
3
BAS IC CPU-BASED ARCHITECTURE

Modern CPUs are some of the most
complex structures known to humanity,

but the basic concepts underlying them,
such as executing instructions sequentially or

jumping forward or backward to different instructions,
are actually quite simple and haven’t changed for over
150 years. To ease our way into the study of CPU ar-
chitecture, this chapter introduces these fundamental
concepts by looking at a related but simpler system:
a mechanical music player. You’ll then see how the
same concepts, together with RAM, form the basis of
Charles Babbage’s Analytical Engine. Studying—and
programming—this mechanical system will make it eas-
ier to understand what’s going on when we turn our
attention to electronic systems in Chapter 4.

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



A Musical Processing Unit

For a machine to be a computer, it needs to be general purpose, mean-
ing it must be able to perform different tasks according to a user specifi-
cation. One way to arrange for this is to have the user write a sequence of
instructions—a program—and have the machine carry them out. A musical
score can be viewed as a program, and so we can think of a machine that
reads and performs musical scores as a kind of musical computer. We’ll
call such a device a musical processing unit.

In Chapter 1 we looked briefly at musical processing units such as
barrel organs and music boxes. After Babbage, musical automata and their
programs continued to evolve. Around 1890, “book organs” replaced bar-
rels with continuous, joined decks of punch cards (“book music”), which
could accommodate arbitrarily longer compositions without the size limit
imposed by a barrel. By 1900 these had evolved to pianolas, or player pianos
(Figure 3-1), which used punched paper piano rolls instead of cards to drive
domestic pianos, rather than church organs. Player pianos are still found to-
day; you might hear one providing background jazz in a mid-range hotel that
can afford a piano but not a pianist.

Figure 3-1: A player piano (1900)

Let’s think about some of the types of instructions found in musical
scores that might be playable on these machines. These will be similar to
but perhaps more familiar than concepts that we’ll need later to make com-
puters. We’ll consider only a monophonic instrument here, meaning it can
only play one note at a time.

The set of possible instructions that we can give to an automated mu-
sical instrument usually contains one instruction per available note. This
might be an instruction to “play middle C” or “play the G above middle
C,” for example. Each row of a player piano’s paper roll represents a time
and contains one column per musical pitch, which is specified to be either
on (punched) or off (not punched) at that time. Modern computer music
software such as Ardour 5, released in 2018, continues to use this type of

74 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



piano roll notation (turned on its side for human viewers, so time scrolls
more intuitively from left to right) to generate electronic music (Figure 3-2).

Figure 3-2: An Ardour 5 piano roll interface (2018)

When a player piano reads a piano roll, one row at a time is placed into
a reader device. Let’s call this fetching the instruction. The instruction is
then decoded by some machinery that looks at the punch-hole coding and
turns it into a physical activation of some machinery that is going to play the
note, such as by opening a tube for air to flow into an organ pipe. Then this
machinery actually executes the performance of the note.

Usually when a human or mechanical music player is following a music
program (score), they will execute (play) each instruction (note) and then
move on to the next one, advancing their position in the program by one
instruction. But sometimes there will also be special additional instructions
that tell them to jump to another place in the program rather than advanc-
ing to the next instruction. For example, repeats and dal segno (D.S.) are used
to jump back to an earlier instruction and continue execution from there,
while codas are instructions to jump forward to a special ending section.
Figure 3-3 shows a musical program.

Figure 3-3: A musical program with notes G, A, B, high C, and low C, as well as
jumps shown by repeats, dal segno, and coda

You can build a barrel organ or player piano that encodes these jump
instructions using extra, non-note columns in their punch cards. When one
of these is punched, it might be interpreted as an instruction to fast-forward
or rewind the barrel or punch cards to a previous or later line. Figure 3-3
could then be coded with punches representing something like:

1. play note: G

2. play note: A

3. check if you have been here before

4. if so, jump to instruction 10

5. play note: B

6. check if you haven't been here before

Basic CPU-Based Architecture 75

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



7. if so, jump to instruction 5

8. play note: high C

9. jump to instruction: 2

10. play note: low C

11. halt

If you don’t read music, this program explains exactly what the musical
score does!

From Music to Calculation
It’s a small conceptual step from this musical processing unit to building a
machine that performs arithmetical, rather than musical, operations.

Suppose you’ve already built several small mechanical devices that each
perform some arithmetic operation. For example, Pascal’s calculator is a ma-
chine that performs integer addition. With some thought, we could similarly
construct machines like Pascal’s calculator to perform integer multiplication,
subtraction, division, and column shifting. We could then write a program,
much like a musical score, that would specify the sequence in which we’d
like each of these simple machines to be activated.

Assuming that your arithmetic machines all share a single accumulator
where the result of each operation is stored, you could describe calculations
similarly to sequences of instructions for pressing buttons on a calculator,
such as:

1. enter 24 into the accumulator

2. add 8

3. multiply by 3

4. subtract 2

5. halt

This program would halt with the result 94 in the accumulator. The pro-
gram could be executed by a human, activating the simple machines in se-
quence, or we could use a player piano–style roll of punch cards to specify
the sequence of instructions, and a Jacquard loom–style mechanical reader
to read them and automatically activate the corresponding simple machines
in turn.

From Calculation to Computation
To make a Church computer, it’s not enough to run programs of fixed se-
quences of arithmetic instructions. Computation theory tells us that some
functions can only be computed using decisions and jumps, so we need to
add similar instructions to those of our musical processing unit, facilitating
repeats, codas, and the like. This would enable programs such as:

1. enter 24 into the accumulator

2. add 8

3. multiply by 3

76 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



4. subtract 2

5. check if the result is less than 100

6. if so, jump to instruction 2

7. halt

Computation theory also tells us that some computations require mem-
ory to store intermediate results. To distinguish between these results, we’ll
give each value an address, which for now is just an integer identifier. Mem-
ory that is addressable in this way is widely called random-access memory (RAM).
(This is not quite the correct definition of RAM, but you’ll get to that in
Chapter 10.)

Having RAM available means that we can add instructions to load (read)
and store (write) to addresses, as in this program:

1. store the number 24 into address 1

2. store the number 3 into address 2

3. load the number from address 1 into the accumulator

4. add 8

3. multiply by the number in address 2

4. subtract 2

5. check if the result is less than 100

6. if so, jump to instruction 4

7. halt

Computation theory tells us that we can simulate any machine if we have
the three kinds of instructions I just demonstrated: those that do the actual
work of the arithmetic operations; those that make decisions and jumps; and
those that store and load from RAM. This is exactly how Babbage’s Analyti-
cal Engine was designed.

Babbage’s Central Processing Unit
Despite its age, Babbage’s Analytical Engine is a striking modern design:
its basic architecture is still used in all modern CPUs. At the same time, it
has only the most essential CPU features, so studying it provides a simpli-
fied introduction to the basic concepts underlying more modern CPUs. The
motion of the Analytical Engine’s mechanical parts also makes it easier to
visualize how it works compared to today’s electronic computers.

In this section I use modern terminology to describe the Analytical En-
gine’s parts and functions. These aren’t the terms Babbage used, but they’ll
help later when I transfer the concepts to modern machines. (Some of Bab-
bage’s original terms are included in parentheses in case they’re of interest.)
Babbage and Lovelace never left documentation for their instruction set, but
it’s been largely inferred or fantasized from other documents. I assume the
instruction set and assembly language notation used by the Fourmilab em-
ulator, an online re-creation of the Analytical Engine (https://www.fourmilab
.ch/babbage/).

Basic CPU-Based Architecture 77

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox

https://www.fourmilab.ch/babbage/
https://www.fourmilab.ch/babbage/


Both my presentation and the Fourmilab emulator take some liberties
with the historical truth. This is easy to do because the original source doc-
uments are messy and often contradictory. There was never a single defini-
tive design, so we can pick the versions that best suit our story. Our purpose
here is really to understand modern CPU concepts, so I sometimes simplify,
modernize, or outright lie about some of the engine’s details to make this
study easier.

High-Level Architecture
The Analytical Engine consists of three things: a CPU, which executes pro-
grams; RAM, which stores data and allows the CPU to read and write it; and
a bus that connects them. If that sounds similar to the overall architecture
of a modern, single-core computer, that’s because it is! This isn’t a coinci-
dence: the Analytical Engine’s architecture was explicitly used in ENIAC
(after translating its mechanics into electronics), and ENIAC then became
the template for our modern electronic machines.

Physically, the Analytical Engine is made of 50 copies of the slice (what
Babbage called a “cage”) shown in Figure 3-4, stacked vertically, one on top
of the other, as in Figure 1-14.

Figure 3-4: Babbage’s Analytical Engine architecture (1836)

The circles are mechanical gears. The CPU, RAM, and bus each extend
through all slices, and we can see each of them in Figure 3-4. For each num-
ber represented in each structure of the machine, the slice shows and han-
dles one of its many digits. The stack of all the slices together handles all
digits.

The RAM (“store axes”) consists of 100 stacks of gears, with each stack
representing one 50-digit decimal integer number. It appears on the slice as

78 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



the large homogeneous area on the right side of Figure 3-4. Each of these
locations in the RAM has an address, numbered from 0 to 99 inclusive; this
address distinguishes the location from the other locations and is used to
identify it.

The RAM locations are all physically close to, but not usually touching, a
mechanical bus (“rack”). The bus is a rack gear—exactly like the one found in
modern car steering racks and LEGO Technic sets (Figure 3-5).

Figure 3-5: A rack (linear gear) and
pinion (rotating gear)

The rack gear can physically shift left and right. Each of the RAM loca-
tions can be brought into contact with the rack by levers. The gears in that
RAM location then act as pinions so that giving off the number from the lo-
cation makes the bus physically shift to the left by that amount. Or, acting
in the opposite direction, shifting the bus to the right from elsewhere adds
numbers into the memory location.

The CPU (“mill”) is the active part of the machine. It requests data
from and sends data to the RAM on the bus, and then processes it in
various ways.

Programmer Interface
Unlike the Difference Engine, the Analytical Engine was designed as a
general-purpose computer. This means we can ask it to perform different
operations in different orders. To do this, we need a way to specify what
these operations and orders are.

Let’s clarify some terms I’ve been using loosely. An ordered list of in-
structions to perform operations is called a program. The act of carrying out
a program is called execution or a run. The set of all available instructions is
the instruction set.

Programs are stored as codes on punched cards, like those of the
Jacquard loom seen previously in Figure 1-11. Each card contains one row
of holes and non-holes, which together code for one instruction. Usually
the instructions are executed in order, with the cards advancing in sequence,
but some instructions make the cards rewind or fast-forward to jump around
in the program. Let’s look at what particular instructions are available.

Basic CPU-Based Architecture 79

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



Constants
One basic instruction is to set one of the RAM addresses to a given integer.
For example, “Put the integer 534 into RAM address 27.” This will move the
gears in the 27th RAM location’s column to the (decimal) digits 534, with
zeros on the gears for the thousands place and higher. Let’s first denote this
using a human-readable notation:

N27 534

Here, N (for number) tells us that this is a RAM integer-setting instruc-
tion. The following number (27) tells us which RAM location is to be set, and
the final number (534) is the value we’re setting it to. A typical program be-
gins by setting many RAM addresses to specific values in this manner. For
example:

N27 534

N15 123

N99 58993254235

N0 10

N2 5387

Once we have some starting values, we can then use further instructions
to compute with them, as in the next sections.

Load and Store
To process values from RAM, they must be moved into the CPU. To load
a value from RAM into the CPU, we write L for load, followed by the RAM
address where the value is stored. For example, this program sets the 27th
RAM location to the value 534, then loads the value from this location into
the CPU:

N27 534

L27

To store the CPU’s latest result to RAM address 35, we write S for store
followed by the desired address:

S35

Storing (S) is different from setting RAM to a constant (N) because it in-
volves the CPU’s accumulator. It transfers whatever value is in the accumula-
tor to the RAM, rather than putting a fixed constant into RAM.

Now that we can move data around, we would like to perform calcula-
tions in the form of arithmetic on it.

Arithmetic
The Analytical Engine is able to perform elementary arithmetical opera-
tions: addition, subtraction, multiplication, and division, all on integers.
These are denoted by the instructions +, -, *, and /.

80 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



To do arithmetic, you first have to set the mode, which tells the engine
which of these operations you want to do. For example, to add two num-
bers, you put it into adding mode and then load the two arguments in order
into the CPU. Consider the following program:

N0 7

N1 3

+

L0

L1

S2

This program first puts the integers 7 and 3 into addresses 0 and 1, re-
spectively. It then puts the CPU into adding mode with the + instruction and
loads the number from these addresses. It finally stores the result of the ad-
dition into address 2.

Now that we have arithmetic, we finally need to move from calculation
to computation by adding jumps and branches.

Jumps
If you want part of a program to repeat forever, a simple method is to glue
the end of the last punch card to the top of the first one to create a physical
loop, as in Figure 1-15. However, this doesn’t generalize well, so it’s useful
instead to have an instruction to rewind or fast-forward the cards to jump
to any other line of the program when needed. Call this C for control. We’ll
then say whether we want to go backward (B) or forward (F) in the cards, and
by how many. We’ll also include the symbol + before the number (for rea-
sons you’ll see in the next section). Putting it all together, CB+4, for example,
is a control instruction to go backward by four cards.

The following program uses CB+4 to loop forever:

N46 0

N37 1

+

L46

L37

S46

CB+4

Here we use address 46 as a counter, adding 1 to its value every time we
go around the loop.

Branches
Looping forever often isn’t very useful; we usually want to loop until some-
thing has happened, then stop looping and move on to the next part of the
program. This is done with a conditional branch, which asks whether a con-
dition holds and jumps only if it does.

Basic CPU-Based Architecture 81

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



We’ll use the same CF and CB notation we used for jumps, but with the
symbol ? replacing the + to denote that the jump is conditional. For exam-
ple, CB?4 is the control instruction to go backward by four cards only if some
condition is true.

The following program uses a conditional branch and an unconditional
jump together to compute the absolute value (always positive) of the sum of
two numbers.

N1 -2

N2 -3

N99 0

+

L1

L2

S3

+

L99

L3

CF?1

CF+4

-

L99

L3

S3

This program uses the + instruction to add the two numbers in RAM
locations 1 and 2, storing the result at location 3. It then adds zero (loaded
from address 99) to that result, loaded back from location 3. Behind the
scenes this addition operation also sets a special status flag to a 1 if the sign
of the result differs from the sign of the first input (zero is considered pos-
itive). The conditional instruction (CF?1) then uses this status flag to decide
what to do. If the flag is a 1, we skip over the next instruction, and so we ar-
rive at the - instruction and perform a subtraction of the result from 0 to
swap its sign. If the status flag is a 0, the conditional jump doesn’t occur, so
we simply move on to the next instruction (CF+4). This is an unconditional
jump that skips over the four lines of subtraction code so as not to swap the
sign. The final result is stored in address 3.

Branching completes the instruction set of the Analytical Engine and
(assuming enough memory is always available) makes it into a Church com-
puter. You can try tackling the end-of-chapter exercises and programming
the Analytical Engine now—or, if you’re interested to see how the machine
works on the inside, read on.

Internal Subcomponents
Let’s look at the subcomponents within the CPU that are needed to execute
these programs. This section describes their static structure; we’ll bring the

82 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



subcomponents to life in the next section when we cover how they move and
interact with one another.

A CPU is formed from many independent simple machines, each made
from several number representations and the machinery that acts upon
them. The simple machines are grouped into three types: registers, an arith-
metic logic unit, and a control unit.

As shown in Figure 3-4, all of these simple machines are arranged in a
circle around a single large gear called the central wheel. Like the bus, the
central wheel makes and breaks arbitrary data connections between com-
ponents, in this case between the simple machines inside the CPU. These
connections are made and removed by levers that put small additional gears
into contact between the central wheel and the various machines.

Registers
Registers (what Babbage called “axes”) are small units of memory location
inside the CPU itself, rather than in the main RAM. There are only a few
registers in the CPU, while there are many RAM addresses.

Recall from Chapter 2 that integers are represented in the Analytical
Engine by digital, decimal gears. A digit d is read off a gear by rotating a
shaft by a full circle, which results in the gear rotating by d tenths of a circle.
To represent an N -digit integer, we simply stack N of these gears vertically,
spanning the N cages of the machine. A register is one of these stacks.

The input register (“ingress axle”) receives incoming data from RAM.
The output register (“egress axle”) temporarily stores (or buffers) results from
the CPU’s work, which are then transferred out to RAM. Other registers are
used during computations for other purposes.

Arithmetic Logic Unit
The arithmetic logic unit (ALU) is a collection of independent simple ma-
chines that each perform a single arithmetic operation. For example, a
simple machine similar to Pascal’s calculator is used to do addition. Mul-
tiplying by m can be done by a machine that triggers m repetitions of this
adder. Multiplying or dividing by the nth power of 10 can be done by an
especially simple machine that shifts all of its digits by n columns, the me-
chanical equivalent of “putting a zero on the end.”

In addition to sending the result to an output register, some ALU opera-
tions can also set a single status flag as an extra, side-effect output. The status
flag in the Analytical Engine is a single mechanical lever that is in either the
up (1) or down (0) position. It might have had an actual red fabric flag on
it to visually alert human as well as mechanical observers that “something
interesting just happened” in the ALU.

Basic CPU-Based Architecture 83

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



ALU MECHANISMS

A digit d is given off from a gear D when it’s read by physically rotating the
gear by d tenths of a full circle. This digit can be added to another digit a
stored on gear A by placing the gears next to one another so that their teeth
mesh together, then giving off from D. As gear D rotates d tenths of a circle,
gear A will be caused to rotate by the same amount, so gear A will end up
storing the digit a + d. We say that A acts as an accumulator because we can
go on adding many digits into it, and it accumulates their sum—that is, until the
total goes above 9.

Integers larger than 9 are represented on stacks of gears, such as in registers.
Adding them together is done similarly to adding in columns with pen and
paper: the two digits in each column need to be added, but we also need to
keep track of carrying when a digit goes above 9 by passing a 1 to the next
column. Pascal had already developed a basic mechanical ripple carry sys-
tem in his calculator, which allowed numbers to be added into an accumulator,
and Babbage’s carries are based on this. The following figure shows part of
Babbage’s design.

When a gear reaches the number 9 and is rotated by one more position in an
addition, such as by an incoming carry (c), a tappet (f) connects to another
tappet (e). The latter connects to a rod (m) that transfers the carry “upstairs” to
the next cage, where it appears as (c) for the next column. Getting the timing
right for long ripples of carries is very difficult, and this is where Babbage spent
most of his design time.

Control Unit
The control unit (CU) reads instructions from the program in memory, de-
codes them, and passes control to the ALU or elsewhere to carry the instruc-
tions out. Then it updates the position in the program according to either
normal sequential execution or a jump. The CU is like the conductor of an
orchestra, coordinating the actions of all the other components at the right
times. Babbage’s CU is shown in Figure 3-6.

84 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



Figure 3-6: The Analytical Engine control unit

A mechanical barrel, just like that of a barrel organ, rotates over time,
and each column of the barrel has several sockets for pins that may or may
not be present. The pins trigger tappets that activate the other simple ma-
chines in the CPU through a complex system of mechanical levers. This
enables each phase of the control unit’s work to be triggered in sequence,
much like a barrel organ playing a sequence of notes. The speed of rotation
of the barrel can be controlled by feedback mechanisms, so the next step
doesn’t commence until the current step has been completed.

The configuration of the barrel’s pins is not the user’s program, but
rather a lower-level microprogram that defines the sequencing of the CPU
itself: the fetch-decode-execute cycle that we’ll discuss next. As the micro-
program runs, it causes individual commands from the user’s higher-level
program to be read into registers from punched cards, then causes those
commands to be executed via the simple machines in the rest of the CPU.

Internal Operation
The CU—in Babbage’s case the rotating barrel—triggers a regular cycle of
activities. These are usually grouped into three main stages: fetch, decode,
and execute. All of the CU’s operations must be carefully timed to occur in
the right order. Let’s look at these three stages in turn.

Fetch
Fetching means reading the machine code for the next instruction into the
CPU. Recall that the human-readable assembly language instructions such
as N37 1 and CB+4 are actually represented as binary machine code on the
punched cards. For the Analytical Engine, fetching could be done exactly
as on the Jacquard loom, by attempting to insert a set of physical pins into
the locations on the card. Where there’s a punched hole, the pin can pass
through, but where there isn’t a hole the pin gets stuck on the card and

Basic CPU-Based Architecture 85

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



doesn’t move as far. The physical positions of these pins can then be am-
plified and transmitted into the CPU by metal levers.

The card reader is a physical device, rather like a typewriter, in which
there’s a current line accessible to the pins. To read from any other line, it’s
necessary to pull the string of punch cards through this reader until the de-
sired line is positioned in it. The current physical state of the punch cards—
which one is currently in the reader—thus acts as a form of memory. We’ll
call this physical state the program counter.

The physical positions of the metal levers can also be considered as a
form of memory that contains a copy of the current instruction inside the
CPU. We’ll call this the instruction memory.

Decode
It isn’t immediately obvious what the binary encodings on the punch cards
mean, either to a human or a machine: at this stage, they’re just patterns
of 0s and 1s. Decoding means figuring out what this code means. The card-
reading levers traveling into the CPU can activate different pieces of ma-
chinery there, depending on what combinations of levers are up or down. For
example, if the load instruction (L) is represented as binary 010, a machine
could be set to respond only if three fetch levers are down, up, and down,
respectively. Similarly, numerical addresses included in instructions need to
be decoded, from decimal codes to mechanical activations of the addresses
they represent. The decoder is a bank of machines that each look for a spe-
cific pattern in the fetched signal and activate something when they see it.

Execute: Load and Store
Executionmeans carrying out the decoded instruction. How this is done will
depend on what type of instruction it is. Each form of execution is imple-
mented by a different simple machine, and the decoder will select and acti-
vate the appropriate one.

Values can be loaded into the CPU registers from RAM when the CPU
needs to use them—for example, as part of a calculation. The results of the
CPU’s work are also placed in registers, whose values can then be stored by
copying them out to RAM addresses.

To load a value, the CU makes mechanical connections between the
gears at the RAM address and the bus, and between the bus and input reg-
ister at the CPU end. It then triggers a giving off at the RAM address, spin-
ning the gears by a full circle so that they make the bus physically shift to-
ward the CPU by n steps, where n is the digit represented. This occurs in
parallel, with each column of the number having its own RAM gear, bus,
and input register gear.

When a value is to be stored, the CU triggers the opposite set of steps.
Storing assumes that the value to be stored is already in the output register.
First, it clears the RAM at the target address by rotating all the digits to zero.
Then it makes mechanical connections from the output register to the bus,
and from the bus to the required address in RAM. Then it spins the output
register by a full circle, which physically shifts the bus by n steps toward the

86 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



RAM, which in turn rotates the RAM gear by n steps so that the number is
stored there.

Execute: Arithmetic Instructions
When an arithmetic instruction, such as an addition, is required, the appro-
priate simple machine, such as an adder, is brought into mechanical con-
tact with the input and output registers and activated. In the Analytical En-
gine this is done mechanically by inserting gears (cogs) that physically link
the registers to the simple machine, then transmitting power to the simple
machine to make it run. Babbage’s adder was similar to a Pascal calcula-
tor, loading in the first argument, adding the second argument to, and then
transferring the result to the output register. When the calculation is done,
these gears are pulled away to disable the simple machine.

In addition to affecting the output register, the ALU’s simple machines
may also raise or lower the status flag if something interesting happens dur-
ing the arithmetic. The different simple machines in the ALU each have
their own definition of “interesting” and can each set the flag according to
these interests: + and - set the status flag to true if and only if the sign of
their result differs from the sign of their first input, while / sets the status
flag to true if a division by zero was attempted.

Execute: Program Flow
At the end of each instruction, the CU must complete the fetch-decode-
execute cycle and prepare for the start of the next one. How this is done
differs depending on whether we have a normal instruction (such as load
and store or ALU instructions) or one whose purpose is to alter the program
flow—that is, jumps and branches.

In normal execution, when an instruction completes, we want to advance
to the next instruction in the program, which for Babbage is the one on the
punch card whose top is attached by string to the bottom of the current in-
struction’s punch card. This will prepare the system for the next fetch, which
will be on the new instruction. To do this, the CU needs to trigger and in-
crement the program counter. For the Analytical Engine, this is done by
making mechanical connections that supply power to the punch card reader
to perform a line feed, pulling the card deck through the reader by one card.

Jump instructions mean fast-forwarding or rewinding the program as re-
quested. Consider the instruction CF+4, which means forward by four lines.
When the CU sees this instruction, it will again modify the program counter,
but rather than simply incrementing it, it will advance or rewind it by the
number of lines requested. In the Analytical Engine, this is done by sending
power to the line feeder for a longer time than a single line advancement,
and also by mechanically switching the direction of line feed between for-
ward and backward.

Branch instructions such as CB?4 are executed differently, depending on
the state of the status flag. This instruction, for example, tells the CU to
jump, decreasing the program counter by four, if and only if the status flag
is up. Otherwise, the instruction has no effect, and normal execution is used

Basic CPU-Based Architecture 87

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox



to increment the program counter and move to the next instruction. This
branching is the important difference that separates the Analytical Engine
from previous barrel and punch card program machines such as music play-
ers and the Jacquard loom. Unless historians discover any previous machines
that could do it, this engine marked the first time that a machine was de-
signed to modify the execution of its own program rather than always follow
it in the same sequence. This ability to look at the state of things and make
decisions based on it is a key requirement of a Church computer.

Summary
We’ve studied Babbage’s Analytical Engine in this chapter because it was
and still is the blueprint for all computers that came after it, including mod-
ern PCs. Its high-level architecture includes a CPU, RAM, and a bus con-
necting them. Inside the CPU is an ALU, registers, and a CU that conducts
a fetch-decode-execute cycle. The instruction set includes load and store,
arithmetic, and jump and branch instructions. There’s a program counter
storing the current program line number, and a status flag that gets set if
something interesting happened in the latest arithmetic operation. All of
these features are found essentially unchanged in a modern PC.

As a mechanical system, the Analytical Engine can be much more con-
crete to visualize and understand than electronics. But electronic computers
are based on simply translating each of Babbage’s components into a faster
and smaller implementation based on electronic switches grouped into logic
gates. In the second part of this book, you’ll see how this is done by building
up the modern electronic hierarchy from switches to CPUs. Now that you’ve
seen what a CPU needs to do, you should have a clearer picture of where this
electronic hierarchy is heading.

Exercises
Programming the Analytical Engine

1. Install the Fourmilab Analytical Engine emulator from https://www
.fourmilab.ch/babbage, or use its web interface.

2. Enter and run the Analytical Engine programs discussed in this
chapter. If you run the programs using the java aes -t test.card

command, then the -t option will print out a trace of changes to the
machine state at each step.

Lovelace’s Factorial Function
Write a factorial function for the Analytical Engine. Ada Lovelace wrote one
of these, and it has since become the standard “Hello, world!” exercise to
try whenever you meet a new architecture. (Actually printing “Hello, world!”
tends to be more complicated, as it requires ASCII and screen output—you’ll
see how to do this in Chapter 11.)

88 Chapter 3

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox

https://www.fourmilab.ch/babbage
https://www.fourmilab.ch/babbage


Further Reading
• For a more historically accurate description of the Analytical En-

gine, see A. Bromley, “Charles Babbage’s Analytical Engine, 1838,”
Annals of the History of Computing 4, no. 3 (1982): 196–217.

• For a more fictional version, see William Gibson and Bruce Sterling,
The Difference Engine (London: Victor Gollancz, 1990). This is the
original steampunk novel, featuring Babbage, Lovelace, and a work-
ing Analytical Engine.

Basic CPU-Based Architecture 89

Computer Architecture (Sample Chapter) © 2/20/24 by Charles Fox




