
6
R e n d e R i n g  C a n v a s  s p R i t e s

Up until now, we’ve built Bubble Shooter  
with a DOM-based approach by using 

HTML elements for game objects that are 
styled and positioned by CSS and manipu-

lated by JavaScript. In this chapter, we’ll rework Bubble 
Shooter so most of the game area is rendered to a can-
vas instead of using the DOM. Our game’s dialogs will 
remain in HTML and CSS.

Canvas rendering allows us to achieve graphical effects that are often 
impossible with DOM-based development, and it can often provide a faster 
rendering speed. To use canvas rendering for Bubble Shooter, we need to 
learn how to render entire scenes to the canvas, maintain state, and per-
form frame-by-frame animations.

Build an HTML5 Game 
© 2015 Karl Bunyan



106   Chapter 6

We’ll keep the existing DOM-rendering code in place for devices where 
the canvas element isn’t supported and provide progressive enhancement 
to the canvas for more modern browsers. We’ll do this to demonstrate the 
principle involved in coding for both canvas- and DOM-based animation 
and to highlight the differences between the two approaches.

Detecting Canvas Support
Modernizr can help us detect canvas features so we don’t have to remember 
multiple cross-browser cases. We’ll load in only a couple of extra Java Script 
files for the canvas version and won’t delete any files. To detect the canvas and 
load in the right files, we need an extra node in Modernizr.load in index.html, 
which will check for canvas support, and if present, load JavaScript files 
from an array. Add the following before game.js is loaded:

  },
  {
    test: Modernizr.canvas,
    yep: ["_js/renderer.js","_js/sprite.js"]
  },
  {
    load: "_js/game.js",
    complete: function(){
      $(function(){
        var game = new BubbleShoot.Game();
        game.init();
      })
    }
  }]);

The value of Modernizr.canvas, the parameter that test looks for, will be 
either true or false. If it’s true, the two files listed in yep are loaded; if it’s false, 
nothing new happens.

Create empty files for renderer.js and sprite.js in the _js folder. The 
Renderer object will draw the game state at each frame, and the Sprite class 
will perform many of the operations that we’ve been using jQuery for to 
date. We want Renderer to be responsible for drawing pixels onto the canvas 
and not mix up game logic with it; likewise, we’ll try to keep state infor-
mation inside the relevant objects. This approach makes it much easier 
to switch between rendering using the canvas or the DOM, depending on 
what we think is best for the game.

Drawing to the Canvas
With HTML5’s canvas feature, you can build games at a level of sophistica-
tion similar to that of Flash games or even native applications. You place 
canvas elements into documents in the same way as other elements, such 
as <div> or <img>, but it’s the way you work with the element that makes it 

index.html

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   107

different. Inside the canvas, you have pixel-level control, and you can draw 
to individual pixels, read their values, and manipulate them. You can write 
JavaScript code to generate arcade shooters or even 3D games that are dif-
ficult to reproduce with a DOM-based approach.

Unlike CSS and HTML, the canvas doesn’t let you rely on the browser 
to keep track of the positions of objects on the screen. Nothing automati-
cally deals with layering or rendering backgrounds when a sprite moves over 
them because the canvas outputs a flat image for the browser to display. If 
sprite animation and movement with CSS is like moving papers around on 
a notice wall, canvas animation is more like working with a whiteboard: if 
you want to change something or move it, you’ll have to erase an area and 
redraw it.

Canvas rendering also differs from CSS layout in that positioning of 
elements can’t be offloaded to the browser. For example, with our existing 
DOM-based system, we can use a CSS transition to move the bubble visually 
from its firing position to wherever we want it to end up in the board layout. 
To do this takes only a couple of lines of code.

t he dOM v s. t he C a n va s

HTML is primarily an information format; CSS was introduced as a way to 
format that information. Creating games using both technologies is really a 
misappropriation, and games like Bubble Shooter are feasible largely because 
browser vendors have made an effort to increase performance. Many of the 
processes that are invaluable in laying out documents, such as ensuring that 
text areas don’t overlap or that text wraps around images, are practices that 
we don’t need for laying out games. As game developers, we take on respon-
sibility for ensuring the screen is laid out well, but, unfortunately for us, the 
browser still runs through all of these checks in the background.

For example, adding or removing elements in the DOM can be a rela-
tively expensive operation in terms of processing power. The reason is that if 
we add or remove something, the browser needs to inspect it to ensure that 
the change doesn’t have a domino effect on the rest of the document flow. If 
we were working with, say, an expanding menu on a website, we might want 
the browser to push a navigation area down if we add more elements to it. 
However, in a game it’s more likely that we will be using position: absolute, 
and we definitely don’t want the addition or removal of a new element to force 
everything surrounding it to be repositioned.

By contrast, when the browser sees a canvas element, it sees just an image. 
If we change the contents of the canvas, only the contents change. The browser 
doesn’t need to consider whether this change will have a knock-on effect on 
the rest of the document.

Build an HTML5 Game 
© 2015 Karl Bunyan



108   Chapter 6

Canvas rendering, on the other hand, requires us to animate frame by 
frame in a way similar to the internal workings of jQuery. We must calculate 
how far a bubble is along its path and draw it at that position each time a 
frame update occurs.

On its own, animating on the canvas using JavaScript would be no 
more arduous than JavaScript animation using the DOM without jQuery 
or CSS transitions to fall back on, but the process is made more complex 
by the fact that if we want to change the contents of the canvas, we need to 
delete pixels and redraw them. Ways to optimize the redrawing process are 
available, but a basic approach is to draw the entire canvas afresh for each 
animation frame. This means that, if we want to move an object across the 
canvas, we have to render not just the object that we want to move but pos-
sibly every object in the scene.

We’ll draw the game board and the current bubble using the canvas, 
but some components, such as dialogs, are better left as DOM elements. 
User interface components are generally easier to update as DOM ele-
ments, and the browser usually renders text more precisely with HTML 
than it would render text within a canvas element. 

Now that we’ve decided to render the game with a canvas system, let’s look 
at what that will involve. The key tasks are rendering the images and maintain-
ing states for each bubble so that we know which bubbles are stationary, 
which are moving, and which are in the various stages of being popped.

Image Rendering
Any image you want to draw to the canvas must be preloaded so it’s avail-
able to be drawn; otherwise, nothing appears. To do this, we’ll create an 
in-memory Image object in JavaScript, set the image source to the sprite 
sheet, and attach an onload event handler to it so we know when it’s finished 
loading. Currently, the game is playable once the init function in game.js 
has run and the New Game button has the startGame function attached to 
its click event:

$(".but_start_game").bind("click",startGame);

We still want this to happen, but we don’t want it to happen until after 
the sprite sheet image has loaded. This will be the first task we’ll tackle.

canvas Elements
Next, we need to know how to draw images onto the canvas. A canvas ele-
ment is an HTML element just like any other: it can be inserted into the 
DOM, can have CSS styling applied, and behaves in much the same way as 
an image. For example, to create a canvas element, we add the following to 
index.html:

<canvas id="game_canvas " width="1000" height="620"></canvas>

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   109

This creates a canvas element with the dimensions of 1000 pixels wide 
by 620 pixels high. These dimensions are important because they establish 
the number of pixels that make up the canvas. However, we should also set 
these dimensions in CSS to establish the size of the canvas as it will appear 
on the page:

#game_canvas
{
  width: 1000px;
  height: 620px;
}

In the same way that an image can be rendered at scale, the canvas ele-
ment can also be scaled. By setting the CSS dimensions to the same values 
as the HTML attributes, we ensure that we’re drawing the canvas at a scale 
of 1:1. If we omitted the CSS, the canvas would be rendered at the width 
and height specified in the attributes, but it’s good practice to specify lay-
out dimensions within the style sheet. Not only does it help with code read-
ability, but it also ensures that if the internal dimensions of the canvas are 
changed, the page layout won’t break.

To draw an image onto the canvas using JavaScript, we first need to 
get a context, the object that you use to manipulate canvas contents, using 
the method getContext. A context tells the browser whether we’re work-
ing in two dimensions or three. You would write something like this to 
indicate you want to work in two-dimensional space rather than three-
dimensional space:

document.getElementById("game_canvas").getContext("2d");

Or to write this using jQuery:

$("#game_canvas").get(0).getContext("2d");

Note that the context is a property of the DOM node, not the jQuery 
object, because we’re retrieving the first object in jQuery’s set with the get(0) 
call. We need the DOM node because the basic jQuery library doesn’t con-
tain any special functions for working with canvas elements.

Now, to draw the image onto the canvas, we use the drawImage method of 
the context object:

document.getElementById("game_canvas").getContext("2d").
drawImage(imageObject,x,y);

Or again, to write this using jQuery:

$("#game_canvas").get(0).getContext("2d").drawImage(imageObject,x,y);

Build an HTML5 Game 
© 2015 Karl Bunyan



110   Chapter 6

The parameters passed into drawImage are the Image object and then 
x- and y -coordinates at which to draw the image. These are pixels relative 
to the canvas context origin. By default, (0,0) is the top-left corner of the 
canvas.

We can also clear pixels from the canvas with the clearRect method:

$("#game_canvas").get(0).getContext("2d").clearRect(0, 0, 1000, 620);

The clearRect command removes all canvas pixels from the top-left 
corner (first two parameters) down to the bottom-right corner (last two 
parameters). Although you can just clear the canvas rectangle that you want 
to change, it’s usually easier to clear the entire canvas and redraw it each 
frame. Again, the coordinates are relative to the context origin.

The context maintains a number of state properties about the canvas, 
such as the current line thickness, line colors, and font properties. Most 
important for drawing sprites, it also maintains the coordinates of the con-
text origin and a rotation angle. In fact, you can draw an image at a set posi-
tion on the canvas in two ways:

•	 Pass x- and y -coordinates into the drawImage function.

•	 Move the context origin and draw the image at the origin.

In practice, you’ll see the same results with either method, but there 
is a reason it’s often best to move—or translate—the context origin. If you 
want to draw an image onto the canvas at an angle, it’s not the image that’s 
rotated but the canvas context that’s rotated prior to drawing the image.

Rotating the Canvas
The canvas is always rotated around its origin. If you want to rotate an image 
around its own center, first translate the canvas origin to a new origin at the 
center of the image. Then rotate the canvas by the angle at which you want 
to rotate the image but in the opposite direction to the rotation you wanted to 
apply to the object. Then draw the image as usual, rotate the canvas back to 
zero degrees around its new origin, and finally translate the canvas back to 
its initial origin. Figure 6-1 shows how this works. 

For example, to draw an image that’s 100 pixels across at coordinates 
(100,100) and rotate it by 30 degrees around its center, you could write the 
following:

u var canvas = $("#game_canvas").get(0);
v var context = canvas.getContext("2d");
w context.clearRect(0, 0, canvas.width, canvas.height);
x context.translate(150, 150);
y context.rotate(Math.PI/6);
z context.drawImage(imageObject, -50, -50);
 context.rotate(-Math.PI/6);
 context.translate(-150, -150);

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   111

Rotated canvas context

Original canvas context

Origin after translation

2. Rotate the context 
around the new origin.

3. Draw the image 
at new coordinates.

(0,0)

Drawing and rotating 
happen relative to the 
new origin point.

Figure 6-1: Drawing a rotated image onto the canvas

This code retrieves the canvas u and the context v and then clears the 
canvas so it’s ready for drawing w. We next translate the origin to the coor-
dinates at which we want to draw the image x, but we also need to add half 
the image’s width and half of its height to the translation values, because 
we’ll be drawing the center of the image at the new origin.

The next step is to add rotation y, but remember that we rotate the con-
text, not the image. Angles are also specified in radians rather than degrees. 
The image is drawn at (-50,-50) z, which means that the center of the image 
is drawn at the context origin and then the context is rotated back  and 
then translated back . The last two steps are important because the con-
text maintains state, so the next operation that’s performed on the canvas 
would be on the rotated coordinates. By reversing the rotation and the 
translation, we have left the canvas in the same state in which we found it.

If you don’t want to have to remember to rotate and translate the canvas 
back to its origin, you can simplify the whole process by storing the context 
before changing your image and resetting the context afterward:

var canvas = $("#game_canvas").get(0);
var context = canvas.getContext("2d");
context.clearRect(0, 0, canvas.width, canvas.height);

u context.save();
context.translate(150, 150);
context.rotate(Math.PI/6);
context.drawImage(imageObject, -50, -50);

v context.restore();

Build an HTML5 Game 
© 2015 Karl Bunyan



112   Chapter 6

The call to context.save u saves the current state of the context, 
although, importantly, it doesn’t save the pixel data inside the canvas. 
Then context.restore v sets it back to this saved state.

These principles are all we need to draw whole images onto the canvas 
and to remove them again, but to draw bubbles, we’ll need to draw only a 
small section of the sprite sheet at a time.

C a n va s W idt h a nd he igh t

The canvas has its own settings for width and height, and it’s important to 
specify these when you create a canvas element. You could use CSS to deter-
mine the dimensions of the canvas as displayed on the screen, but they may 
not match the number of pixels that the canvas internally is set to render. In our 
case, we’ll make both the same, so drawing one pixel to the canvas will result 
in one pixel being displayed.

If we were to set the width and height of the canvas element to double 
what they are now, the DOM element would still take up the same amount of 
space on the page because of our CSS definition. The canvas interacts with 
CSS in the same way images do: the width and height are specified in the style 
sheet, but the canvas (or image) may be larger or smaller. The result is that the 
image we draw occupies only the top quarter of the canvas and appears 
to be a quarter of its original size. This happens because canvas pixels are 
scaled to screen pixels at render time. Try changing the canvas definition in 
index.html to the following and see what happens:

<canvas id="game_canvas" width="2000" height="1240"></canvas>

The canvas element won’t appear any bigger on the screen because of the 
CSS rules. Instead, every pixel defined by CSS will be represented by 4 pixels 
on the canvas. In most desktop browsers, 1 CSS pixel is identical to 1 screen 
pixel, so there’s little benefit to setting the canvas dimensions to values larger 
than those in the CSS. However, modern devices, especially mobile ones, have 
become sophisticated in their rendering and have what is called a higher pixel 
density. This allows the device to render much-higher-resolution images. You 
can read more about pixel density at http://www.html5rocks.com/en/tutorials/
canvas/hidpi/.

When you’re working with the canvas and CSS together, you need to 
remember which scale you’re working at. If you’re working within the canvas, 
it’s the dimensions of the canvas, as specified by its HTML attributes, that are 
important. When working with CSS elements around—or possibly even on top 
of—the canvas, you’ll be using CSS pixel dimensions. For example, to draw an 
image at the bottom-right of a canvas that is 2000 pixels wide and 1240 pixels 
high, you would use something like this:

$("#game_canvas").get(0).getContext("2d").drawImage(imageObject,2000,1240);

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   113

Sprite Rendering
We can’t use background images 
and position offsets to render bubble 
sprites, as we did with our DOM-based 
system. Instead, we need to draw the 
bubble sprites as images onto the can-
vas. Remember that the sprite image 
file contains all four bubble colors in 
both resting and popping states. For 
example, in the sprite image shown in 
Figure 6-2, if we want to draw a blue 
bubble onto the board, we are inter-
ested in only the section of the image 
surrounded by the dotted line. To 
select only this part of the image, we’ll 
use the clip parameters that can be 
passed into the drawImage method of 
a canvas context.

If we want to draw the bubble in the first stage of being popped, we 
would move the clip area to the right. This is similar to the way we display 
bubbles in the DOM version except that, rather than letting the boundaries 
of a div element define the clip boundaries, we’ll specify them in JavaScript.

To draw a clipped image to the canvas, add a couple more parameters to 
the drawImage method. Previously, we used drawImage with only three parame-
ters (the Image object and x- and y-coordinates), but we can pass it a few more 
to clip the image. The full set of parameters that drawImage accepts are these:

context.drawImage(img,sx,sy,swidth,sheight,x,y,width,height);

Figure 6-2: Clip boundary required to 
draw a blue bubble onto the board

But to place a DOM element at the bottom-right corner, you would use the 
coordinates (1000,620), such as in the following CSS:

{

  left: 1000px;

  top: 620px;

}

If possible, it’s generally easiest to keep your screen display canvas size 
(set in the CSS) and the width and height definitions for the canvas the same 
so the canvas renderer doesn’t have to try to scale pixels. But if you’re target-
ing devices with high pixel densities (such as Apple Retina displays), you can 
improve the quality of your graphics by experimenting with increasing the num-
ber of pixels in the canvas.

Build an HTML5 Game 
© 2015 Karl Bunyan



114   Chapter 6

The parameters are as follows:

img The Image object.

sx and sy The x- and y -coordinates at which to clip the image relative 
to the image’s origin. For a blue bubble in its nonpopping state, these 
values would be 0 and 50, respectively.

swidth and sheight The width and height of the clip area. For our 
bubble sprite sheet, these values will both be 50.

x and y The coordinates to draw the image on the canvas relative to 
the canvas context origin.

width and height The width and height of the image to draw. We can 
use these parameters to scale an image, or we can omit them if we want 
the image to be drawn at 1:1.

For example, to draw the blue bubble highlighted in Figure 6-2 at the 
coordinates (200,150) on the canvas, we would use the following: 

$("#canvas").get(0).getContext("2d").drawImage(spriteSheet,0,50,50,50,200,150, 
50,50);

This line of code assumes the sprite Image object is named spriteSheet 
and the sprite is 50 pixels wide and 50 pixels high.

Defining and Maintaining States 
In the DOM-based version of the game code, we don’t have to think about 
bubble state; we just queue up events with timeouts and animate/callback 
chains. Once a bubble is drawn to the screen at a fixed position, we leave it 
as is unless we need to change it. The bubble will be drawn in the same spot 
until we tell the browser to do something else with it.

But when we switch to canvas rendering, we need to render each bubble, 
with the correct sprite, on each frame redraw. Our code must track the state 
of all bubbles on the screen, whether they’re moving, popping, falling, or 
just stationary. Each bubble object will track its current state and how long 
it’s been in that state. We need that duration for when we draw the frames 
of the popping animation. The Board object currently keeps track of bubbles 
in the main layout, and we need to add to it so we can also keep track of 
those bubbles that are popping, falling, or firing.

Preparing the State Machine
To maintain bubble state, we’ll first create a set of constants that refer to a 
bubble’s state. This is referred to as using a state machine, which you’re likely to 
find increasingly useful as the complexity of your games increases. The basic 
principles of using a state machine, as related to this game, are as follows:

•	 A bubble can exist in a number of states, such as moving, popping, or 
falling.

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   115

•	 The way a bubble reacts in the game will depend on the state it’s in. For 
example, we don’t want the bubble being fired to collide with a bubble 
being popped.

•	 The way a bubble is displayed may depend on its state, particularly if it’s 
being popped.

•	 A bubble can be in only one state at a time; it can’t be popped and pop-
ping at the same time, or popping and falling simultaneously.

Once we have the state machine set up, we’ll know what we need to do 
to a bubble in any given situation. Some changes of state occur as a result of 
a user’s actions, such as when they fire the bubble, but we’ll also store the 
timestamp when a bubble enters a state. As a result, we can determine when 
the bubble should be moved from one state to another automatically, such 
as when we’re in the process of popping it after a collision.

n O t e  In general, even if you think your game will be relatively simple, it’s worth using a 
state machine as a way to manage complexity that you may not have thought of yet.

Add the following to bubble.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){

u   BubbleShoot.BubbleState = {
    CURRENT : 1,
    ON_BOARD : 2,
    FIRING : 3,
    POPPING : 4,
    FALLING : 5,
    POPPED : 6,
    FIRED : 7,
    FALLEN : 8
  };
  var Bubble = function(row,col,type,sprite){
    var that = this;

v     var state;
    var stateStart = Date.now();
    this.getState = function(){ return state;};

w     this.setState = function(stateIn){
      state = stateIn;

x       stateStart = Date.now();
    };

y     this.getTimeInState = function(){
      return Date.now() - stateStart;
    };
    --snip--
  };
  Bubble.create = function(rowNum,colNum,type){
    --snip--
  };
  return Bubble;
})(jQuery);

bubble.js

Build an HTML5 Game 
© 2015 Karl Bunyan



116   Chapter 6

These additions allow us to store and retrieve the bubble’s current 
state v, which will be one of the eight states at the top of the class u. 
Whenever we change a bubble’s state w, we also record the timestamp 
when it entered that state x. Once we determine how long the bubble has 
been in its current state y, we can work out what to draw. For example, 
the amount of time a bubble has spent in the POPPING state determines 
which frame of the popping sequence to display.

Implementing States
Each bubble can have one of the following states, which we’ll need to 
implement:

CURRENT Waiting to be fired.

ON_BOARD Already part of the board display.

FIRING Moving toward the board or off the screen.

POPPING Being popped. This will display one of the popping anima-
tion frames.

FALLING An orphaned bubble that’s falling from the screen.

POPPED Done POPPING. A popped bubble doesn’t need to be rendered.

FIRED Missed the board display after FIRING. A fired bubble doesn’t 
need to be rendered.

FALLEN Done FALLING off the screen. A fallen bubble doesn’t need to 
be rendered.

The bubbles displayed in the board at the beginning of a level start out 
in the ON_BOARD state, but all other bubbles will start in the CURRENT state and 
move into one of the other states, as shown in Figure 6-3.

We’ll add a couple of arrays to Game to keep track of those. At the top of 
the class, add:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
  var Game = function(){
    var curBubble;
    var board;
    var numBubbles; 

u     var bubbles = [];
    var MAX_BUBBLES = 70;
    this.init = function(){
      --snip--
    };
    var startGame = function(){
      $(".but_start_game").unbind("click");
      numBubbles = MAX_BUBBLES
      BubbleShoot.ui.hideDialog();
      board = new BubbleShoot.Board();

v       bubbles = board.getBubbles();
      curBubble = getNextBubble();

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   117

      BubbleShoot.ui.drawBoard(board); 
      $("#game").bind("click",clickGameScreen);
    };
    var getNextBubble = function(){
      var bubble = BubbleShoot.Bubble.create();

w       bubbles.push(bubble);
x       bubble.setState(BubbleShoot.BubbleState.CURRENT);

      bubble.getSprite().addClass("cur_bubble");
      $("#board").append(bubble.getSprite());
      BubbleShoot.ui.drawBubblesRemaining(numBubbles);
      numBubbles--;
      return bubble;
    };
    --snip--
  };
  return Game;
})(jQuery);

This new array u will contain all of the bubbles in the game, both on 
and off the board layout. Initially, every bubble is part of the board, so the 
board contents can be used to populate the array v. Each time we call 
getNextBubble, the bubble that’s ready to fire needs to be added w and have 
its state set to CURRENT x.

CURRENT

POPPING

FIRING

ON_BOARD

FALLING

POPPED

FIRED

FALLEN

Figure 6-3: Flowchart showing bubble states

Build an HTML5 Game 
© 2015 Karl Bunyan



118   Chapter 6

board.getBubbles is a new method that will return all of the bubbles in 
the rows and columns of the board as a single flat array, so add it to board.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
  var NUM_ROWS = 9;
  var NUM_COLS = 32;
  var Board = function(){
    var that = this;
    --snip--
    this.getBubbles = function(){
      var bubbles = [];
      var rows = this.getRows();
      for(var i=0;i<rows.length;i++){
        var row = rows[i];
        for(var j=0;j<row.length;j++){
          var bubble = row[j];
          if(bubble){
            bubbles.push(bubble);
          };
        };
      };
      return bubbles;
    };
    return this;
  };
  --snip--
  return Board;
})(jQuery);

We also need to set the state of bubbles that are on the board to ON_BOARD, 
so make this change to the createLayout function in the same file:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
  var NUM_ROWS = 9;
  var NUM_COLS = 32; 
  var Board = function(){
    --snip--
  };
  var createLayout = function(){
    var rows = [];
    for(var i=0;i<NUM_ROWS;i++){
      var row = [];
      var startCol = i%2 == 0 ? 1 : 0;
      for(var j=startCol;j<NUM_COLS;j+=2){
        var bubble = BubbleShoot.Bubble.create(i,j);
        bubble.setState(BubbleShoot.BubbleState.ON_BOARD);
        row[j] = bubble;
      };
      rows.push(row);
    };
    return rows;
  };

board.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   119

  return Board;
})(jQuery);

bubble.setState handles the setup, which contains the states of CURRENT 
and ON_BOARD, but we also need to be able to change the state of a bubble. 

The two states of FIRING and FIRED will be set inside fireBubble in ui.js. 
Amend the function as follows:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
  var ui = {
    --snip--
    fireBubble : function(bubble,coords,duration){ 

u       bubble.setState(BubbleShoot.BubbleState.FIRING);
      var complete = function(){
        if(typeof(bubble.getRow()) !== undefined){
          bubble.getSprite().css(Modernizr.prefixed("transition"),"");
          bubble.getSprite().css({
            left : bubble.getCoords().left - ui.BUBBLE_DIMS/2,
            top : bubble.getCoords().top - ui.BUBBLE_DIMS/2
          });

v           bubble.setState(BubbleShoot.BubbleState.ON_BOARD);
        }else{

w           bubble.setState(BubbleShoot.BubbleState.FIRED);
        };
      --snip--
    },
    --snip--
  };
  return ui;
} )(jQuery);

When the bubble is initially fired, we set the state to FIRING u. If the bub-
ble reaches the board, we set it to ON_BOARD v, but if it hasn’t settled into a row 
and column, that means it missed the board, in which case it becomes FIRED w.

The other states will be set in game.js:

var Game = function(){
  --snip--
  var popBubbles = function(bubbles,delay){
    $.each(bubbles,function(){
      var bubble = this;
      setTimeout(function(){

u         bubble.setState(BubbleShoot.BubbleState.POPPING);
        bubble.animatePop();

v         setTimeout(function(){
          bubble.setState(BubbleShoot.BubbleState.POPPED);
        },200);
      },delay);
      board.popBubbleAt(bubble.getRow(),bubble.getCol());
      delay += 60;
    });
  };

ui.js

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



120   Chapter 6

  var dropBubbles = function(bubbles,delay){
    $.each(bubbles,function(){
      var bubble = this;
      board.popBubbleAt(bubble.getRow(),bubble.getCol());
      setTimeout(function(){

w         bubble.setState(BubbleShoot.BubbleState.FALLING);
        bubble.getSprite().kaboom({
          callback : function(){
            bubble.getSprite().remove();

x             bubble.setState(BubbleShoot.BubbleState.FALLEN);
          }
        })
      },delay);
    });
  };
};

In popBubbles, we set every bubble to POPPING u, and then after 200 milli-
seconds, when the popping animation has finished, we set them to POPPED v. 
In dropBubbles, we set them to FALLING w, and then when they’ve finished fall-
ing at the end of the kaboom process, they become FALLEN x.

Now that bubbles know which state they’re in at any point in the game, 
we can start to render them onto a canvas.

Sprite Sheets and the Canvas
We can use the existing sprite sheet PNG (bubble_sprite_sheet.png) from the 
CSS version of the game when we draw to the canvas, although we need to 
work with it in a different way. Rather than shifting the sprite sheet around 
like a background image, we’ll draw part of the image that shows the cor-
rect bubble in the correct animation state. Our loading sequence will also 
change because we need to make sure that the sprite image is loaded before 
starting the game.

We’ll make a new object called Renderer to handle drawing to the canvas, 
and we’ll give it its own init method, which will preload the sprite sheet, and 
call that method within game.init.

Change the init method in game.js to the following:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
  var Game = function(){
    --snip--
    this.init = function(){

u     if(BubbleShoot.Renderer){
v       BubbleShoot.Renderer.init(function(){
w           $(".but_start_game").click("click",startGame);

      });
    }else{
        $(".but_start_game").click("click",startGame);
    };
    --snip--

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   121

  };
  return Game;
})(jQuery);

First, we check if BubbleShoot.Renderer exists u. If the Modernizr.canvas 
test passes when we load in scripts, the object will exist; if canvas isn’t sup-
ported, the object won’t exist.

Then we call a Renderer.init method and pass it a function as its only 
parameter v. This is the function that attaches startGame to the New Game 
button w.

Now we need to write the Renderer object. In the blank renderer.js file, 
add the following code:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){

u   var canvas;
  var context;
  var Renderer = {

v     init : function(callback){
w       canvas = document.createElement("canvas");

      $(canvas).addClass("game_canvas");
x       $("#game").prepend(canvas);
y       $(canvas).attr("width",$(canvas).width());

      $(canvas).attr("height",$(canvas).height());
      context = canvas.getContext("2d");
      callback();
    }
  };
  return Renderer;
})(jQuery);

We first create variables to hold the canvas that we’ll use to render the 
game area u and a reference to its rendering context, so we don’t have to 
call canvas.getContext("2d") constantly.

In the init method, we accept the callback function as a parameter v, 
create the canvas DOM element w, and then prepend it in the game div x. We 
also explicitly set the width and height attributes of the canvas y. Remember 
that these attributes define the number of pixels and the boundaries of the 
canvas internally, so for simplicity, we set them to the same dimensions as 
those rendered to the screen.

That will create the canvas element for us and prime a context ready to 
be drawn into. We need to set the width and height of game_canvas, so add 
the following into main.css:

.game_canvas
{
  width: 1000px;
  height: 620px;
}

renderer.js

main.css

Build an HTML5 Game 
© 2015 Karl Bunyan



122   Chapter 6

The DOM-rendered version uses jQuery to move objects around the 
screen, but we won’t have DOM elements to manipulate inside a canvas, so 
there’s nothing for jQuery to work with. Hence, we’ll have to keep track of 
the position of every bubble on the screen with new code. Much of this will 
happen inside the new sprite.js file we’ve created.

Mult ipl e R e nde R ing Me t hOds: t WO a ppROaChe s

If you need to support different rendering methods, as we are here, you can 
take two approaches. First, you can create a class for each rendering method 
and provide identical sets of methods and properties so they can be used inter-
changeably. This is what we’re doing with Bubble Shooter.

Second, you can create a single class for both rendering methods and 
then have code inside that branches depending on which rendering method is 
supported. The new class may act as just a wrapper for a different class for 
each method. For example, for Bubble Shooter, we could create something like 
the following pseudocode:

BubbleShoot.SpriteWrapper = (function($){

u   var SpriteWrapper = function(id){

    var wrappedObject;

v     if(BubbleShoot.Renderer){

w       wrappedObject = getSpriteObject(id);

    }else{

x       wrappedObject = getJQueryObject(id);

    }

y     this.position = function(){

      return wrappedObject.position();

    };

  };

  return SpriteWrapper;

})(jQuery);

Here, we would pass in some kind of identifier to an object constructor 
u and then branch the code depending on how we’ll render the game v. 
We would need new functions to return either a Sprite w or a jQuery x object, 
which would be stored inside the class in wrappedObject.

From then on, if we wanted to find the position of the object, we would 
call the position method y and know we would get correct data whether the 
object was being rendered in the DOM or on the canvas.

The main reason we’re not taking this approach with Bubble Shooter is 
that we have only one type of sprite—the bubbles on the screen. These are 
represented well enough by the Bubble class, which acts as a wrapper anyway. 
However, if we were dealing with many different kinds of sprites, we might 
want to split the structure more explicitly.

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   123

We’ll write sprite.js so that canvas sprites can be called with the same 
methods that we’re using on jQuery sprites. The main methods we’ve been 
calling are position, width, height, and css, and if we create implementa-
tions of these in sprite.js, the Sprite class will look like a jQuery object as far 
as the rest of our code is concerned.

Add the following to sprite.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Sprite = (function($){
  var Sprite = function(){
    var that = this;

u     var left;
    var top;

v     this.position = function(){
      return {
        left : left,
        top : top
      };
    };

w     this.setPosition = function(args){ 
      if(arguments.length > 1){
        return;
      };
      if(args.left !== null)
        left = args.left;
      if(args.top !== null)
        top = args.top;
    };

x     this.css = this.setPosition;
    return this;
  };

y   Sprite.prototype.width = function(){
    return BubbleShoot.ui.BUBBLE_DIMS;
  };

z   Sprite.prototype.height = function(){
    return BubbleShoot.ui.BUBBLE_DIMS;
  };

   Sprite.prototype.removeClass = function(){};
  Sprite.prototype.addClass = function(){};
  Sprite.prototype.remove = function(){};
  Sprite.prototype.kaboom = function(){
    jQuery.fn.kaboom.apply(this);
  };
  return Sprite;
})(jQuery);

Here, we’ve created an object that implements many of the methods 
that we access for jQuery objects. We have left and top coordinates u and 
a position method v that returns those coordinates in the same way that a 
call to jQuery’s position method would. The setPosition method can set the 
top and left coordinates w or do nothing if other values are passed.

sprite.js

Build an HTML5 Game 
© 2015 Karl Bunyan



124   Chapter 6

In our DOM-based version of the game, we call the css method to set 
the screen coordinates of an object. setPosition has been constructed to 
accept the same arguments as the css method, and to spare us from having 
to rewrite code anywhere that the css method is called and using setPosition 
for the canvas version, we can create a css method of Sprite and alias it to 
setPosition x.

The width y and height z methods return the values defined for a 
bubble’s dimensions in ui.js. Finally, we define empty methods for removeClass, 
addClass, and remove, which maintain compatibility with a lot of our existing 
code . Anywhere these last methods are called will not affect the display 
but will also not throw an error.

When a bubble is created, we need to decide whether to create a jQuery 
object or an instance of Sprite, depending on whether we’re rendering using 
the DOM or canvas. We’ll do this inside the bubble creation process in 
bubble.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){
  --snip--
  var Bubble = function(row,col,type,sprite){
    --snip--
  };
  Bubble.create = function(rowNum,colNum,type){
    if(!type){
      type = Math.floor(Math.random() * 4);
    };

u     if(!BubbleShoot.Renderer){
      var sprite = $(document.createElement("div"));
      sprite.addClass("bubble");
      sprite.addClass("bubble_" + type); 
    }else{

v       var sprite = new BubbleShoot.Sprite();
    }
    var bubble = new Bubble(rowNum,colNum,type,sprite);
    return bubble;
  };
  return Bubble;
})(jQuery);

This code checks again that the Renderer object is loaded u (which 
happens if canvas is enabled) and, if not, continues the DOM-based path. 
Otherwise, we make a new Sprite object v. With this in place, a call to 
curBubble.getSprite will return a valid object no matter whether we’re using 
jQuery with CSS or a pure canvas route.

The last part of initializing the Sprite objects is to make sure they have 
the correct onscreen coordinates. In the DOM version of the game, we set 

bubble.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   125

these in the CSS, but with the canvas, we have to set them in JavaScript 
code. These will be set in the createLayout function in board.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
  var NUM_ROWS = 9;
  var NUM_COLS = 32;
  var Board = function(){
    --snip--
    return this;
  };
  var createLayout = function(){
    var rows = [];
    for(var i=0;i<NUM_ROWS;i++){
      var row = [];
      var startCol = i%2 == 0 ? 1 : 0;
      for(var j=startCol;j<NUM_COLS;j+=2){
        var bubble = BubbleShoot.Bubble.create(i,j);
        bubble.setState(BubbleShoot.BubbleState.ON_BOARD);

u         if(BubbleShoot.Renderer){
v           var left = j * BubbleShoot.ui.BUBBLE_DIMS/2;

          var top = i * BubbleShoot.ui.ROW_HEIGHT;
w           bubble.getSprite().setPosition({

            left : left,
            top : top
          });
        };
        row[j] = bubble;
      };
      rows.push(row);
    };
    return rows;
  };
  return Board;
})(jQuery);

If the renderer exists u, we calculate the left and top coordinates of 
where the bubble should be displayed v and then set the sprite’s properties 
to those values w.

The current bubble also needs its position set, so this will happen 
inside getNextBubble in game.js:

var BubbleShoot = window.BubbleShoot || {};
  BubbleShoot.Game = (function($){
  var Game = function(){
    --snip--
    var getNextBubble = function(){
      var bubble = BubbleShoot.Bubble.create();

board.js

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



126   Chapter 6

      bubbles.push(bubble);
      bubble.setState(BubbleShoot.BubbleState.CURRENT);
      bubble.getSprite().addClass("cur_bubble");
      var top = 470;
      var left = ($("#board").width() - BubbleShoot.ui.BUBBLE_DIMS)/2;
      bubble.getSprite().css({
        top : top,
        left : left
      });
      $("#board").append(bubble.getSprite());
      BubbleShoot.ui.drawBubblesRemaining(numBubbles);
      numBubbles--;
      return bubble;
    };
    --snip--
  };
  return Game;
})(jQuery);

We now have all bubble positions tracked and know their state at all 
times. We can also manipulate a sprite representation, but nothing will 
appear on the screen just yet. In the next section, we’ll render our sprites 
to the canvas.

The Canvas Renderer
To animate anything on the canvas, we need to clear pixels before each 
redraw. To render the game, we’ll use setTimeout with a timer to redraw 
the position and state of every bubble on a frame-by-frame basis. This pro-
cess will be the same for just about any game you build and, certainly, for 
anything where the display is constantly being updated. In theory, we only 
need to redraw the canvas when information on the screen has changed; 
in practice, working out when there’s new information to show can be diffi-
cult. Fortunately, canvas rendering is so fast that there’s generally no reason 
not to just update the display as often as possible.

We’ll store the value of the timeout ID returned by setTimeout so we 
know whether or not the frame counter is running. This will happen at the 
top of game.js in a new variable called requestAnimationID, where we’ll also 
store a timestamp for when the last animation occurred:

var BubbleShoot = window.BubbleShoot || {};
  var Game = function(){
    var curBubble;
    var board;
    var numBubbles; 
    var bubbles = [];
    var MAX_BUBBLES = 70; 

u     var requestAnimationID; 
    this.init = function(){
    };
    --snip--

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   127

    var startGame = function(){
      $(".but_start_game").unbind("click");
      $("#board .bubble").remove();
      numBubbles = MAX_BUBBLES;
      BubbleShoot.ui.hideDialog();
      board = new BubbleShoot.Board();
      bubbles = board.getBubbles();

v       if(BubbleShoot.Renderer)
      {
        if(!requestAnimationID)

w           requestAnimationID = setTimeout(renderFrame,40);
      }else{
        BubbleShoot.ui.drawBoard(board);
      };
      curBubble = getNextBubble(board);
      $("#game").bind("click",clickGameScreen);
    };
  };
  return Game;
})(jQuery);

We add the two variables u, and if the Renderer object exists v, we start 
the timeout running to draw the first animation frame w.

We haven’t written renderFrame yet, but before we do, we’ll write a method 
in renderer.js to draw all of the bubbles. The method will accept an array of 
bubble objects as an input.

First we need to load the bubble images into renderer.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){
  var canvas;
  var context; 

u   var spriteSheet;
v   var BUBBLE_IMAGE_DIM = 50;

  var Renderer = {
    init : function(callback){
      canvas = document.createElement("canvas");
      $(canvas).addClass("game_canvas");
      $("#game").prepend(canvas);
      $(canvas).attr("width",$(canvas).width());
      $(canvas).attr("height",$(canvas).height());
      context = canvas.getContext("2d"); 
      spriteSheet = new Image();

w       spriteSheet.src = "_img/bubble_sprite_sheet.png";
x       spriteSheet.onload = function() {

        callback();
      };
    }
  };
  return Renderer;
})(jQuery);

renderer.js

Build an HTML5 Game 
© 2015 Karl Bunyan



128   Chapter 6

We create a variable to hold the image data u and define another vari-
able for the width and height of each bubble image v. The dimensions will 
tell us where to crop each image within the sprite sheet. We then load in 
the image file w, and the callback function that’s passed into init is trig-
gered after the image has loaded x.

Next we’ll create the function to draw the sprites onto the canvas.

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){
  --snip--
  var Renderer = {
    init : function(callback){
      --snip--
    },

u     render : function(bubbles){ 
      context.clearRect(0,0,canvas.width,canvas.height);  
      context.translate(120,0);

v       $.each(bubbles,function(){
        var bubble = this;

w         var clip = {
          top : bubble.getType() * BUBBLE_IMAGE_DIM,
          left : 0
        };

x         Renderer.drawSprite(bubble.getSprite(),clip);
      }); 
      context.translate(-120,0);
    },
    drawSprite : function(sprite,clip){

y       context.translate(sprite.position().left + sprite.width()/2,sprite. 
           position().top + sprite.height()/2);
z       context.drawImage(spriteSheet,clip.left,clip.top,BUBBLE_IMAGE_DIM, 
           BUBBLE_IMAGE_DIM,-sprite.width()/2,-sprite.height()/2,BUBBLE_IMAGE_ 
           DIM,BUBBLE_IMAGE_DIM);
       context.translate(-sprite.position().left - sprite.width()/2, 
           -sprite.position().top - sprite.height()/2);

    }
  };
  return Renderer;
})(jQuery);

First, we create a render method that accepts an array of Bubble objects u. 
We then clear the canvas and offset the context by 120 pixels so the board 
display is drawn in the center of the screen. The code then loops over each 
bubble in the array v and defines an (x,y) coordinate from which to extract 
the bubble’s sprite from the image w. The x-coordinate always starts at zero 
until we add frames for the popping animation, and the y -coordinate is the 
bubble type (0 to 3) multiplied by the height of a bubble image (50 pixels). 
We pass this information along with the bubble’s Sprite object to another 
new method called drawSprite x before resetting the context position.

renderer.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   129

Inside drawSprite, we translate the context y by the coordinates of 
the sprite, remembering to offset the (top,left) coordinates by half of 
(width,height) to get the center of the image, and then draw the image z.  
In general, it’s best to translate the canvas context so its origin is at the 
center of any image being drawn, because the rotate method of the context 
performs rotations around the context origin. This means that if we want 
to rotate an image around its center, we already have the context set up 
correctly to do so.

Finally, after calling drawImage, we translate the context back to the 
origin . To see the board being rendered to the canvas, we just need to 
put renderFrame into game.js:

var BubbleShoot = window.BubbleShoot || {};
  var Game = function(){
    --snip--
    var renderFrame = function(){
      BubbleShoot.Renderer.render(bubbles);
      requestAnimationID = setTimeout(renderFrame,40);
    };
  };
  return Game;
})(jQuery);

Reload the page in your browser to start the game again. After clicking 
New Game, you should see the board render in its initial state. However, fir-
ing a bubble produces no animation, and neither does popping, falling, or 
anything else. In the next section, we’ll get bubble firing working again and 
also animate the bubble popping. If you open the game in a browser that 
doesn’t support canvas, then the game will still work as before because we 
have left the DOM version intact. Next, we’ll add animation to the canvas 
version.

Moving Sprites on the Canvas
With the CSS version of the game, we used jQuery to move objects around 
on the screen with one call to the animate method. For canvas animation, we 
need to calculate and update movements manually.

The process of animating on the canvas is the same as jQuery’s inter-
nal processes, and we’ll give Sprite an animate method so we can continue to 
use our existing code. The animate method will do the following:

1. Accept destination coordinates for a bubble and the duration of the 
movement.

2. Move the object a small distance toward those coordinates by a value 
proportional to the time elapsed since the last frame.

3. Repeat step 2 until the bubble reaches its destination.

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



130   Chapter 6

This process is identical to the one that happens when we use jQuery’s 
animate method and is one you’ll use just about any time you want to move 
an object around the screen.

The renderFrame method, which is already called during each frame, will 
run the entire animation process. After the bubble sprites calculate their 
own coordinates, renderFrame will trigger the drawing process. We’ll add 
an animate method to the Sprite object so our existing game logic will work 
without us having to rewrite our code. Remember that when we call animate 
in ui.js, we pass in two parameters:

•	 An object specifying left and top position coordinates

•	 An object specifying duration, callback function, and easing

By constructing the animate method of Sprite to take the same parame-
ters, we can avoid making any changes to the call in ui.js. Add the following 
to sprite.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Sprite = (function($){
  var Sprite = function(){
    --snip--
    this.css = function(args){
      --snip--
    }; 

u     this.animate = function(destination,config){
v       var duration = config.duration;
w       var animationStart = Date.now();
x       var startPosition = that.position();
y       that.updateFrame = function(){

        var elapsed = Date.now() - animationStart;
        var proportion = elapsed/duration;
        if(proportion > 1)
          proportion = 1;

z         var posLeft = startPosition.left + (destination.left - startPosition.   
             left) * proportion;

        var posTop = startPosition.top + (destination.top - startPosition.top)  
          * proportion;

         that.css({
          left : posLeft,
          top : posTop
        });
      };

       setTimeout(function(){
         that.updateFrame = null;
         if(config.complete)

          config.complete();
      },duration);
    };
    return this;
  };
  --snip--
  return Sprite;
})(jQuery);

sprite.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   131

The destination parameter passed into animate u represents the sprite’s 
destination coordinates, which are contained in an object that looks like this:

{top: 100,left: 100}

We also pass a configuration object, which will have a duration property v, 
plus an optional post-animation callback function to run when the anima-
tion is over.

Next, we set a start time for the animation w and store the starting 
position x. These will both be used to calculate a bubble’s position at 
any time.

We dynamically add the updateFrame method onto the Sprite object y so we 
can call it each frame to recalculate a bubble’s position. Inside updateFrame, 
we calculate how much of the animation is completed. In case the last 
timeout is called after the animation has completed, we ensure that the 
proportion is never greater than 1 so that a bubble never moves past its 
target destination. The new coordinates are calculated z with the following 
equations:

current x = start x + (final x – start x) × proportion elapsed

current y = start y + (final y – start y) × proportion elapsed

Once we have the new top and left coordinates, the position of the 
sprite is updated with a call to its css method . We don’t need updateFrame 
to run when the object has finished moving, so a timeout call is set  to 
remove the method after duration  passes, which is when the animation 
will be complete. This also calls any post-animation function that was passed 
in as the callback property of the config variable .

Now that we can calculate a bubble’s new coordinates, add a call to 
updateFrame in game.js:

var BubbleShoot = window.BubbleShoot || {};
  var Game = function(){
    --snip--
    var renderFrame = function(){

u       $.each(bubbles,function(){
v         if(this.getSprite().updateFrame)
w           this.getSprite().updateFrame();

      });
      BubbleShoot.Renderer.render(bubbles);
      requestAnimationID = setTimeout(renderFrame,40);
    };
  };
  return Game;
})(jQuery);

Each time renderFrame is called on a bubble u, if the method updateFrame 
is defined v, we call that method w.

game.js

Build an HTML5 Game 
© 2015 Karl Bunyan



132   Chapter 6

We also need to call animate in fireBubble in ui.js by checking for the 
existence of BubbleShoot.Renderer again. We know that BubbleShoot.Renderer 
will exist only if canvas is supported, and we want to use the canvas for ren-
dering if that is the case. The outcome is that CSS transitions will animate 
the bubbles only if CSS transitions are supported and canvas rendering isn’t 
supported.

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
  var ui = {
    --snip--
    fireBubble : function(bubble,coords,duration){ 
      --snip--
      if(Modernizr.csstransitions && !BubbleShoot.Renderer){
        --snip--
      }else{
        --snip--
      }
    },
    --snip--
  };
  return ui;
} )(jQuery);

Reload the game and fire away! You should now have a working game 
again, but this time all the images are rendered onto the canvas. But now 
there’s no popping animation because we’re not handling changes in bubble 
state in the display. The game state is internally correct, but the screen isn’t 
entirely in sync because we never see a bubble popping. Rendering the 
bubbles in their correct state is the focus of the next section.

Animating Canvas Sprite Frames
Currently, every bubble is rendered in the same visual state regardless of 
whether it’s sitting in the board, popping, newly fired, and so on. Bubbles 
remain on the screen after they’ve been popped, and we’re missing out on 
the popping animation! This happens because bubbles are never deleted 
from the bubbles array in Game, so they’re rendered even after they’ve been 
deleted from the Board object.

We already know which state a bubble is in, and we have the sprite sheet 
image loaded into memory to access all of the animation states. Drawing 
the correct state involves making sure that the drawSprite method of Renderer 
is either called with the correct state for a visible bubble or skipped entirely 
for any bubbles that have been popped or dropped off the screen. The 
changes in a bubble’s appearance that we need to implement are listed by 
state in Table 6-1.

ui.js

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   133

Table 6-1: Visual Changes Based on Bubble State

Bubble’s state in code Visual displayed to the player

CURRENT_BUBBLE No change
ON_BOARD No change
FIRING No change
POPPING Render one of four bubble frames, depending 

on how long the bubble has been POPPING 
FALLING No change
POPPED Skip rendering
FALLEN Skip rendering
FIRED Skip rendering

Those changes will happen inside Renderer.render. We’ll loop over the 
entire bubble array and either skip the rendering stage or adjust the coordi-
nates to clip the sprite sheet for the correct stage in the popping animation. 
Make the following change to renderer.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){
  --snip--
  var Renderer = {
    init : function(callback){
      --snip--
    },
    render : function(bubbles){
      bubbles.each(function(){
        var bubble = this;
        var clip = {
          top : bubble.getType() * BUBBLE_IMAGE_DIM,
          left : 0
        };

u         switch(bubble.getState()){
         case BubbleShoot.BubbleState.POPPING:

v             var timeInState = bubble.getTimeInState();
w             if(timeInState < 80){

              clip.left = BUBBLE_IMAGE_DIM;
x             }else if(timeInState < 140){

              clip.left = BUBBLE_IMAGE_DIM*2;
y             }else{

              clip.left = BUBBLE_IMAGE_DIM*3;
            };
            break;

z           case BubbleShoot.BubbleState.POPPED:
            return;

           case BubbleShoot.BubbleState.FIRED:
            return;

           case BubbleShoot.BubbleState.FALLEN:
            return;
        }

renderer.js

Build an HTML5 Game 
© 2015 Karl Bunyan



134   Chapter 6

        Renderer.drawSprite(bubble.getSprite(),clip);
      });
    },
    drawSprite : function(sprite,clip){
      --snip--
    }
  };
  return Renderer;
})(jQuery);

First, we want to see which state the bubble is in u. To do this, we’ll use 
a switch statement. State machines are often written using switch/case state-
ments rather than multiple if/else statements. Using this structure not only 
makes it easier to add any future states but also provides a clue to others 
reading the code in the future that they’re looking at a state machine.

If the bubble is popping, we want to know how long it’s been in that 
state v. That time determines which animation frame to fetch. We use the 
unpopped state for the first 80 milliseconds w, the first frame for the next 
60 milliseconds x, and the final popping frame from that point until the 
POPPING state is cleared y.

If the bubble is in the POPPED z, FIRED , or FALLEN  states, we return 
and skip rendering altogether. Otherwise, we call drawSprite as before .

Now if you reload the game, it should completely work again. Without 
making drastic changes, we’ve refactored our entire game area to use either 
canvas- or DOM-based rendering, depending on browser compatibility. The 
browser you use to load the game and the features that browser supports 
will determine how Bubble Shooter is presented to you:

•	 If your browser supports the canvas element, you’ll see that version.

•	 If your browser supports CSS transitions but not the canvas element, 
you’ll see the CSS transition version.

•	 If neither of the above is supported, you’ll see the DOM version ani-
mated with jQuery.

Summary
That covers most of the core of drawing the graphics elements of an 
HTML5 game, whether you’re using HTML and CSS or an entirely canvas-
based approach. But that doesn’t mean we’ve finished the game! We have 
no sound, only one level of play exists, and a scoring system would be nice. 
In the next chapter, we’ll implement these elements and explore a few 
more features of HTML5, including local storage for saving game state, 
requestAnimationFrame for smoother animations, and how to make sound 
work reliably.

Build an HTML5 Game 
© 2015 Karl Bunyan



Rendering Canvas Sprites   135

Further Practice
1. When bubbles pop, the animation plays identically for every bubble. 

Experiment with changing the timing so that some bubbles play the 
animation faster and some slower. Also, try adding some rotation to the 
bubbles as they’re drawn onto the canvas. This should give the popping 
animation a much richer feel for very little effort.

2. When orphaned bubbles fall, they remain as the default sprite. Change 
renderer.js so that bubbles pop as they’re falling.

Build an HTML5 Game 
© 2015 Karl Bunyan




