
Bug Bounty Bootcamp
The Guide to Finding and Reporting Web Vulnerabilities

by Vickie Li

errata updated to print 3

Page Error Correction
Print

corrected

xvi Mechanisms
Cooking Sharing

Mechanisms
Cookie Sharing

Print 2

35 Figure update Print 2

42

{ "alg" : "none", "typ" : "JWT" } { "user" : "admin" } { "alg" : "none", "typ" : "JWT" } { "user_name" : "admin" }
Print 2

135

inurl:redirecturi site:example.com

inurl:redirect_uri site:example.com

inurl:redirecturl site:example.com

inurl:redirect_uri site:example.com

inurl:redirecturi site:example.com

inurl:redirect_uri site:example.com

inurl:redirecturl site:example.com

inurl:redirect_url site:example.com

Print 2

Page Error Correction
Print

corrected

166

def validate_token():

1 if (request.csrf_token == session.csrf_token):

 pass

 else:

 2 throw_error("CSRF token incorrect. Request rejected.")

[...]

def process_state_changing_action():

 if request.csrf_token:

 validate_token()

3 execute_action()

This fragment of Python code first checks whether the CSRF token exists 1. If it
exists, the code will proceed to validate the token. If the token is valid, the code will
continue. If the token is invalid, the code will stop the execution and produce an error
2.

def validate_token():

 if (request.csrf_token == session.csrf_token):

 pass

 else:

 1 throw_error("CSRF token incorrect. Request rejected.")

[...]

def process_state_changing_action():

2 if request.csrf_token:

 validate_token()

3 execute_action()

This fragment of Python code first checks whether the CSRF token exists 2. If it
exists, the code will proceed to validate the token. If the token is valid, the code will
continue. If the token is invalid, the code will stop the execution and produce an error
1.

Print 2

203 URL update You can find it at https://github.com/digininja/DVWA/ Print 2

250 For example, a base64-encoded block of XML code tends to start with LD94bWw, which
is the base64-encoded string of "<?xml".

For example, a base64-encoded block of XML code tends to start with PD94bWw, which
is the base64-encoded string of "<?xml".

Pending

273 URL update CTF Wiki, https://ctf-wiki.org/pwn/sandbox/python/python-sandbox-escape/ Print 2

297

Access-Control-Allow-Origin: b.example.com

The application can also return the Access-Control-Allow-Origin header with a
wildcard character (*) to indicate that the resource on that page can be accessed by
any domain:

Access-Control-Allow-Origin: *

On the other hand, if the origin of the requesting page isn’t allowed to access the
resource, the user’s browser will block the requesting page from reading the data.

CORS is a great way to implement cross-origin communication. However, CORS is
safe only when the list of allowed origins is properly defined. If CORS is
misconfigured, attackers can exploit the misconfiguration and access the protected
resources.

The most basic misconfiguration of CORS involves allowing the null origin. If the
server sets Access-Control-Allow-Origin to null, the browser will allow any site with a
null origin header to access the resource. This isn’t safe because any origin can create
a request with a null origin. For instance, cross-site requests generated from a
document using the data: URL scheme will have a null origin.

Access-Control-Allow-Origin: https://b.example.com

The application can also return the Access-Control-Allow-Origin header with a
wildcard character (*) to indicate that the resource on that page can be accessed by
any origin:

Access-Control-Allow-Origin: *

On the other hand, if the origin of the requesting page isn’t allowed to access the
resource, the user’s browser will block the requesting page from reading the data.

CORS is a great way to implement cross-origin communication. However, CORS is
safe only when the list of allowed origins is properly defined. If CORS is
misconfigured, attackers can exploit the misconfiguration and access the protected
resources.

The most basic misconfiguration of CORS involves allowing the null origin. If the
server sets Access-Control-Allow-Origin to null, the browser will allow any site with a
null origin header to access the resource. This isn’t safe because any origin can create
a request with a null origin. For instance, cross-origin requests generated from a
document using the data: URL scheme will have a null origin.

Print 3

https://github.com/digininja/DVWA
https://ctf-wiki.org/pwn/sandbox/python/python-sandbox-escape/

Page Error Correction
Print

corrected

298 An interesting configuration that isn’t exploitable is setting the allowed origins to the
wildcard (*). This isn’t exploitable because CORS doesn’t allow credentials,
including cookies, authentication headers, or client-side certificates, to be sent
with requests to these pages. Since credentials cannot be sent in requests to
these pages, no private information can be accessed:

An interesting configuration that isn’t susceptible to information leak is setting the
allowed origins to the wildcard (*). If a client sends a request with credentials to a
page with a wildcard Access-Control-Allow-Originc header, the browser will raise
an error and won't allow the client to read the response, so no private
information can be accessed:

Print 3

304 If not, send a request to the site with the origin header attacker.com, and see if the
Access-Control-Allow-Origin in the response is set to attacker.com. (You can add an
Origin header by intercepting the request and editing it in a proxy.)

Origin: attacker.com

Finally, test whether the site properly validates the origin URL by submitting an
Origin header that contains an allowed site, such as www.example.com.attacker.com. See
if the Access-Control-Allow-Origin header returns the origin of the attacker’s domain.

Origin: www.example.com.attacker.com

If not, send a request to the site with the origin header https://attacker.com, and see
if the Access-Control-Allow-Origin in the response is set to https://attacker.com.
(You can add an Origin header by intercepting the request and editing it in a proxy.)

Origin: https://attacker.com

Finally, test whether the site properly validates the origin URL by submitting an
Origin header that contains an allowed site, such as
https://www.example.com.attacker.com. See if the Access-Control-Allow-Origin header
returns the origin of the attacker’s domain.

Origin: https://www.example.com.attacker.com

Print 3

304 Figure update Print 3

Page Error Correction
Print

corrected

308

Cooking Sharing Cookie Sharing
Print 2

