
3
MAKING CHOICES

Now that we’ve covered how to create con-

stants and variables, you’re ready to learn

how to tell your computer to make choices.

This chapter is about controlling the flow of

a computer program by telling the computer which

path to take. When we talk about flow, we’re referring

to the order in which the statements of the program

are executed.
Up to this point, you’ve only seen statements performed in the order

you’ve typed them. You’ve done some cool things with this, but by tell-
ing the computer how to make choices about the order of executing

36 Chapter 3

statements, you can do even more. To get the computer to make a choice,
we’ll use conditional statements that tell the computer to run some code
based on a condition’s value.

You already use conditional statements to make choices every day! For
example, before you leave home in the morning, you check the weather.
If it’s sunny, you may put on a pair of sunglasses. If it’s raining, you grab
your umbrella. In each case, you’re
checking a condition. If the condi-
tion “it is raining” is true, then you
take your umbrella when you leave
the house. When the condition could
be true or false, it’s called a Boolean

expression. The Bool data type that you
learned about in Chapter 2 is used to
represent the value true or false.

Boolean Expressions

A common type of Boolean expression is one that compares two values
using a comparison operator. There are six comparison operators. Let’s start
with two simple ones: is equal and is not equal.

Is Equal and Is Not Equal

You’ll use the is equal and is not equal comparison operators a lot. Is equal
is written with two equal signs next to each other, like this: ==. Is not equal is
written with an exclamation mark and one equal sign, like this: !=.

Let’s try them both out in the playground!

3 + 2 == 5
4 + 5 == 8
3 != 5
4 + 5 != 8
// This is wrong and will give you an error
3 + 5 = 8

true
false
true
true

error

In plain English, the line at says, “three plus two equals five,” which is
a true statement, and the output in the right pane will confirm this as soon
as you finish typing it. At , the line says, “three is not equal to five,” which
is also a true statement. Note that is an error. Do you know why? While =
and == look a lot alike, remember that a single equal sign (=) assigns values.
That statement reads, “Put the value of 8 into something called 3 + 5,” which
doesn’t work.

In Swift, the == operator also works with other data types, not just
numbers. Let’s try making some other comparisons.

Making Choices 37

// Comparing strings
let myName = "Gloria"
myName == "Melissa"
myName == "Gloria"
myName == "gloria"
var myHeight = 67.5
myHeight == 67.5
// This is wrong and will give you an error
myHeight == myName

"Gloria"
false
true
false
67.5
true

error

The line at is a tricky one; did you expect it to be true? Those two
strings are close but not exactly the same, and an is equal comparison is
true only if the two values match exactly. The constant myName has a value
of "Gloria" with a capital G, which is not the same as "gloria" with a lower-
case g.

Remember in Chapter 2 when we said that you can’t use math opera-
tors like + and * on things that aren’t the same data type? The same is
true for comparisons. You can’t compare things that are different types.
The line at will cause an error because one is a String and the other is
a Double.

Greater Than and Less Than

Now let’s look at four other comparison operators. We’ll start with greater

than (written as >) and less than (written as <). You probably already have a
good idea of how these work. A Boolean expression like 9 > 7, which reads
“9 is greater than 7,” is true. Often, you’ll also want to know if something
is greater than or equal to something or less than or equal to something.
There are two more operators that cover those cases: greater than or equal to
(which looks like >=) and less than or equal to (which looks like <=). Let’s try
these out with some more examples:

// Greater than
9 > 7
// Less than
9 < 11
// Greater than or equal to
3 + 4 >= 7
3 + 4 > 7
// Less than or equal to
5 + 6 <= 11
5 + 6 < 11

true

true

true
false

true
false

Note the difference between greater than or equal to at and greater

than at . The sum of 3 + 4 is not greater than 7, but it is greater than or
equal to 7. Similarly, 5 + 6 is less than or equal to 11 , but it’s not less
than 11 .

38 Chapter 3

Table 3-1 summarizes the six comparison operators.

Table 3-1: Comparison Operators

Symbol Definition

== Is equal to

!= Is not equal to

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

You’ll find yourself using these operators often when you write condi-
tional statements.

Compound Boolean Expressions

Compound Boolean expressions are simple Boolean expressions that have
been joined together. It’s a lot like making compound sentences in English
with the words and and or. In programming, there is a third case: not. In
Swift, we call these words logical operators. A logical operator either com-
bines a Boolean expression with another one or negates it. The three logi-
cal operators in Swift are shown in Table 3-2.

Table 3-2: Logical Operators

Symbol Definition

&& Logical AND

|| Logical OR

! Logical NOT

With logical operators, you can write statements that test if a value falls
within a range, such as, “Is this person’s age between 10 and 15?” You would
do this by testing if the age is greater than 10 and less than 15 at the same
time, like this:

var age = 12
age > 10 && age < 15

12
true

The statement age > 10 && age < 15 is true because both the conditions
are true: age is greater than 10 and less than 15. An AND statement is true
only if both conditions are true.

Making Choices 39

Try changing the value of age to 18 to see what happens:

var age = 18
age > 10 && age < 15

18
false

Because we changed age to 18, only one side of the statement is true.
The variable age is still greater than 10, but it’s no longer less than 15, so
our expression evaluates to false.

Now test out OR by entering this code in your playground:

let name = "Jacqueline"
name == "Jack"
name == "Jack" || name == "Jacqueline"

"Jacqueline"
false
true

First, we make up a person named Jacqueline by
setting the constant name to "Jacqueline". Next, we test
some conditions to see if they are true or false. Because
name == "Jacqueline" is true, the OR statement at is true
even though name == "Jack" is false. In English, this state-
ment says, “This person’s name is Jack or this person’s
name is Jacqueline.” In an OR statement, only one of the
conditions needs to be true for the whole expression to
be true.

Let’s try using some NOT statements. Enter the fol-
lowing into your playground:

let isAGirl = true
!isAGirl && name == "Jack"
isAGirl && name == "Jacqueline"
(!isAGirl && name == "Jack") || (isAGirl && name == "Jacqueline")

true
false
true
true

The ! operator is used in the compound Boolean statement , which
you could read as “Our person is not a girl and our person is named Jack.”
That statement has two logical operators, ! and &&. You can combine as
many logical operators as you want when you write compound Boolean
expressions.

Sometimes it’s a good idea to use parentheses to let the computer know
what to evaluate first. Parentheses also make the code easier to read. This is
similar to how you use parentheses when you use several math operations
in one equation, as described in “Ordering Operations with Parentheses”
on page 30. At , we use parentheses to tell the computer to first check
!isAGirl && name == "Jack" and then check isAGirl && name == "Jacqueline".
After it has evaluated both parts, the computer can evaluate the OR part
for the entire statement, which will be true because the second part is true.
Again, in an OR statement, the whole expression is true if any of the condi-
tions is true.

Table 3-3 shows the three logical operators and the compound expres-
sions you can make with them, as well as their corresponding Boolean values.

40 Chapter 3

Table 3-3: Compound Boolean Expressions with Logical Operators

Logical operator Compound expression Value

NOT (!) !true false

NOT (!) !false true

AND (&&) true && true true

AND (&&) true && false false

AND (&&) false && true false

AND (&&) false && false false

OR (||) true || true true

OR (||) true || false true

OR (||) false || true true

OR (||) false || false false

The first item of the table shows that something that is NOT true is
false. Similarly, something that is NOT false is true.

With the AND operator, only something that is true && true is true. This
means that the expressions on both sides of the && operator must be true for
the && expression to be true. A compound expression that is true && false will
evaluate to false. And a compound && expression in which both conditions
are false will also evaluate to false.

When it comes to the OR operator, only one of the expressions on
either side of the || operator must be true for the || expression to be true.
Therefore, a true || true is true, and a true || false is also true. Only a com-
pound OR expression in which both sides are false ends up being false.

Conditional Statements

Conditional statements fall into two categories: the if statement and the
switch statement. These statements present the computer with a condition
that the computer makes a choice based on.

if Statements

An if statement starts with the keyword if followed by a condition, which is
always a Boolean expression. The computer examines the condition and
executes the code inside the if statement if the condition is true or skips
over that code if the condition is false. Let’s write some code that tests
whether a kid is tall enough to ride a roller coaster. Enter the following
code into your playground:

let heightToRideAlone = 48.0
var height = 49.5

 if height >= heightToRideAlone{
 print("You are tall enough to ride this roller coaster.")
}

Making Choices 41

Here, we set 48 inches as the minimum height at which a kid can ride our
roller coaster alone, and we set our rider’s height to 49.5 inches. At , we test
whether the rider’s height is greater than or equal to heightToRideAlone. If it
is, the program says that they are tall enough
to ride the roller coaster. To write our if state-
ment, we put the keyword if in front of the
condition height >= heightToRideAlone. Then we
wrap the code that we want to execute when that
condition is true in a set of braces . Because
our rider is tall enough, the computer will print
"You are tall enough to ride this roller coaster."
Hooray!

Let’s see what happens if we change our rider’s height. Change height
to a number less than 48.0. This time, because the condition in the if
statement evaluates to false, the program skips all of the code in the
if statement and nothing happens.

else Statements

Often, you’ll want to tell the computer to do one thing if a statement is true
but something else if that statement is false. To do this, after the if state-
ment and block of code, just type the keyword else followed by another
block of code that you want to execute when the if condition isn’t true. If
the rider isn’t tall enough to meet the condition, let’s have the computer tell
them they can’t ride the roller coaster:

if height >= heightToRideAlone {
 print("You are tall enough to ride this roller coaster.")

 } else {
 print("Sorry. You cannot ride this roller coaster.")
}

Now if you change the rider’s height to less than 48 inches, you’ll see
"Sorry. You cannot ride this roller coaster." That’s because the else state-
ment at tells the computer to print that message if the statement evalu-
ates to false. In plain English, this is like saying, “If the rider is tall enough
to ride the roller coaster, say they can ride it. Else, say they can’t.”

else if Statements

We could also test different conditions for the rider’s height to create more
rules for riding the roller coaster. We can do this by adding else if condi-
tions. Let’s add a new minimum height that requires the kid to ride with an
adult:

let heightToRideAlone = 48.0
let heightToRideWithAdult = 36.0
var height = 47.5

42 Chapter 3

if height >= heightToRideAlone {
 print("You are tall enough to ride this roller coaster alone.")

 } else if height >= heightToRideWithAdult {
 print("You can ride this roller coaster with an adult.")
} else {
 print("Sorry. You cannot ride this roller coaster.")
}

The else if statement at checks whether the rider’s height is greater
than or equal to heightToRideWithAdult. If a rider is shorter than 48 inches
but taller than 36 inches, then the line "You can ride this roller coaster
with an adult." appears in the results pane. If they are too
short to ride alone or with an adult, then the computer
prints "Sorry. You cannot ride this roller coaster."

else if statements are neat because you can use them
to test lots of different conditions, but it’s very important
that you pay attention to the order of these conditions.
To show you what we mean, change the rider’s height
to 50.0 so that they are tall enough to ride alone. Then,
change the order of the conditions in our if else state-
ment by making height >= heightToRideWithAdult the first
condition and height >= heightToRideAlone the second con-
dition. What do you think will be printed? Take a look at
Figure 3-1 to find out.

Figure 3-1: Be careful with your ordering of else if statements.

You can see that even though the rider is taller than heightToRideAlone, the
program prints "You can ride this roller coaster with an adult." which is the
expected output for a rider whose height is greater than heightToRideWithAdult
but less than heightToRideAlone. We get this result because the rider’s height

Making Choices 43

matches the first condition, so the computer prints the first sentence and
doesn’t bother checking anything else.

Once any part of an if or else if statement is found to be true, the rest
of the conditions won’t be checked. In our example in Figure 3-1, the first
condition is true, so the rest of the conditions are skipped. This can lead to
unexpected results in your programs, so if you ever run into problems in
your if or else if statements, check the order of the conditions!

When you’re working with if, else, or else if statements, there are
a few important rules. The first is that you can’t have an else or an else
if statement unless you write an if statement first. The second is that
although you can have as many else ifs as you want after an if, you can
have only one else—and that else must be last. The else is the catch-all
case if none of the other things has happened.

CODE WITH STYLE

Pay close attention to the coding style that we use in this book. By coding style, we

mean the way that the code is written, the number of spaces used, the indentation

of certain lines, and what things go on a new line. Take a look at this code:

// The opening brace, {, of a block of code goes on
// the same line as the condition
if height >= heightToRideAlone {

 // Statements inside a block of code should be indented by 4 spaces
 print("You are tall enough to ride this roller coaster alone.")

// The closing brace, }, of a block of code goes at the start of a new line
} else if height >= heightToRideWithAdult {

 // Extra blank lines can be added between statements
 // to make the code look less crowded

 print("You can ride this roller coaster with an adult.")

} else {

 print("Sorry. You cannot ride this roller coaster.")
}

Notice that after the if condition we leave a space and then place the

opening brace, {, on the same line. The block’s closing brace, }, always goes

at the start of the next new line. The statements con-

tained within the braces are indented by four spaces.

This is something that Xcode does automatically for you

to make the code more readable. Feel free to add blank

lines if it makes it easier for you to read. In general, you

should always have at least one blank line before a chunk

of code such as an if statement.

44 Chapter 3

switch Statements

Whereas an if statement is used only to evaluate a Boolean expression
(something that must be true or false), a switch statement can evaluate and
branch out on any number of conditions. You could use a switch to check
the value of an integer and tell the computer to do one thing if the integer
equals 1, something else if the integer equals 2, and so on. Or, you could
create a string called dayOfTheWeek and write a switch statement that makes
the computer do something different based on the value of dayOfTheWeek.

When the computer finds the first match, that block of code is exe-
cuted. Take a look at the following code, which assigns student projects for
different grade levels:

var studentGrade = 5
var studentProject = "To be determined"

 switch studentGrade {
 case 1:
 studentProject = "A country of the student's choice"
case 2:
 studentProject = "The Iditarod"
case 3:
 studentProject = "Native Americans"
case 4:
 studentProject = "A state of the student's choice"
case 5:
 studentProject = "Colonial times"

 case 6, 7, 8:
 studentProject = "Student's choice"

 default:
 studentProject = "N/A"
}

The switch statement starts with the keyword switch followed by the
control expression. In this example, the control expression is the variable
studentGrade.

After the control expression, a set of braces begins
at , and the body of the switch statement is inside these
braces.

The body of the switch statement is made up of one
or more cases. In this example, there are six cases total.
Each case starts with the keyword case followed by a value
and a colon, as shown at . If a case statement matches
the control expression, the code just after the case will
run. Each case must have at least one line of code, or
you’ll get an error. In this example, switch is used to
change the string assigned to the variable studentProject
from "To be determined" to the string in the case that
matches the control expression.

Making Choices 45

Note that you can have multiple cases all do the same thing. You can
see that students in grades 6, 7, and 8 all get to choose their own projects .
We specify this by writing the keyword case and then a comma-separated list
of values.

Finally, a switch statement must account for every possible case or value
of the control expression. In our example, because studentGrade is an Int,
our switch statement needs to have a case for all possible Int values. But this
would take a really long time to write since there are so many! For example,
–7 is an Int, as is 1,000. Do you really want to write 1,000 cases?

Instead of writing a separate case for every value, you can use the key-
word default as the last case, as we did at . You simply type default followed
by a colon (default:) and then whatever code you want to run if none of the
other cases match. Notice that the default case doesn’t have the word case
in front of it. The default case is really helpful for taking care of values that
you might not expect and lets you avoid writing so many case statements. In
this example, we expect a value only of 1 through 8 for studentGrade, so we
use the default case to cover all other possible values.

Try running this switch statement and see what you get. Then try chang-
ing the values to test for different conditions. Play around with it!

What You Learned

In this chapter, you learned how to program the computer to make choices
based on conditions using if and switch statements. You learned how to write
Boolean expressions and compound expressions, and about the different
comparison operators. Conditional state-
ments are an essential programming tool
and are seen in almost every useful program.
In Chapter 4, we’re going to tackle another
important type of programming statement—
the loop. Loops tell the computer to do some-
thing over and over again until it is time to
stop the loop.

