’t, you can think of it
as a primitive form of Python’s match statement like we used in Chapters 1
and 2. The case of the switch statement that executes is dependent on the
instruction. This is somewhat similar to the pseudocode just shown. In fact,
prior to the introduction of the match statement in Python 3.10, the way you
would implement this pattern in Python was indeed with a ton of if and
elif clauses. This is the simplest way to implement instruction execution,
but it can become unwieldy for a large instruction set.

The next pattern is to use a jump table, which consists of an array of
function pointers. We index into the array depending on the instruction
and then execute the appropriate function that’s returned. Instructions are
just integers, which is why they can be used as array indices. If the instruc-
tions were strings for some reason, we could instead use a dictionary where
the keys are instructions and the values are function pointers, although
this is a bit less efficient. Because this pattern divides the work across many
helper functions, it generally results in cleaner code than a giant switch
statement and may be preferred for a larger instruction set.

The third pattern is to use dynamic recompilation, where we translate each
instruction into an instruction that the underlying hardware understands
(or something that can further be translated into such). For example, if we

Building a CHIP-8 Virtual Machine 131

335-140114_ch01_1P.indd 131335-140114_ch01_1P.indd 131 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
132 Chapter 5

have an addition instruction in the VM running on an X86 microprocessor,
we may translate the VM’s addition instruction into the machine code for an
equivalent X86 addition instruction. This is the most complicated pattern
to implement because it requires intimate knowledge of not just the original
instruction set but also the instruction set being translated into. It will, how-
ever, result in the fastest performance.

In this program, we’ll use a giant match statement since CHIP-8’s instruc-
tion set is relatively small. When we create an NES emulator in the next
chapter, we’ll use a jump table because the 6502 microprocessor has an
instruction set that’s roughly double the size (although still much smaller
than almost any other microprocessor). Dynamic recompilation is a signifi-
cantly more complicated technique and beyond the scope of this book.

The step() method is responsible for executing instructions, but first
the method needs to retrieve the next instruction to execute:

 def step(self):
 # We look at the opcode in terms of its nibbles (4 bit pieces)
 # Opcode is 16 bits made up of next two bytes in memory
 first2 = self.ram[self.pc]
 last2 = self.ram[self.pc + 1]
 first = (first2 & 0xF0) >> 4
 second = first2 & 0xF
 third = (last2 & 0xF0) >> 4
 fourth = last2 & 0xF

 self.needs_redraw = False
 jumped = False

The next instruction is located at the memory address stored in the
program counter (pc). Since instructions consist of 16 bits, we retrieve the
next 2 bytes at pc and store them in first2 and last2. As discussed earlier,
it’s convenient to think about each CHIP-8 instruction as a combination
of four nibbles, since each individual nibble is meaningful for many of the
instructions. We store the nibbles in first, second, third, and fourth. All of
the pattern-matching around our instructions will be in terms of nibbles.

As we execute the instruction, we’ll also be keeping track of whether
it requires any redrawing through needs_redraw and whether it modified pc
through jumped. The run loop uses needs_redraw as an optimization. Why
do any drawing when nothing changed? Keeping track of jumped allows for
some common code to be at the bottom of step(), reducing a little bit of
code duplication.

Now we arrive at the actual instructions. The giant match statement is
upon us. Our implementation utilizes Python’s elegant match syntax to cap-
ture the nibbles that are necessary for the execution of an instruction in tem-
porary variables. The details of each instruction’s execution follow directly
from its description earlier in the chapter. Many of the instructions are able
to be implemented in just a single line of code. It would be exceedingly dry to
write about each of them in turn. Instead, what follows is a reproduction of
the rest of step(), with comments providing a bit of additional context.

335-140114_ch01_1P.indd 132335-140114_ch01_1P.indd 132 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

Before you look at the code, though, this is a good place to stop and try
to implement the instructions yourself. You don’t have to use a match state-
ment. You could use a series of if...elif statements as I did in Python 3.9
before the match statement existed. (I tested and there was virtually no per-
formance difference between the two.) You already have all the setup you
need to be able to concentrate only on what each instruction is supposed to
do instead of configuring the system’s memory or register representation.
You don’t need to think about loading the ROM file or what some constants
should be. Just think about logic and how each operation would modify the
VM’s state.

Some of the descriptions of the instructions earlier in this chapter
were fairly brief, but you can find more detailed instructions in any of a
myriad of CHIP-8 references online. Don’t spend too much time on a single
instruction, though. You can always look at the implementation here if you
get stuck. After you try writing your own instruction implementations, you
can return to this book’s code to double-check your work. Doing this work
yourself first will give you a good idea of what goes into writing a simple VM
or emulator. Don’t be afraid: you’ll be amazed at how simple it is to imple-
ment many of the instructions. Remember, the original CHIP-8 VM fit in
just 512 bytes of memory!

 match (first, second, third, fourth):
 case (0x0, 0x0, 0xE, 0x0): # display clear
 self.display_buffer.fill(0)
 self.needs_redraw = True
 case (0x0, 0x0, 0xE, 0xE): # return from subroutine
 self.pc = self.stack.pop()
 jumped = True
 case (0x0, n1, n2, n3): # call program
 self.pc = concat_nibbles(n1, n2, n3) # go to start
 # Clear registers
 self.delay_timer = 0
 self.sound_timer = 0
 self.v = array('B', [0] * 16)
 self.i = 0
 # Clear screen
 self.display_buffer.fill(0)
 self.needs_redraw = True
 jumped = True
 case (0x1, n1, n2, n3): # jump to address
 self.pc = concat_nibbles(n1, n2, n3)
 jumped = True
 case (0x2, n1, n2, n3): # call subroutine
 self.stack.append(self.pc + 2) # put return place on stack
 self.pc = concat_nibbles(n1, n2, n3) # goto subroutine
 jumped = True
 case (0x3, x, _, _): # conditional skip v[x] equal last2
 if self.v[x] == last2:
 self.pc += 4
 jumped = True

Building a CHIP-8 Virtual Machine 133

335-140114_ch01_1P.indd 133335-140114_ch01_1P.indd 133 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
134 Chapter 5

 case (0x4, x, _, _): # conditional skip v[x] not equal last2
 if self.v[x] != last2:
 self.pc += 4
 jumped = True
 case (0x5, x, y, _): # conditional skip v[x] equal v[y]
 if self.v[x] == self.v[y]:
 self.pc += 4
 jumped = True
 case (0x6, x, _, _): # set v[x] to last2
 self.v[x] = last2
 case (0x7, x, _, _): # add last2 to v[x]
 self.v[x] = (self.v[x] + last2) % 256
 case (0x8, x, y, 0x0): # set v[x] to v[y]
 self.v[x] = self.v[y]
 case (0x8, x, y, 0x1): # set v[x] to v[x] | v[y]
 self.v[x] |= self.v[y]
 case (0x8, x, y, 0x2): # set v[x] to v[x] & v[y]
 self.v[x] &= self.v[y]
 case (0x8, x, y, 0x3): # set v[x] to v[x] ^ v[y]
 self.v[x] ^= self.v[y]
 case (0x8, x, y, 0x4): # add with carry flag
 try:
 self.v[x] += self.v[y]
 self.v[0xF] = 0 # indicate no carry flag
 except OverflowError:
 self.v[x] = (self.v[x] + self.v[y]) % 256
 self.v[0xF] = 1 # set carry flag
 case (0x8, x, y, 0x5): # subtract with borrow flag
 try:
 self.v[x] -= self.v[y]
 self.v[0xF] = 1 # indicate no borrow (yes, weird it's 1)
 except OverflowError:
 self.v[x] = (self.v[x] - self.v[y]) % 256
 self.v[0xF] = 0 # indicates there was a borrow
 case (0x8, x, _, 0x6): # v[x] >> 1 v[f] = least significant bit
 self.v[0xF] = self.v[x] & 0x1
 self.v[x] >>= 1
 case (0x8, x, y, 0x7): # subtract with borrow flag (y - x in x)
 try:
 self.v[x] = self.v[y] - self.v[x]
 self.v[0xF] = 1 # indicate no borrow (yes, weird it's 1)
 except OverflowError:
 self.v[x] = (self.v[y] - self.v[x]) % 256
 self.v[0xF] = 0 # indicates there was a borrow
 case (0x8, x, _, 0xE): # v[x] << 1 v[f] = most significant bit
 self.v[0xF] = (self.v[x] & 0b10000000) >> 7
 self.v[x] = (self.v[x] << 1) & 0xFF
 case (0x9, x, y, 0x0): # conditional skip if v[x] != v[y]
 if self.v[x] != self.v[y]:
 self.pc += 4
 jumped = True
 case (0xA, n1, n2, n3): # set i to address n1n2n3
 self.i = concat_nibbles(n1, n2, n3)

335-140114_ch01_1P.indd 134335-140114_ch01_1P.indd 134 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

 case (0xB, n1, n2, n3): # jump to n1n2n3 + v[0]
 self.pc = concat_nibbles(n1, n2, n3) + self.v[0]
 jumped = True
 case (0xC, x, _, _): # v[x] = random number (0-255) & last2
 self.v[x] = last2 & randint(0, 255)
 case (0xD, x, y, n): # draw sprite at (vx, vy) that's n high
 self.draw_sprite(self.v[x], self.v[y], n)
 self.needs_redraw = True
 case (0xE, x, 0x9, 0xE): # conditional skip if keys(v[x])
 if self.keys[self.v[x]]:
 self.pc += 4
 jumped = True
 case (0xE, x, 0xA, 0x1): # conditional skip if not keys(v[x])
 if not self.keys[self.v[x]]:
 self.pc += 4
 jumped = True
 case (0xF, x, 0x0, 0x7): # set v[x] to delay_timer
 self.v[x] = self.delay_timer
 case (0xF, x, 0x0, 0xA): # wait until next key then store in v[x]
 # Wait here for the next key then continue
 while True:
 event = pygame.event.wait()
 if event.type == pygame.QUIT:
 sys.exit()
 if event.type == pygame.KEYDOWN:
 key_name = pygame.key.name(event.key)
 if key_name in ALLOWED_KEYS:
 self.v[x] = ALLOWED​_KEYS​.index(key​_name)
 break
 case (0xF, x, 0x1, 0x5): # set delay_timer to v[x]
 self.delay_timer = self.v[x]
 case (0xF, x, 0x1, 0x8): # set sound_timer to v[x]
 self.sound_timer = self.v[x]
 case (0xF, x, 0x1, 0xE): # add vx to i
 self.i += self.v[x]
 case (0xF, x, 0x2, 0x9): # set i to location of character v[x]
 self.i = self.v[x] * 5 # built-in font set is 5 bytes apart
 case (0xF, x, 0x3, 0x3): # store BCD at v[x] in i, i+1, i+2
 self.ram[self.i] = self.v[x] // 100 # 100s digit
 self.ram[self.i + 1] = (self.v[x] % 100) // 10 # 10s digit
 self.ram[self.i + 2] = (self.v[x] % 100) % 10 # 1s digit
 case (0xF, x, 0x5, 0x5): # reg dump v0 to vx starting at i
 for r in range(0, x + 1):
 self.ram[self.i + r] = self.v[r]
 case (0xF, x, 0x6, 0x5): # store i through i+r in v0 through vr
 for r in range(0, x + 1):
 self.v[r] = self.ram[self.i + r]
 case _:
 print(f"Unknown opcode {(hex(first), hex(second),
 hex(third), hex(fourth))}!")

 if not jumped:
 self.pc += 2 # increment program counter

Building a CHIP-8 Virtual Machine 135

335-140114_ch01_1P.indd 135335-140114_ch01_1P.indd 135 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
136 Chapter 5

At the end of step(), we increment the program counter if we didn’t
jump. This ensures that we’ll have moved on to the next instruction the next
time step() is called. Since each CHIP-8 instruction is 2 bytes long, the pro-
gram counter is incremented by 2. If there was a jump, then execution was
directly moved to a specific different instruction somewhere else in memory.

Testing the VM
The most granular way to test the VM would be to write our own unit tests
for each of the instructions. For each test, we would try running an instruc-
tion and then verify that the subsequent internal state of the VM was cor-
rect. While this would be ideal, in the interests of time and space we’ll
instead do something more akin to integration tests: we’ll see how our VM
performs running real CHIP-8 programs. Do they run correctly?

As it happens, there are even test ROMs that offer a kind of one-stop
shop for testing a CHIP-8 VM. Two such test ROMs are included in the
Chip8/Tests subdirectory of the book’s source code repository. Both test
ROMs were released under open licenses by their developers, and those
licenses are included in the subdirectories. Let’s run the first test ROM
from the repository’s home directory:

% python3 -m Chip8 Chip8/Tests/chip8-test-rom/test_opcode.ch8

If the VM is working correctly, you should see a screen of OKs, as shown
in Figure 5-2.

Figure 5-2: Running the first test ROM

Now let’s check our work with the second test ROM:

% python3 -m Chip8 Chip8/Tests/chip8-test-rom-2/chip8-test-rom.ch8

This one just displays OK a single time in the upper-left corner (see
Figure 5-3).

335-140114_ch01_1P.indd 136335-140114_ch01_1P.indd 136 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

Figure 5-3: Running the second test ROM

These tests aren’t comprehensive, but they’re a good starting point.
Now it’s time for the ultimate integration tests: can our VM accurately
play games?

Playing Games
The Chip8/Games subdirectory of the book’s repository contains a selection
of CHIP-8 ROMs that have been placed into the public domain. If you find
the control schemes of some of them a bit unwieldy, consider changing the
default key bindings. Right now, ALLOWED_KEYS are read directly from their
respective keys, so an A in the VM is the A key on the keyboard. The systems
these were played on could have quite different key layouts, though, so a
different scheme might be better for some of the games.

Most of the games are quite simple, which makes sense given the con-
straints of the hardware the VM was originally meant to run on. There are
clones of popular games for more capable systems. First we have BLINKY, a
kind of Pac-Man clone (Figure 5-4).

Figure 5-4: The BLINKY game running on the VM

INVADERS is a clone of Space Invaders (Figure 5-5).

Building a CHIP-8 Virtual Machine 137

335-140114_ch01_1P.indd 137335-140114_ch01_1P.indd 137 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
138 Chapter 5

Figure 5-5: The INVADERS game running on
the VM

VBRIX is a vertical form of Breakout (Figure 5-6).

Figure 5-6: The VBRIX game running on the VM

And then there’s PONG (Figure 5-7).

Figure 5-7: The PONG game running on the VM

There are several more games for you to check out bundled with
the source code repository. Note the file sizes: most of these games are
500 bytes or less! The largest, BLINKY, is just 2KB.

PERSON A L S TORY

I was always interested in developing my own emulator, but I didn’t feel confi-
dent enough to build one until well into my programming life. When I started
researching how to write an emulator, the standard advice I found was to first

335-140114_ch01_1P.indd 138335-140114_ch01_1P.indd 138 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

—-1
—0
—+1

try writing a CHIP-8 VM since doing so is easier than writing almost any emula-
tor but requires all the same elements (handling opcodes, simulating memory
and registers, graphics, and so on).

I found an online tutorial that was reasonably good. I decided that I
wanted to make it a little more challenging, though, so I developed my initial
CHIP-8 VM in the then-new language Swift, which I was doing a lot of my pro-
fessional work in at the time. It was a weekend project, the launching point that
I needed to get started developing emulators.

Real-World Applications
VMs are ubiquitous in both historical and modern software development.
Their chief advantage is portability. A program written for a VM will run
on any platform that has an implementation of that VM. VMs also provide
infrastructure that reduces the burden on a language author by eliminat-
ing the need to implement common language runtime features like gar-
bage collection.

An early example was the compilation of Pascal by some compilers in
the 1970s and 1980s to so-called p-code (a type of bytecode) that would run
on a p-code VM. Two prominent modern VM environments are the JVM,
mentioned earlier in this chapter, and Microsoft’s competing Common
Language Runtime (CLR), which is part of its .NET platform. Both the
JVM and CLR are targeted by multiple popular programming languages.
For example, C#, F#, and Visual Basic are languages that commonly target
the CLR, but there are also implementations of popular languages like
Python and Swift for the CLR.

Why do these language implementations compile into bytecode for the
CLR instead of machine code? Once compiled, that bytecode can run on
any platform that has an installed CLR. That’s a kind of instant portability
post-compilation. In addition, a sophisticated VM like the CLR will provide
language services like garbage collection, multithreading, and security
mechanisms. Finally, when a VM like the CLR just-in-time (JIT) compiles
intermediate code into machine code, it will apply optimizations that the
language author doesn’t need to think about.

Beyond abstract machines utilized as language runtimes, the term vir-
tual machine is also confusingly used to refer to a whole hardware implemen-
tation in software—in other words, an emulator. Building an emulator is
the subject of the next chapter.

Exercises
	 1.	Try measuring the performance of the main opcode interpreter code

using three different methodologies: the already implemented match

Building a CHIP-8 Virtual Machine 139

335-140114_ch01_1P.indd 139335-140114_ch01_1P.indd 139 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

-1—
0—

+1—
140 Chapter 5

statement, a series of if...elif statements, and a jump table. Determine
which method is fastest using either a profiler or a simple timer. You
may need to turn off the timing code in the main run loop in order to
do this, or you may do this using a set of unit tests.

	 2.	There’s a slightly extended version of CHIP-8, known as SCHIP (Super-
Chip). It requires implementing a few more opcodes and changing a
few elements of the original CHIP-8 VM, such as its resolution. Look
up documentation for SCHIP and try turning our CHIP-8 VM into an
SCHIP VM. Then, try playing some SCHIP games!

	 3.	Try writing a very simple game that just displays a couple letters on the
screen using CHIP-8’s machine code instructions. You’ll need a hex edi-
tor to do this. It’s gratifying to see binary code you wrote running in a
VM you understand.

Notes
	 1.	 Joe Weisbecker, “A Practical, Low-Cost, Home/School Microprocessor

System,” Computer 7, no. 08 (August 1974): 20–31.

	 2.	 Katianne Williams, “Joyce Weisbecker: The First Indie Game Developer,”
IEEE Women in Engineering Magazine 16, no. 2 (December 2022): 15–20,
doi:10.1109/MWIE.2022.3203181.

	 3.	 RCA COSMAC VIP CDP18S711 Instruction Manual (RCA Corporation,
1978).

	 4.	 RCA COSMAC VIP CDP18S711 Instruction Manual (RCA Corporation,
1978).

	 5.	 RCA COSMAC VIP CDP18S711 Instruction Manual (RCA Corporation,
1978).

335-140114_ch01_1P.indd 140335-140114_ch01_1P.indd 140 12/04/25 6:02 PM12/04/25 6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec

