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In this chapter, we’re going to develop 
a version of a virtual machine known as 

CHIP-8, a platform from the early days of 
personal computing that was primarily used 

for playing games. Although our program will be able 
to play CHIP-8 games, it’s not the games themselves 
that interest us—it’s what building a CHIP-8 virtual 
machine can teach us about low-level programming 
and how a computer works at the register and instruc-
tion levels. These insights make building a CHIP-8 
virtual machine a popular first step into the world of 
programming emulators.

5
B U I L D I N G  A  C H I P - 8 

V I R T U A L   M A C H I N E
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Virtual Machines
Think of a virtual machine (VM) as a computer that’s defined wholly in soft-
ware. Programs that are designed to run in a VM can run on any platform 
that has an implementation of that VM. In this way, VMs enable truly por-
table software.

VMs are closely related to emulators. An emulator is a piece of software 
that’s pretending to be a piece of hardware. This enables programs that 
were written for that hardware to run on other machines that lack the 
hardware. An emulator must follow the specification for the original hard-
ware carefully so that it re-creates all the functionality that the unknowing 
programs running on the emulator expect. I say unknowing because the 
software running on an emulator has no idea it isn’t running on the real 
hardware; the emulator had better work exactly like the original hardware 
if the program is going to function correctly.

A VM is also a piece of software that closely follows a specification of an 
environment that software runs on top of. The difference is that while an 
emulator follows a hardware specification, a VM follows a specification that 
may be wholly defined as an abstraction in software terms.

Although one is a hardware specification and one is a software specifi-
cation, implementing a simple emulator is quite similar to implementing a 
simple VM. In fact, they’re so similar that while the project completed in this 
chapter is technically a VM project, it’s very commonly suggested as a first 
emulation project. If you’re a newcomer to the emulator development com-
munity asking where you should start, CHIP-8 is almost always the answer.

Perhaps the most famous VM is the Java Virtual Machine (JVM). When 
Java first came out in the mid-1990s, its “write once, run anywhere” phi-
losophy was touted. JVMs were developed for all major operating systems 
(Windows, Linux, Mac OS, and so on), and the same Java program could be 
compiled into the JVM’s native bytecode format and run on any computer 
with a JVM unchanged, regardless of the underlying platform. That’s still 
true today, but Java’s original write-once-run-anywhere niche has largely 
been supplanted by web applications.

The CHIP-8 VM comes from a much earlier era. In the 1970s, Joseph 
Weisbecker was a pioneering engineer who developed one of the first 8-bit 
microprocessors, the RCA 1802. He and RCA built an early personal com-
puter using his invention.1 He wanted to have a way to program games for 
the machine in a higher-level language than machine code, so he devel-
oped CHIP-8 (and its accompanying opcode language). His daughter, 
Joyce Weisbecker, would go on to use CHIP-8 to become the first published 
female video game developer.2 In the 1980s, CHIP-8 was ported to many 
other platforms, including many graphing calculators. It therefore became 
a truly portable VM, analogous to an early form of how we think about 
VMs today.
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The CHIP-8 Virtual Machine
The CHIP-8 VM was originally designed for the incredibly resource-
constrained personal computers of the late 1970s, like the COSMAC VIP. 
Released in 1977, the COSMAC VIP had an RCA 1802 8-bit microproces-
sor running at less than 2 megahertz (MHz), 2KB of RAM (expandable 
to 4KB), and a 512-byte ROM. It also had specialized chips for displaying 
1-bit graphics at a resolution of up to 64 × 128, reading and writing cassette 
tapes, and playing a beep.3

It’s amazing by today’s standards that anything of value could have 
been programmed on a machine like the COSMAC VIP, yet it was designed 
for video games. In fact, those games even ran through another layer of 
abstraction, the CHIP-8 VM. The most popular video game console of the 
era, the Atari 2600, was also released in 1977 and had specifications that 
were in the same ballpark. These limitations were simply par for the course.

When programming a VM or an emulator, the performance of the 
tools you’re using is a paramount concern. The VM or emulator adds 
another layer of abstraction between the program and the hardware, and 
each layer of abstraction generally comes with some performance cost. To 
achieve the intended speed of the original system, overhead has to be kept 
to a minimum, and some programming languages (or rather, some program-
ming languages’ primary runtime implementations) get in the way. This is 
why it’s common to see VMs and emulators programmed in low-level lan-
guages like C, C++, and Rust. That said, considering how limited CHIP-8’s orig-
inal target hardware was, it’s not difficult to create a performant CHIP-8 
VM today on any modern system. Even a relatively slow programming lan-
guage runtime like CPython is sufficient. You wouldn’t want to program 
a cutting-edge game console emulator in Python, or a JVM. But CHIP-8? 
Python is more than fine for that.

To understand CHIP-8, let’s start by discussing its registers and memory 
layout. Then, I’ll provide a general overview of the instructions that the VM 
can execute, before getting into the nitty-gritty details of an implementation.

Registers and Memory
On a physical microprocessor, registers are the absolute fastest memory 
available. They sit directly within the microprocessor and don’t require the 
latency of accessing another chip. Putting data in registers is often the only 
way to manipulate it, since most data manipulation instructions (for exam-
ple, arithmetic) that a microprocessor supports operate on data within the 
registers. Separate load/store instructions transfer data between the regis-
ters and external RAM.

When it comes to registers, there’s a classic time-versus-space trade-
off: the registers are the fastest storage locations to hold data, but they’re 
extremely limited in size. For example, a typical 8-bit microprocessor of the 
late 1970s may only have had a few 8-bit registers (yes, each can only hold a 
single byte), but it could address dozens of kilobytes of external RAM.
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Most VMs, like the CHIP-8, also have registers, but those registers don’t 
always map directly to physical hardware registers on the microprocessor. 
As such, they’re not necessarily any faster than RAM. That may seem odd, 
but the registers provide a substrate that the instructions can operate on. 
There’s also nothing stopping a particular implementation of the VM from 
mapping the virtual registers to real hardware registers for a performance 
gain—as long as the number of virtual registers doesn’t exceed the number 
of physical registers.

N O T E 	 In the following discussion, the same names are used to refer to the CHIP-8 registers 
as will be used in the Python code for the implementation.

The CHIP-8 VM has 16 general-purpose 8-bit registers, referred to 
as v[0] through v[15]. They can be used for any kind of data, and all the 
main arithmetic and logic instructions operate on these registers. Of these 
general-purpose registers, v[15] (or v[0xF] in hexadecimal) is special in that 
it’s used for holding a flag. The index register, i, is for manipulations across 
multiple memory locations at once and for indicating where data that needs 
to be drawn to the screen exists in memory. The program counter, pc, is a 
special register that keeps track of the memory address of the next instruc-
tion to be executed.

The vs, i, and pc constitute the main registers, but they’re backed up 
by a couple pseudo-registers for timing. These two bytes, delay_timer and 
sound_timer, are used for implementing a pause in the game or indicat-
ing how long the sound of a beep should be played. There are special-
ized instructions for modifying these timers. All the registers are listed in 
Table 5-1. The registers were originally described in the RCA COSMAC VIP 
CDP18S711 Instruction Manual.4

Table 5-1: CHIP-8 Registers and Pseudo-Registers

Register Name Description

v[0] to v[14] General-purpose registers Each can hold any kind of 8-bit data.

v[15] Flag register Stores a flag (1 or 0) after certain opera-
tions, like a carry flag after addition.

pc Program counter Keeps track of the 16-bit address in 
memory of the current instruction being 
executed.

i Memory index register Stores a 16-bit address used for complet-
ing instructions that span multiple contigu-
ous places in memory.

delay_timer Delay timer Stores an 8-bit value that’s decremented 
60 times per second until it reaches 0.

sound_timer Sound timer Stores an 8-bit value that’s decremented 
60 times per second until it reaches 0; 
while it’s above 0, a beep is played by 
the computer speaker.
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A typical CHIP-8 VM has 4KB of general-purpose RAM. This is in line 
with the COSMAC VIP when loaded with expansion memory. However, 
there’s a catch: on the VIP, the first 512 bytes of memory had to contain the 
code for the actual CHIP-8 VM itself (yes, the whole VM fit into just 512 
bytes of machine code—think about that as we write our version). That left 
only 3.5KB of usable RAM. To be backward compatible today, our VM must 
also reserve the first 512 bytes of RAM.

Instructions
The CHIP-8 VM was largely used to program games, so it includes special-
ized instructions for actions like moving sprites and playing a beep. Those sit 
alongside all the mundane, utilitarian instructions you’d find in any micro-
processor instruction set or low-level programming language—instructions 
for manipulating memory, doing arithmetic, overseeing control flow, handling 
timers, and managing the display. In total, there are 35 instructions that 
we’ll be implementing. All the instructions are specified in hexadecimal— 
see “Hexadecimal” on page XX for more on that numbering system.

HE X A DECIM A L

Hexadecimal, or base-16, is the number system typically used for working with 
low-level bytes on computing systems (RAM addresses, CPU instructions, and 
the like). It can more compactly and consistently refer to values in bytes than 
binary or standard decimal (base-10, the number system we’re used to). For 
instance, you can represent any 8-bit number using two hexadecimal digits, 
and helpfully, each of those two digits corresponds to exactly half of the byte 
when written out in binary (half of a byte is known as a nibble). If you were a 
programmer in the 1970s or 1980s, you would work with hexadecimal often, 
but today the average Python developer seldom uses it outside of low-level 
programming.

In hexadecimal, in addition to the 10 symbols 0–9, six further symbols are 
provided, A–F, corresponding to the decimal values 10–15. In Python, hexa-
decimal literals start with the 0x prefix. For example, 0xFF is the same as the 
decimal number 255, or the binary number 0b11111111. One F in the hexadeci-
mal version refers to the first half of the ones in the binary version (1111), and 
the other F refers to the second set of ones (1111). This is the maximum value of 
1 byte. To illustrate the conversion more clearly, the hexadecimal number 0xF0 
can be written in binary as 0b11110000, with the F for the 1111 and the 0 for 
the 0000.

To convert from hexadecimal to decimal, multiply each hex digit from right 
to left by a power of 16, starting with 160. For example, 0xFF can be rewritten 
as (15 × 160) + (15 × 161). The right digit (F) becomes 15 × 1 = 15, the left digit 
becomes 15 × 16 = 240, and 240 + 15 = 255. Here’s another example: 0xA5B is 
(11 × 160) + (5 × 161) + (10 × 162). This is equivalent to 2,651 in decimal.

Building a CHIP-8 Virtual Machine   119

335-140114_ch01_1P.indd   119335-140114_ch01_1P.indd   119 12/04/25   6:02 PM12/04/25   6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec



-1—
0—

+1—
120   Chapter 5

The instructions are here as a quick reference and to give you a sense of 
the “lay of the land.” We’ll get into the details of how each instruction works 
in the code, but the reality is that most of the code is pretty self-explanatory 
based on the instruction descriptions. The vast majority of instructions can 
be implemented in just a couple lines of Python.

I spent a lot of time thinking about how to group the instructions for 
this discussion. Ultimately, I decided to order them numerically so that they 
appear in the same order here as they do in the code. Every instruction 
in CHIP-8 is 16 bits, or in other words, 2 bytes or 4 nibbles, so it translates 
to four hexadecimal digits. Any uppercase hexadecimal digit 0–F in an 
instruction is a literal. Any lowercase letter indicates a value that will be 
used as part of the implementation of the instruction. An underscore (_) 
indicates the nibble is arbitrary. The instructions were originally described 
in the RCA COSMAC VIP CDP18S711 Instruction Manual.5

N O T E 	 A few instructions listed here weren’t present in the original CHIP-8 specification 
(for example, 8x_6 and 8x_E). Their functionality sometimes differs across varying 
CHIP-8 implementations.

Screen Clearing and Basic Jumps

The first set of instructions are used for cleaning up the entire screen all  
at once and for moving from one part of the program to another part of 
the program.

00E0 ​   ​Clear the screen.

00EE ​   ​Return from a subroutine.

0nnn ​   ​Call the program at nnn, reset the timers and registers, and 
clear the screen.

1nnn ​   ​Jump to address nnn without resetting.

2nnn ​   ​Call the subroutine at nnn.

Conditional Skips

The next set of instructions are for jumps to another part of the program if 
a particular condition is true.

3xnn ​   ​Skip the next instruction if v[x] equals nn.

4xnn ​   ​Skip the next instruction if v[x] doesn’t equal nn.

5xy_ ​   ​Skip the next instruction if v[x] equals v[y].

General-Purpose Register Adjustments, Arithmetic, and Bit Manipulation

Next come standard instructions that you would find in any CPU or VM for 
actions like doing math, setting registers, and shifting bits.

6xnn ​   ​Set v[x] to nn.

7xnn ​   ​Add nn to v[x].

8xy0 ​   ​Set v[x] to v[y].
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8xy1 ​   ​Set v[x] to v[x] | v[y] (bitwise OR).

8xy2 ​   ​Set v[x] to v[x] & v[y] (bitwise AND).

8xy3 ​   ​Set v[x] to v[x] ^ v[y] (bitwise XOR).

8xy4 ​   ​Add v[y] to v[x] and set the carry flag.

8xy5 ​   ​Subtract v[y] from v[x] and set the borrow flag.

8x_6 ​   ​Shift v[x] right one bit and set the flag to the least-significant bit.

8xy7 ​   ​Subtract v[x] from v[y] and store the result in v[x]; set the 
borrow flag.

8x_E ​   ​Shift v[x] left one bit and set the flag to the most-significant bit.

Miscellaneous Instructions

These instructions don’t quite have a unified subject area, but their opcodes 
are close to one another numerically.

9xy0 ​   ​Skip the next instruction if v[x] doesn’t equal v[y].

Annn ​   ​Set i to nnn.

Bnnn ​   ​Jump to nnn + v[0].

Cxnn ​   ​Set v[x] to a random integer (0–255) & nn (bitwise AND).

Dxyn ​   ​Draw a sprite that’s n high at (v[x], v[y]); set the flag on a collision.

Key and Timer Instructions

The next batch of instructions are for manipulating the VM’s timers and 
checking on the status of various keys or waiting for a particular key to 
be pressed.

Ex9E ​   ​Skip the next instruction if key v[x] is set (pressed).

ExA1 ​   ​Skip the next instruction if key v[x] is not set (not pressed).

Fx07 ​   ​Set v[x] to the delay timer.

Fx0A ​   ​Wait until the next key press, then store the key in v[x].

Fx15 ​   ​Set the delay timer to v[x].

Fx18 ​   ​Set the sound timer to v[x].

Register i Instructions

All the instructions in this last set are related to the memory index register (i).

Fx1E ​   ​Add v[x] to i.

Fx29 ​   ​Set i to the location of character v[x] in the font set.

Fx33 ​   ​Store the binary-coded decimal (BCD) value in v[x] at memory 
locations i, i + 1, and i + 2. (See “Binary-Coded Decimal” on page XX 
for more on this.)

Fx55 ​   ​Dump registers v[0] through v[x] in memory, starting at i.

Fx65 ​   ​Store memory from i through i + x in registers v[0] through v[x].
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Consider for a moment how mundane these instructions sound. You 
really don’t need any sophisticated mechanisms to have a working “com-
puter.” Contrast the 35 CHIP-8 instructions described here with the 8 
instructions in our implementation of Brainfuck from Chapter 1. Both are 
memory-constrained Turing machines, and they aren’t as different from 
each other as their superficial instruction syntax may make it appear.

BIN A RY- CODED DECIM A L

Binary-coded decimal (BCD) is a way of storing decimal numbers in binary. It’s 
not widely used today, but it was common in early computers. For example, 
several microprocessors from the 1970s included explicit instructions for BCD 
arithmetic, which offered more precision when dealing with decimal rounding 
and to some extent made machine code more readable. For the average mod-
ern programmer, there isn’t much value in learning BCD except as a curiosity. 
There were multiple different BCD schemes, and frankly I don’t think that learn-
ing the particular scheme used in the CHIP-8 VM is a valuable use of our space 
in this book.

The Implementation
Now that we know the CHIP-8 architecture, we’re ready to implement our 
VM. The file __main__.py will contain the main run loop that handles user 
input, updates the display, manages timers, and most importantly, tells the 
VM to step through the next instruction. This file is also where the com-
mand line argument that specifies the ROM file is parsed. Meanwhile, vm.py 
is the actual VM.

ROMS

Did you ever wonder why the files that hold games used in emulators are called 
ROMs? ROM stands for read-only memory. Most early video game systems 
used plastic cartridges that were glorified holders for ROM chips that directly 
plugged into the consoles. When the games were converted into files for emu-
lators, someone would have to go and plug the ROM chip into a specialized 
device connected to their computer and “rip” the data from the ROM chip to 
store it in a file. The file would have an exact copy of the data on the ROM 
chip, perhaps with some extra header information depending on the emulation 
ecosystem.
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While the original ROM chips couldn’t have their data modified, these 
“ROM files” are just like any other files and can be modified to change the 
games. Hence, the subculture of ROM hacking, in which developers change the 
graphics or gameplay of games meant to be run in emulators.

We’ll utilize two external libraries in our implementation. Pygame, a 
Python library designed for game development, provides an easy way to get 
a window on the screen, fill that window with the pixels from our VM’s dis-
play, and handle keyboard input. NumPy, a numerical computing library, 
can help create the two-dimensional array used as the backing buffer for 
the Pygame window’s pixels. This array will serve as the “graphics RAM” of 
our VM. Pygame natively works with NumPy arrays, and NumPy arrays are 
more performant than anything in the Python standard library for repre-
senting this buffer. Make sure you’ve installed Pygame and NumPy before 
running the program.

Like replicating a file format in Chapter 3, implementing a VM or emu-
lator requires a fair amount of low-level bit manipulation. See the appendix 
to read up on Python’s bitwise operators.

The Run Loop
The run loop is responsible for advancing the VM by one instruction, 
redrawing the screen, handling any events (key presses to be passed to the 
VM), playing the beep sound, and updating CHIP-8’s two timers. Pygame 
makes drawing, playing sounds, and reading keyboard input almost trivial; 
it’s a very easy-to-use library. Let’s start with some initialization code and 
continue through to the beginning of the run loop:

Chip8/__main__.py import sys
from argparse import ArgumentParser
from Chip8.vm import VM, SCREEN_WIDTH, SCREEN_HEIGHT
from Chip8.vm import TIMER_DELAY, FRAME_TIME_EXPECTED, ALLOWED_KEYS
import pygame
from timeit import default_timer as timer
import os

def run(program_data: bytes, name: str):
    # Startup Pygame, create the window, and load the sound
    pygame​.init()
    screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT),
                                     pygame.SCALED)
    pygame.display.set_caption(f"Chip8 - {os.path.basename(name)}")
    bee_sound = pygame.mixer.Sound(os.path.dirname(os.path.realpath(__file__))
                                   + "/bee.wav")
    currently_playing_sound = False
    vm = VM(program_data) # Load the virtual machine with the program data

Building a CHIP-8 Virtual Machine   123
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    timer_accumulator = 0.0 # Used to limit the timer to 60 Hz
    # Main virtual machine loop
    while True:
        frame_start = timer()
        vm.step()
        if vm.needs_redraw:
            pygame.surfarray.blit_array(screen, vm.display_buffer)
            pygame.display.flip()

At the beginning of the run loop, the time is recorded with frame_start =  
timer() to measure the duration of each iteration of the loop. This is 
because CHIP-8’s timers need to be decremented 60 times per second (if 
they’re above zero). The VM is then told to execute an instruction (and 
therefore to move to the next instruction) via vm.step(). If indicated by 
vm.needs_redraw, the display is then redrawn via two simple calls to Pygame. 
One copies the VM’s display buffer to the screen, and the other shows it.

Note that the code uses the term frame a little differently than is typical. 
In most programs, a frame is one full refresh of the entirety of the program’s 
graphical output, but in this context, our run loop won’t necessarily redraw 
the graphics every iteration, since vm.needs_redraw may not always be True.

What definitely will happen every “frame” is that one instruction will 
be executed as a result of the call to vm.step(). As such, I thought about 
using the word instruction rather than frame in this section of the code, for 
example, instruction_start rather than frame_start. However, more than just 
the execution of an instruction is happening in the run loop—there’s also 
graphical output, keyboard handling, and sound output—so instruction 
sounded too limited. But again, frame isn’t quite accurate either. It’s true 
what they say: one of the hardest problems in computer science is naming.

The run loop finishes by handling keyboard events, playing a sound 
when the VM’s boolean vm.play_sound indicates, and handling timing:

        # Handle keyboard events
        for event in pygame.event.get():
            if event.type == pygame.KEYDOWN:
                key_name = pygame.key.name(event.key)
                if key_name in ALLOWED_KEYS:
                    vm​.keys[ALLOWED​_KEYS​.index(key​_name)] = True
            elif event.type == pygame.KEYUP:
                key_name = pygame.key.name(event.key)
                if key_name in ALLOWED_KEYS:
                    vm​.keys[ALLOWED​_KEYS​.index(key​_name)] = False
            elif event.type == pygame.QUIT:
                sys.exit()

        # Sound
        if vm.play_sound:
            if not currently_playing_sound:
                bee_sound.play(-1)
                currently_playing_sound = True
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        else:
            currently_playing_sound = False
            bee_sound.stop()

        # Handle timing
        frame_end = timer()
        frame_time = frame_end - frame_start # time it took in seconds
        timer_accumulator += frame_time
        # Every 1/60 of a second decrement the timers
        if timer_accumulator > TIMER_DELAY:
          1 vm.decrement_timers()
            timer_accumulator = 0
        # Limit the speed of the entire machine to 500 "frames" per second
        if frame_time < FRAME_TIME_EXPECTED:
            difference = FRAME_TIME_EXPECTED - frame_time
          2 pygame.time.delay(int(difference * 1000))
            timer_accumulator += difference

Even though we aren’t using frames to measure traditional frames per 
second (FPS), as you may be familiar with from gaming, the timing of each 
iteration is still important. We need to keep track of timing to ensure the 
VM’s countdown timers are ticked every 1/60 of a second as required by  
the CHIP-8 specification 1, and to limit the overall speed of the VM 2.  
If the VM runs too fast, games will be unplayable since they were designed 
for the slow computers of the 1970s. You can adjust the speed of the VM, 
and therefore any software running on it, by changing the FRAME_TIME_EXPECTED 
constant in vm.py. In testing, I found that 500 “frames” per second, or in 
other words, each “frame” being approximately 1/500 of a second, to be a 
solid speed for most games.

Command Line Arguments
As in previous programs, we use ArgumentParser to handle command line 
arguments:

if __name__ == "__main__":
    # Parse the file argument
    file_parser = ArgumentParser("Chip8")
    file_parser.add_argument("rom_file",
                             help="A file containing a Chip-8 game.")
    arguments = file_parser.parse_args()
    with open(arguments.rom_file, "rb") as fp:
        file_data = fp.read()
        run(file_data, arguments.rom_file)

In this case, we have just a single command line argument—the name 
of the file containing the program data for the CHIP-8 VM. The file’s raw 
bytes are read and passed to run(), where they in turn are passed to the con-
structor of the VM.

Building a CHIP-8 Virtual Machine   125

335-140114_ch01_1P.indd   125335-140114_ch01_1P.indd   125 12/04/25   6:02 PM12/04/25   6:02 PM

Computer Science from Scratch (Sample Chapter) © 4/14/25 by David Kopec



-1—
0—

+1—
126   Chapter 5

VM Setup and Helper Functions
We’re ready for the actual VM implementation. We start, as we so often do, 
with some constants:

Chip8/vm.py from array import array
from random import randint
import numpy as np
import pygame
import sys

RAM_SIZE = 4096  # in bytes, aka 4 kilobytes
SCREEN_WIDTH = 64
SCREEN_HEIGHT = 32
SPRITE_WIDTH = 8
WHITE = 0xFFFFFFFF
BLACK = 0
TIMER_DELAY = 1/60  # in seconds... about 60 hz
FRAME_TIME_EXPECTED = 1/500  # for limiting VM speed
ALLOWED_KEYS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
                "a", "b", "c", "d", "e", "f"]

# The font set, hardcoded
FONT_SET = [
    0xF0, 0x90, 0x90, 0x90, 0xF0,  # 0
    0x20, 0x60, 0x20, 0x20, 0x70,  # 1
    0xF0, 0x10, 0xF0, 0x80, 0xF0,  # 2
    0xF0, 0x10, 0xF0, 0x10, 0xF0,  # 3
    0x90, 0x90, 0xF0, 0x10, 0x10,  # 4
    0xF0, 0x80, 0xF0, 0x10, 0xF0,  # 5
    0xF0, 0x80, 0xF0, 0x90, 0xF0,  # 6
    0xF0, 0x10, 0x20, 0x40, 0x40,  # 7
    0xF0, 0x90, 0xF0, 0x90, 0xF0,  # 8
    0xF0, 0x90, 0xF0, 0x10, 0xF0,  # 9
    0xF0, 0x90, 0xF0, 0x90, 0x90,  # A
    0xE0, 0x90, 0xE0, 0x90, 0xE0,  # B
    0xF0, 0x80, 0x80, 0x80, 0xF0,  # C
    0xE0, 0x90, 0x90, 0x90, 0xE0,  # D
    0xF0, 0x80, 0xF0, 0x80, 0xF0,  # E
    0xF0, 0x80, 0xF0, 0x80, 0x80   # F
]

Most of these constants are self-explanatory and in line with the origi-
nal CHIP-8 specifications. The VM has 4KB of main memory. It specifies 
graphics in the form of a black-and-white output picture with a 64 × 32 
resolution. The timers update 60 times per second. The original CHIP-8 
systems had 16 keys you could press on the controller. We could probably 
arrange them in a more ergonomic way for gaming by mapping them to 
other keys, but in our implementation, we’ll just leave the keys where they 
lie on the keyboard.

Probably the most unusual constant here is FONT_SET. This is 80 bytes 
of graphical data for displaying the digits 0–9 and the letters A–F. Each 
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character is specified by bits representing the pixels of the character should 
it be shown on the screen. Think of it as a primitive font that only has 16 
characters. Several games expect this data to live in the first 80 bytes of 
memory so that they can write messages on the screen to the user.

Next, we have a helper function unrelated to the state of the VM:

def concat_nibbles(*args: int) -> int:
    result = 0
    for arg in args:
        result = (result << 4) | arg
    return result

The concat_nibbles() function takes an arbitrary number of integers and 
concatenates one after another by shifting each 4 bits to the left and bitwise 
OR-ing it with the next one. This will only be useful if the integers them-
selves are 4 bits. Suppose we have the integer 0111. Shifting it 4 bits to the 
left will cause four zeros to follow the original 4 bits, as in 01110000. Now sup-
pose we have another 4-bit integer, 1010. If we OR it with 01110000, we obtain 
the result 01111010, the concatenation of the original two 4-bit integers. We 
can keep doing this for an arbitrary number of 4-bit integers to concatenate 
them together.

Recall that a 4-bit integer is known as a nibble. The 16-bit instructions in 
CHIP-8 are divided into four nibbles, and each nibble often has a separate 
meaning. By default, we’ll divide each instruction into its four constituent 
nibbles, but for a few instructions, we’ll need to use the value of a few com-
bined nibbles. Hence, the utility of the concat_nibbles() helper function.

The VM class starts with a constructor that initializes all of its mutable state 
including registers, RAM, the stack, the display buffer (what today we would 
call VRAM or video RAM), the timers, and a couple other helper variables:

class VM:
    def __init__(self, program_data: bytes):
        # Initialized registers & memory constructs
        # General Purpose Registers - CHIP-8 has 16 of these registers
        self.v = array('B', [0] * 16)
        # Index Register
        self.i = 0
        # Program Counter
        # Starts at 0x200 because addresses below that were
        # Used for the VM itself in the original CHIP-8 machines
        self.pc = 0x200
        # Memory - the standard 4k on the original CHIP-8 machines
        self.ram = array('B', [0] * RAM_SIZE)
        # Load the font set into the first 80 bytes
        self.ram[0:len(FONT_SET)] = array('B', FONT_SET)
        # Copy program into RAM starting at byte 512 by convention
        self.ram[512:(512 + len(program_data))] = array('B', program_data)
        # Stack - in real hardware this is typically limited to
        # 12 or 16 PC addresses for jumps, but since we're on modern hardware,
        # ours can just be unlimited and expand/contract as needed
        self.stack = []
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        # Graphics buffer for the screen - 64 x 32 pixels
        self.display_buffer = np.zeros((SCREEN_WIDTH, SCREEN_HEIGHT),
                                       dtype=np.uint32)
        self.needs_redraw = False
        # Timers - really simple registers that count down to 0 at 60 hertz
        self.delay_timer = 0
        self.sound_timer = 0
        # These hold the status of whether the keys are down
        # CHIP-8 has 16 keys
        self.keys = [False] * 16

A few of these state variables have important default values. For exam-
ple, the program counter (pc) should always be set to location 0x200 (512 in 
decimal) since the first 512 bytes of memory in CHIP-8 machines were orig-
inally used for storing the CHIP-8 VM itself. This means CHIP-8 programs 
couldn’t use that memory and had to start at byte 512. I’ve extensively com-
mented the constructor to explain each variable as it’s declared. Notice 
that the vast majority of our VM just uses the Python standard library for its 
implementation, except for display_buffer, which is a NumPy array. This is 
the format that Pygame expects.

Next, we have a trivial helper method, decrement_timers(), and a simple 
dynamic property, play_sound:

    def decrement_timers(self):
        if self.delay_timer > 0:
            self.delay_timer -= 1
        if self.sound_timer > 0:
            self.sound_timer -= 1

    @property
    def play_sound(self) -> bool:
        return self.sound_timer > 0

Both decrement_timers() and play_sound were used in the run loop we 
looked at earlier in __main__.py.

Graphics
CHIP-8 sees the screen as a 64 × 32 pixel plane with a cartesian coordinate 
system having the origin, location (0,0), in the top left, and the y-axis ori-
ented downward. In other words, the x-coordinate increases as we travel 
from left to right and the y-coordinate increases as we travel from top to 
bottom. The bottom-right pixel is therefore at location (63,31). There 
are no negative coordinates, and it isn’t possible to access pixel locations 
beyond the screen.

Each pixel is represented in memory as a single bit. In our implemen-
tation, a 1 represents a white pixel and a 0 represents a black pixel. The 
graphics memory (or “buffer”) is separate from the main program memory 
and can only be manipulated indirectly using CHIP-8 instructions. Pygame 
uses 32-bit integers to represent pixels on the screen in RGBA format 
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(the A is for alpha, or transparency), so each of our 1-bit pixel values must 
become a 32-bit integer when we store it in the display_buffer.

CHIP-8 draws using sprites, which are little bitmaps (or images, if you 
like) that can move around the screen. Every sprite in CHIP-8 is 8 pixels 
wide and can be anywhere between 1 and 15 pixels high. Figure 5-1 illus-
trates an 8 × 3 sprite representing the word HI being drawn on the screen at 
location (28,15).

Figure 5-1: The word HI as an 8 × 3 sprite

Since each row in a CHIP-8 sprite is exactly 8 pixels, it’s represented 
using 8 bits. Since 8 bits is 1 byte, each row of a sprite can therefore be rep-
resented by a single byte. Since the HI sprite is three rows high, it can be 
represented by 3 bytes. In binary, those 3 bytes would look like this:

10100111
11100010
10100111

Notice how each 1 maps to a white pixel and each 0 maps to a black 
pixel. With this information, hopefully the font set we defined earlier also 
makes more sense now: each character in the font set is just an 8 × 5 sprite.

Drawing sprites is the only way to modify the display buffer, other than 
clearing it, so the CHIP-8 VM has a single draw instruction, Dxyn. It draws a 
sprite of a specified height residing at the memory location specified by the 
i register. The D in the instruction is a constant nibble, and the x and y nib-
bles represent the indices into the v registers where the x- and y-coordinates 
for the top left of the sprite should be located. In other words, the x-coordi-
nate is retrieved from register v[x] and the y-coordinate from register v[y]. 
The n nibble represents the height of the sprite. This is why sprites can’t be 
taller than 15 pixels: a nibble is 4 bits, and 4 bits can maximally represent 
the number 15.

The nibbles of Dxyn correspond to the parameters of the draw_sprite() 
helper method:

    # Draw a sprite at *x*, *y* using data at *i* with a height of *height*
    def draw_sprite(self, x: int, y: int, height: int):
        flipped_black = False  # did drawing this flip any pixels?
        for row in range(0, height):
            row_bits = self.ram[self.i + row]
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            for col in range(0, SPRITE_WIDTH):
                px = x + col
                py = y + row
                if px >= SCREEN_WIDTH or py >= SCREEN_HEIGHT:
                    continue  # ignore off-screen pixels
                new_bit = (row_bits >> (7 - col)) & 1
                old_bit = self.display_buffer[px, py] & 1
                if new_bit & old_bit:  # if both set, flip white -> black
                    flipped_black = True
                # CHIP-8 draws by XORing
                new_pixel = new_bit ^ old_bit
                self.display_buffer[px, py] = WHITE if new_pixel else BLACK
        # Set flipped flag for collision detection
        self.v[0xF] = 1 if flipped_black else 0

CHIP-8 draws sprites using XOR operations. XOR, or exclusive or, is a 
bitwise operation that returns a 1 if two bits are different and a 0 if they’re 
the same. Python uses the ^ operator for XOR. Table 5-2 shows a truth table 
for XOR.

Table 5-2: XOR Truth Table

0 ^ 0 0 ^ 1 1 ^ 0 1 ^ 1

0 1 1 0

The CHIP-8 draw instruction takes a sprite and XORs its pixels with the 
pixels already on the screen at the location specified. If this screen location 
is all black pixels, this will effectively just draw the sprite. However, if the 
screen location contains some white pixels (1s), black pixels will be drawn 
where the white pixels of the sprite overlap with the white pixels of the 
screen. This is because 1 XOR 1 is 0. The CHIP-8 draw instruction tracks 
whether any of these overlaps occur (a screen white pixel was turned to a 
black pixel by drawing the sprite). If they do, it sets the flag register (v[0xF]).

The draw_sprite() method is a codification of this process. We iterate 
through all of the rows and columns of a sprite that begins at the memory 
location specified by register i, pulling out each pixel of the sprite using a 
right shift operation and storing it in new_bit. The & operation on the data 
going into new_bit ensures that only the single last bit of the shift opera-
tion is stored in new_bit. We compare each new_bit to the bit already on the 
screen, old_bit, and if an old_bit will be flipped from white to black, we set 
the flag register. We change the display buffer by taking the XOR of new_bit 
and old_bit.

Why do we need a flag to track whether drawing a sprite causes a pre-
viously lit screen pixel to be turned off? It’s effectively a form of collision 
detection. If a sprite hits something that was already on the screen, that’s 
particularly helpful to know in a game. For example, if you are program-
ming a tennis game, you would want to know when the ball moves and hits 
a racket already on the screen.
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Instruction Execution
Now it’s time for the heart of the VM. We have one method left, but it’s a 
big one: we need to implement all of the VM’s instructions. This isn’t dis-
similar to executing the statements in our interpreters in Chapters 1 and 2. 
Whether executing interpreter statements, VM instructions, or micropro-
cessor opcodes in an emulator, we need to do something pretty simple: rec-
ognize what the next instruction is and then execute a different few lines of 
code that manipulate the state of the VM based on its intended operation.

For example, if we see an add instruction, we should add the two speci-
fied numbers together and store the result in a specified location. If we see 
a jump instruction, we should move execution to a specified location in 
memory. It’s literally about recognizing what instruction is being executed 
and changing a few state variables representing memory, registers, and the 
like based on that instruction. The simplest way to do this would be with a 
large number of if statements. The pseudocode may look like this:

if instruction == ADD:
    add some numbers together and store the sum
elif instruction == JUMP:
    jump to a location by changing the program counter
elif instruction == DRAW:
    draw the sprite where specified by changing the display buffer
etc.

Beyond using a bunch of if statements, there are three common pat-
terns for writing the code that executes the instructions. The first is a giant 
switch statement, a construct present in many languages but not quite in 
Python in the same form. I assume most readers have seen a switch state-
ment before in a language like C or Java. If you haven’t, you can think of it 
as a primitive form of Python’s match statement like we used in Chapters 1 
and 2. The case of the switch statement that executes is dependent on the 
instruction. This is somewhat similar to the pseudocode just shown. In fact, 
prior to the introduction of the match statement in Python 3.10, the way you 
would implement this pattern in Python was indeed with a ton of if and 
elif clauses. This is the simplest way to implement instruction execution, 
but it can become unwieldy for a large instruction set.

The next pattern is to use a jump table, which consists of an array of 
function pointers. We index into the array depending on the instruction 
and then execute the appropriate function that’s returned. Instructions are 
just integers, which is why they can be used as array indices. If the instruc-
tions were strings for some reason, we could instead use a dictionary where 
the keys are instructions and the values are function pointers, although 
this is a bit less efficient. Because this pattern divides the work across many 
helper functions, it generally results in cleaner code than a giant switch 
statement and may be preferred for a larger instruction set.

The third pattern is to use dynamic recompilation, where we translate each 
instruction into an instruction that the underlying hardware understands 
(or something that can further be translated into such). For example, if we 
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have an addition instruction in the VM running on an X86 microprocessor, 
we may translate the VM’s addition instruction into the machine code for an 
equivalent X86 addition instruction. This is the most complicated pattern 
to implement because it requires intimate knowledge of not just the original 
instruction set but also the instruction set being translated into. It will, how-
ever, result in the fastest performance.

In this program, we’ll use a giant match statement since CHIP-8’s instruc-
tion set is relatively small. When we create an NES emulator in the next 
chapter, we’ll use a jump table because the 6502 microprocessor has an 
instruction set that’s roughly double the size (although still much smaller 
than almost any other microprocessor). Dynamic recompilation is a signifi-
cantly more complicated technique and beyond the scope of this book.

The step() method is responsible for executing instructions, but first 
the method needs to retrieve the next instruction to execute:

    def step(self):
        # We look at the opcode in terms of its nibbles (4 bit pieces)
        # Opcode is 16 bits made up of next two bytes in memory
        first2 = self.ram[self.pc]
        last2 = self.ram[self.pc + 1]
        first = (first2 & 0xF0) >> 4
        second = first2 & 0xF
        third = (last2 & 0xF0) >> 4
        fourth = last2 & 0xF

        self.needs_redraw = False
        jumped = False

The next instruction is located at the memory address stored in the 
program counter (pc). Since instructions consist of 16 bits, we retrieve the 
next 2 bytes at pc and store them in first2 and last2. As discussed earlier, 
it’s convenient to think about each CHIP-8 instruction as a combination 
of four nibbles, since each individual nibble is meaningful for many of the 
instructions. We store the nibbles in first, second, third, and fourth. All of 
the pattern-matching around our instructions will be in terms of nibbles.

As we execute the instruction, we’ll also be keeping track of whether 
it requires any redrawing through needs_redraw and whether it modified pc 
through jumped. The run loop uses needs_redraw as an optimization. Why 
do any drawing when nothing changed? Keeping track of jumped allows for 
some common code to be at the bottom of step(), reducing a little bit of 
code duplication.

Now we arrive at the actual instructions. The giant match statement is 
upon us. Our implementation utilizes Python’s elegant match syntax to cap-
ture the nibbles that are necessary for the execution of an instruction in tem-
porary variables. The details of each instruction’s execution follow directly 
from its description earlier in the chapter. Many of the instructions are able 
to be implemented in just a single line of code. It would be exceedingly dry to 
write about each of them in turn. Instead, what follows is a reproduction of 
the rest of step(), with comments providing a bit of additional context.
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Before you look at the code, though, this is a good place to stop and try 
to implement the instructions yourself. You don’t have to use a match state-
ment. You could use a series of if...elif statements as I did in Python 3.9 
before the match statement existed. (I tested and there was virtually no per-
formance difference between the two.) You already have all the setup you 
need to be able to concentrate only on what each instruction is supposed to 
do instead of configuring the system’s memory or register representation. 
You don’t need to think about loading the ROM file or what some constants 
should be. Just think about logic and how each operation would modify the 
VM’s state.

Some of the descriptions of the instructions earlier in this chapter 
were fairly brief, but you can find more detailed instructions in any of a 
myriad of CHIP-8 references online. Don’t spend too much time on a single 
instruction, though. You can always look at the implementation here if you 
get stuck. After you try writing your own instruction implementations, you 
can return to this book’s code to double-check your work. Doing this work 
yourself first will give you a good idea of what goes into writing a simple VM 
or emulator. Don’t be afraid: you’ll be amazed at how simple it is to imple-
ment many of the instructions. Remember, the original CHIP-8 VM fit in 
just 512 bytes of memory!

        match (first, second, third, fourth):
            case (0x0, 0x0, 0xE, 0x0):  # display clear
                self.display_buffer.fill(0)
                self.needs_redraw = True
            case (0x0, 0x0, 0xE, 0xE):  # return from subroutine
                self.pc = self.stack.pop()
                jumped = True
            case (0x0, n1, n2, n3):  # call program
                self.pc = concat_nibbles(n1, n2, n3)  # go to start
                # Clear registers
                self.delay_timer = 0
                self.sound_timer = 0
                self.v = array('B', [0] * 16)
                self.i = 0
                # Clear screen
                self.display_buffer.fill(0)
                self.needs_redraw = True
                jumped = True
            case (0x1, n1, n2, n3):  # jump to address
                self.pc = concat_nibbles(n1, n2, n3)
                jumped = True
            case (0x2, n1, n2, n3):  # call subroutine
                self.stack.append(self.pc + 2)  # put return place on stack
                self.pc = concat_nibbles(n1, n2, n3)  # goto subroutine
                jumped = True
            case (0x3, x, _, _):  # conditional skip v[x] equal last2
                if self.v[x] == last2:
                    self.pc += 4
                    jumped = True
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            case (0x4, x, _, _):  # conditional skip v[x] not equal last2
                if self.v[x] != last2:
                    self.pc += 4
                    jumped = True
            case (0x5, x, y, _):  # conditional skip v[x] equal v[y]
                if self.v[x] == self.v[y]:
                    self.pc += 4
                    jumped = True
            case (0x6, x, _, _):  # set v[x] to last2
                self.v[x] = last2
            case (0x7, x, _, _):  # add last2 to v[x]
                self.v[x] = (self.v[x] + last2) % 256
            case (0x8, x, y, 0x0):  # set v[x] to v[y]
                self.v[x] = self.v[y]
            case (0x8, x, y, 0x1):  # set v[x] to v[x] | v[y]
                self.v[x] |= self.v[y]
            case (0x8, x, y, 0x2):  # set v[x] to v[x] & v[y]
                self.v[x] &= self.v[y]
            case (0x8, x, y, 0x3):  # set v[x] to v[x] ^ v[y]
                self.v[x] ^= self.v[y]
            case (0x8, x, y, 0x4):  # add with carry flag
                try:
                    self.v[x] += self.v[y]
                    self.v[0xF] = 0  # indicate no carry flag
                except OverflowError:
                    self.v[x] = (self.v[x] + self.v[y]) % 256
                    self.v[0xF] = 1  # set carry flag
            case (0x8, x, y, 0x5):  # subtract with borrow flag
                try:
                    self.v[x] -= self.v[y]
                    self.v[0xF] = 1  # indicate no borrow (yes, weird it's 1)
                except OverflowError:
                    self.v[x] = (self.v[x] - self.v[y]) % 256
                    self.v[0xF] = 0  # indicates there was a borrow
            case (0x8, x, _, 0x6):  # v[x] >> 1 v[f] = least significant bit
                self.v[0xF] = self.v[x] & 0x1
                self.v[x] >>= 1
            case (0x8, x, y, 0x7):  # subtract with borrow flag (y - x in x)
                try:
                    self.v[x] = self.v[y] - self.v[x]
                    self.v[0xF] = 1  # indicate no borrow (yes, weird it's 1)
                except OverflowError:
                    self.v[x] = (self.v[y] - self.v[x]) % 256
                    self.v[0xF] = 0  # indicates there was a borrow
            case (0x8, x, _, 0xE):  # v[x] << 1 v[f] = most significant bit
                self.v[0xF] = (self.v[x] & 0b10000000) >> 7
                self.v[x] = (self.v[x] << 1) & 0xFF
            case (0x9, x, y, 0x0):  # conditional skip if v[x] != v[y]
                if self.v[x] != self.v[y]:
                    self.pc += 4
                    jumped = True
            case (0xA, n1, n2, n3):  # set i to address n1n2n3
                self.i = concat_nibbles(n1, n2, n3)
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            case (0xB, n1, n2, n3):  # jump to n1n2n3 + v[0]
                self.pc = concat_nibbles(n1, n2, n3) + self.v[0]
                jumped = True
            case (0xC, x, _, _):  # v[x] = random number (0-255) & last2
                self.v[x] = last2 & randint(0, 255)
            case (0xD, x, y, n):  # draw sprite at (vx, vy) that's n high
                self.draw_sprite(self.v[x], self.v[y], n)
                self.needs_redraw = True
            case (0xE, x, 0x9, 0xE):  # conditional skip if keys(v[x])
                if self.keys[self.v[x]]:
                    self.pc += 4
                    jumped = True
            case (0xE, x, 0xA, 0x1):  # conditional skip if not keys(v[x])
                if not self.keys[self.v[x]]:
                    self.pc += 4
                    jumped = True
            case (0xF, x, 0x0, 0x7):  # set v[x] to delay_timer
                self.v[x] = self.delay_timer
            case (0xF, x, 0x0, 0xA):  # wait until next key then store in v[x]
                # Wait here for the next key then continue
                while True:
                    event = pygame.event.wait()
                    if event.type == pygame.QUIT:
                        sys.exit()
                    if event.type == pygame.KEYDOWN:
                        key_name = pygame.key.name(event.key)
                        if key_name in ALLOWED_KEYS:
                            self.v[x] = ALLOWED​_KEYS​.index(key​_name)
                            break
            case (0xF, x, 0x1, 0x5):  # set delay_timer to v[x]
                self.delay_timer = self.v[x]
            case (0xF, x, 0x1, 0x8):  # set sound_timer to v[x]
                self.sound_timer = self.v[x]
            case (0xF, x, 0x1, 0xE):  # add vx to i
                self.i += self.v[x]
            case (0xF, x, 0x2, 0x9):  # set i to location of character v[x]
                self.i = self.v[x] * 5  # built-in font set is 5 bytes apart
            case (0xF, x, 0x3, 0x3):  # store BCD at v[x] in i, i+1, i+2
                self.ram[self.i] = self.v[x] // 100  # 100s digit
                self.ram[self.i + 1] = (self.v[x] % 100) // 10  # 10s digit
                self.ram[self.i + 2] = (self.v[x] % 100) % 10  # 1s digit
            case (0xF, x, 0x5, 0x5):  # reg dump v0 to vx starting at i
                for r in range(0, x + 1):
                    self.ram[self.i + r] = self.v[r]
            case (0xF, x, 0x6, 0x5):  # store i through i+r in v0 through vr
                for r in range(0, x + 1):
                    self.v[r] = self.ram[self.i + r]
            case _:
                print(f"Unknown opcode {(hex(first), hex(second),
                                         hex(third), hex(fourth))}!")

        if not jumped:
            self.pc += 2  # increment program counter
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At the end of step(), we increment the program counter if we didn’t 
jump. This ensures that we’ll have moved on to the next instruction the next 
time step() is called. Since each CHIP-8 instruction is 2 bytes long, the pro-
gram counter is incremented by 2. If there was a jump, then execution was 
directly moved to a specific different instruction somewhere else in memory.

Testing the VM
The most granular way to test the VM would be to write our own unit tests 
for each of the instructions. For each test, we would try running an instruc-
tion and then verify that the subsequent internal state of the VM was cor-
rect. While this would be ideal, in the interests of time and space we’ll 
instead do something more akin to integration tests: we’ll see how our VM 
performs running real CHIP-8 programs. Do they run correctly?

As it happens, there are even test ROMs that offer a kind of one-stop 
shop for testing a CHIP-8 VM. Two such test ROMs are included in the 
Chip8/Tests subdirectory of the book’s source code repository. Both test 
ROMs were released under open licenses by their developers, and those 
licenses are included in the subdirectories. Let’s run the first test ROM 
from the repository’s home directory:

% python3 -m Chip8 Chip8/Tests/chip8-test-rom/test_opcode.ch8

If the VM is working correctly, you should see a screen of OKs, as shown 
in Figure 5-2.

Figure 5-2: Running the first test ROM

Now let’s check our work with the second test ROM:

% python3 -m Chip8 Chip8/Tests/chip8-test-rom-2/chip8-test-rom.ch8

This one just displays OK a single time in the upper-left corner (see 
Figure 5-3).
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Figure 5-3: Running the second test ROM

These tests aren’t comprehensive, but they’re a good starting point.  
Now it’s time for the ultimate integration tests: can our VM accurately  
play games?

Playing Games
The Chip8/Games subdirectory of the book’s repository contains a selection 
of CHIP-8 ROMs that have been placed into the public domain. If you find 
the control schemes of some of them a bit unwieldy, consider changing the 
default key bindings. Right now, ALLOWED_KEYS are read directly from their 
respective keys, so an A in the VM is the A key on the keyboard. The systems 
these were played on could have quite different key layouts, though, so a 
different scheme might be better for some of the games.

Most of the games are quite simple, which makes sense given the con-
straints of the hardware the VM was originally meant to run on. There are 
clones of popular games for more capable systems. First we have BLINKY, a 
kind of Pac-Man clone (Figure 5-4).

Figure 5-4: The BLINKY game running on the VM

INVADERS is a clone of Space Invaders (Figure 5-5).
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Figure 5-5: The INVADERS game running on  
the VM

VBRIX is a vertical form of Breakout (Figure 5-6).

Figure 5-6: The VBRIX game running on the VM

And then there’s PONG (Figure 5-7).

Figure 5-7: The PONG game running on the VM

There are several more games for you to check out bundled with 
the source code repository. Note the file sizes: most of these games are 
500 bytes or less! The largest, BLINKY, is just 2KB.

PERSON A L S TORY

I was always interested in developing my own emulator, but I didn’t feel confi-
dent enough to build one until well into my programming life. When I started 
researching how to write an emulator, the standard advice I found was to first 
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try writing a CHIP-8 VM since doing so is easier than writing almost any emula-
tor but requires all the same elements (handling opcodes, simulating memory 
and registers, graphics, and so on).

I found an online tutorial that was reasonably good. I decided that I 
wanted to make it a little more challenging, though, so I developed my initial 
CHIP-8 VM in the then-new language Swift, which I was doing a lot of my pro-
fessional work in at the time. It was a weekend project, the launching point that 
I needed to get started developing emulators.

Real-World Applications
VMs are ubiquitous in both historical and modern software development. 
Their chief advantage is portability. A program written for a VM will run 
on any platform that has an implementation of that VM. VMs also provide 
infrastructure that reduces the burden on a language author by eliminat-
ing the need to implement common language runtime features like gar-
bage collection.

An early example was the compilation of Pascal by some compilers in 
the 1970s and 1980s to so-called p-code (a type of bytecode) that would run 
on a p-code VM. Two prominent modern VM environments are the JVM, 
mentioned earlier in this chapter, and Microsoft’s competing Common 
Language Runtime (CLR), which is part of its .NET platform. Both the 
JVM and CLR are targeted by multiple popular programming languages. 
For example, C#, F#, and Visual Basic are languages that commonly target 
the CLR, but there are also implementations of popular languages like 
Python and Swift for the CLR.

Why do these language implementations compile into bytecode for the 
CLR instead of machine code? Once compiled, that bytecode can run on 
any platform that has an installed CLR. That’s a kind of instant portability 
post-compilation. In addition, a sophisticated VM like the CLR will provide 
language services like garbage collection, multithreading, and security 
mechanisms. Finally, when a VM like the CLR just-in-time (JIT) compiles 
intermediate code into machine code, it will apply optimizations that the 
language author doesn’t need to think about.

Beyond abstract machines utilized as language runtimes, the term vir-
tual machine is also confusingly used to refer to a whole hardware implemen-
tation in software—in other words, an emulator. Building an emulator is 
the subject of the next chapter.

Exercises
	 1.	Try measuring the performance of the main opcode interpreter code 

using three different methodologies: the already implemented match 
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statement, a series of if...elif statements, and a jump table. Determine 
which method is fastest using either a profiler or a simple timer. You 
may need to turn off the timing code in the main run loop in order to 
do this, or you may do this using a set of unit tests.

	 2.	There’s a slightly extended version of CHIP-8, known as SCHIP (Super-
Chip). It requires implementing a few more opcodes and changing a 
few elements of the original CHIP-8 VM, such as its resolution. Look 
up documentation for SCHIP and try turning our CHIP-8 VM into an 
SCHIP VM. Then, try playing some SCHIP games!

	 3.	Try writing a very simple game that just displays a couple letters on the 
screen using CHIP-8’s machine code instructions. You’ll need a hex edi-
tor to do this. It’s gratifying to see binary code you wrote running in a 
VM you understand.
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