Index

A

algorithms, 7
adapting, 55
parallel, 110-112, 115-116
recursive, 155
search. See search algorithms
amortized cost, 172
ArrayCart, 21
arrays, 15, 19-24
and binary search, 36-38
for heaps, 219-222
index of, 19, 24, 28
for queues, 100-101
sorted, 36
and binary search tree construction, 147-150
for stacks, 99-100
for strings, 25-28

B

back pointers, 80
backtracking, 67-70, 84-88, 106
best-first search, 189-192
for investigations, 189
for locks, 203-205
priority queues, 196, 203-205
binary search, 33-38, 41-43, 49-52
binary search ladders, 138-142, 145-149
for artwork, 138, 147-149
snake rungs, 147, 149
as traps, 139-140
binary search trees, 138-144
balanced, 144, 168
child node, 138, 143
construction, 147-150
inserting nodes, 167-169
property, 139, 143, 171, 173
range search, 153-162
root node, 138, 143
searching, 139-144
subtree, 138, 143
unbalanced tree, 168-169
Boolean (citizen of Bool), 11, 223
breadth-first search, 72-81, 121
on graphs, 77-81
on grids, $84-85$
for locks, 72-77
and queues, 77,107

C

characters, in strings, 25,28
child nodes, 138, 143

D

data structures
arrays, 15, 19-24
binary search trees, 138-144
graphs, 77-78, 91, 108, 136-137
grids, 84
heaps, 214-217, 219-222
inverted indexes, 129-133, 226
priority queues, 194-197, 199-200, 203-205
queues, 77, 96-97, 100-101, 107, 195
stacks, 91, 94-96, 99-100, 195
strings, 25-28
trees, 73, 138-144
tries, 177-182
depth-first search, 85-88, 91-92, 155
on graphs, 91-92, 136-137
on grids, 85-88
and iterative deepening, 120-123, 125-126
and stacks, 91, 105-106

E

exhaustive search, 10-13, 15-16, 43, 226
edge, of graph, 78, 91, 136

[^0]
G

graphs, 77-78, 108 and breadth-first search, 77-81
cost of edge, 80-81
and depth-first search, 91-92, 136-137
edge, 78, 91, 136
and iterative deepening, 125-126
and maps, 78, 91, 136-137
neighbor, 78
node, 78, 91, 136
grids, 84
and breadth-first search, 84-85
and depth-first search, 85-88
and iterative deepening, 120-123

H

heaps, 214-217
and arrays, 219-222
inserting element, 220-221
maximum element, 220
priority queue, 219
property, 219
removing max element, 221-222
root node, 220
heuristics, 209-212

I

index
in arrays $19,24,28$
inverted, 129-133, 226
intersection, 130
inverted indexes, 129-133, 226
iterative deepening, 118-126
on graphs, 125-126
on grids, $120-123$

K

Kingdom Highway Map, 78, 91

L

last-in, first-out data structures, 95-96, 99. See also stacks
League of Magical Confectioners, 151
linear search, 15-16
locks,
and best-first search, 203-205
and breadth-first search, 72-77
and priority queues, 203-205

M

Manhattan distance, 191

N

nodes
child, 138, 143
graph, 78, 91, 136
inserting
in binary search tree, 167-169
in heap, 220-221
root
of binary search tree, 138, 143
of heap, 220
tree, 73, 138, 143-144

P

parallel algorithms, 110-112, 115-116
prefix trees, 177-182
priority queues, 194-197,
199-200
and best-first search, 196, 203-205
dequeue, 195
enqueue, 195
and heaps, 219
for investigations, 194-197
for locks, 203-205

Q

queues, 77, 96-97, 195. See also priority queues
and arrays, 100-101
and breadth-first search, 107
dequeue, 97, 100-101
enqueue, 97, 100

R

range search, 153-162
recursive algorithms, 155
for binary search tree construction, 147-150
for range search, 153-162
root node
of binary search tree, 138, 143
of heap, 220

S

search algorithms
binary search, 33-38, 41-43, 49-52
best-first search. See bestfirst search
breadth-first search. See breadth-first search
depth-first search. See depth-first search
exhaustive search, 10-13, $15-16,43,226$
linear search, $15-16$
range search, 153-162
search space, 5-7
and binary search, 36
and grids, 84
search state, 5-7
and backtracking, 69-70
on graphs, 78
on grids, 84
set intersection, 130
sorted data, $33,36,43$, 45-46
stacks, 91, 94-96, 195
and arrays, 99-100
and depth-first search, 91, 105-106
pop, 95, 99-100
push, 95, 99
state. See search state
strings, 25-28

T

target, 5, 7
trees, 73, 138-144
binary search. See binary search trees
heaps. See heaps
nodes, $73,138,143-144$
child, 138, 143
root, 138, 143
subtrees, 138, 143
tries, 177-182

W

Weather Records problem, 43

[^0]: F
 first-in, first-out data structures, 96-97, 100. See also queues

