Computer Graphics from Scratch

A Programmer's Introduction to 3D Rendering

by Gabriel Gambetta

Errata updated to print 1

Page	Error	Correction	Print corrected
109	// The four "front" vertices vAf = [-1, 1, 1] vBf = [1, 1, 1] vCf = [1, -1, 1] vDf = [-1, -1, 1] // The four "back" vertices vAb = [-1, 1, 2] vBb = [1, 1, 2] vCb = [1, -1, 2] vDb = [-1, -1, 2]	// The four "front" vertices vAf = [-2, -0.5, 5] vBf = [-2, 0.5, 5] vCf = [-1, 0.5, 5] vDf = [-1, -0.5, 5] // The four "back" vertices vAb = [-2, -0.5, 6] vBb = [-2, 0.5, 6] vCb = [-1, 0.5, 6] vDb = [-1, -0.5, 6]	Pending
129	$\begin{pmatrix} \frac{c_w}{v_w} & 0 & 0\\ 0 & \frac{c_w}{v_w} & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} \frac{x \cdot c_w}{v_w}\\ \frac{y \cdot c_h}{v_h}\\ z \end{pmatrix}$	$\begin{pmatrix} \frac{c_w}{v_w} & 0 & 0\\ 0 & \frac{c_h}{v_h} & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} \frac{x \cdot c_w}{v_w}\\ \frac{y \cdot c_h}{v_h}\\ z \end{pmatrix}$	Pending
129	$\begin{pmatrix} \frac{d \cdot cw}{vw} & 0 & 0 & 0 \\ 0 & \frac{d \cdot ch}{vh} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{x \cdot d \cdot cw}{vw} \\ \frac{y \cdot d \cdot cw}{vh} \\ z \end{pmatrix} \rightarrow \begin{pmatrix} (\frac{x \cdot d}{z})(\frac{cw}{vw}) \\ (\frac{y \cdot d}{z})(\frac{ch}{vh}) \end{pmatrix}$	$\begin{pmatrix} \frac{d \cdot cw}{vw} & 0 & 0 & 0 \\ 0 & \frac{d \cdot ch}{vh} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{x \cdot d \cdot cw}{vw} \\ \frac{y \cdot d \cdot ch}{vh} \\ \frac{y}{z} \end{pmatrix} \rightarrow \begin{pmatrix} (\frac{x \cdot d}{z})(\frac{cw}{vw}) \\ (\frac{y \cdot d}{z})(\frac{ch}{vh}) \end{pmatrix}$	Pending
170	However, we don't have <i>Q</i> for every pixel of the triangle, but only for the vertices	However, we don't have P for every pixel of the triangle, but only for the vertices.	Pending

Page	Error	Correction	Print corrected
210			Pending
	$R_x = V_y \cdot W_z - V_z \cdot W_y$	$R_x = V_y \cdot W_z - V_z \cdot W_y$	
	$R_{y} = V_{x} \cdot W_{z} - V_{z} \cdot W_{x}$	$R_{y} = V_{z} \cdot W_{x} - V_{x} \cdot W_{z}$	
	$R_z = V_x \cdot W_y - V_y \cdot W_x$	$R_z = V_x \cdot W_y - V_y \cdot W_x$	