
7
DEPLOYING CONTA INERS TO

KUBERNETES

We’re now ready to begin running con
tainers on our working Kubernetes cluster.
Because Kubernetes has a declarative API,

we’ll create various kinds of resources to run
them, and we’ll monitor the cluster to see what Kuber
netes does for each type of resource.

Different containers have different use cases. Some might require mul
tiple identical instances with autoscaling to perform well under load. Other
containers might exist solely to run a onetime command. Still others may
require a fixed ordering to enable selecting a single primary instance and
providing controlled failover to a secondary instance. Kubernetes provides
different controller resource types for each of those use cases. We’ll look at
each in turn, but we’ll begin with the most fundamental of them, the Pod,
which is utilized by all of those use cases.

Pods
A Pod is the most basic resource in Kubernetes and is how we run contain
ers. Each Pod can have one or more containers within it. The Pod is used to

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

provide the process isolation we saw in Chapter 2. Linux kernel namespaces
are used at the Pod and the container level:

mnt Mount points: each container has its own root filesystem; other
mounts are available to all containers in the Pod.

uts Unix time sharing: isolated at the Pod level.

ipc Interprocess communication: isolated at the Pod level.

pid Process identifiers: isolated at the container level.

net Network: isolated at the Pod level.

The biggest advantage of this approach is that multiple containers can
act like processes on the same virtual host, using the localhost address to
communicate, while still being based on separate container images.

Deploying a Pod
To get started, let’s create a Pod directly. Unlike the previous chapter, in
which we used kubectl run to have the Pod specification created for us, we’ll
specify it directly using YAML so that we have complete control over the Pod
and to prepare us for using controllers to create Pods, providing scalability
and failover.

NO T E The example repository for this book is at https://github.com/bookof
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The automation script for this chapter does a full cluster install with
three nodes that run the control plane and regular applications, providing
the smallest possible highly available cluster for testing. The automation also
creates some YAML files for Kubernetes resources. Here’s a basic YAML
resource to create a Pod running NGINX:

nginx-pod.yaml ---

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx

image: nginx

Pods are part of the core Kubernetes API, so we just specify a version
number of v1 for the apiVersion. Specifying Pod as the kind tells Kubernetes
exactly what resource we’re creating in the API group. We will see these
fields in all of our Kubernetes resources.

112 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

https://github.com/book-of-kubernetes/examples
https://github.com/book-of-kubernetes/examples

The metadata field has many uses. For the Pod, we just need to provide
the one required field of name. We don’t specify the namespace in the meta
data, so by default this Pod will end up in the default Namespace.

The remaining field, spec, tells Kubernetes everything it needs to know
to run this Pod. For now we are providing the minimal information, which
is a list of containers to run, but many other options are available. In this
case, we have only one container, so we provide just the name and container
image Kubernetes should use.

Let’s add this Pod to the cluster. The automation added files to /opt, so
we can do it from host01 as follows:

root@host01:~# kubectl apply -f /opt/nginx-pod.yaml

pod/nginx created

In Listing 71, we can check the Pod’s status.

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...

nginx 1/1 Running 0 2m26s 172.31.25.202 host03 ...

Listing 7-1: Status of NGINX

It can take some time before the Pod shows Running, especially if you just
set up your Kubernetes cluster and it’s still busy deploying core components.
Keep trying this kubectl command to check the status.

Instead of typing the kubectl command multiple times, you can also use
watch. The watch command is a great way to observe changes in your cluster
over time. Just add watch in front of your command, and it will be run for
you every two seconds.

We added -o wide to the command to see the IP address and node as
signment for this Pod. Kubernetes manages that for us. In this case, the
Pod was scheduled on host03, so we need to go there to see the running
container:

root@host03:~# crictl pods --name nginx

POD ID CREATED STATE NAME NAMESPACE ...

9f1d6e0207d7e 19 minutes ago Ready nginx default ...

Run this command on whatever host your NGINX Pod is on.
If we collect the Pod ID, we can see the container as well:

root@host03:~# POD_ID=$(crictl pods -q --name nginx)

root@host03:~# crictl ps --pod $POD_ID

CONTAINER IMAGE CREATED STATE NAME ...

9da09b3671418 4cdc5dd7eaadf 20 minutes ago Running nginx ...

This output looks very similar to the output from kubectl get in List
ing 71, which is not surprising given that our cluster gets that information
from the kubelet service running on this node, which in turn uses the same
Container Runtime Interface (CRI) API that crictl is also using to talk to the
container engine.

Deploying Containers to Kubernetes 113

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

Pod Details and Logging
The ability to use crictl with the underlying container engine to explore a
container running in the cluster is valuable, but it does require us to connect
to the specific host running the container. Much of the time, we can avoid
that by using kubectl commands to inspect Pods from anywhere by connect
ing to our cluster’s API server. Let’s move back to host01 and explore the
NGINX Pod further.

In Chapter 6, we saw how we could use kubectl describe to see the status
and event log for a cluster node. We can use the same command to see the
status and configuration details of other Kubernetes resources. Here’s the
event log for our NGINX Pod:

root@host01:~# kubectl describe pod nginx

Name: nginx

Namespace: ¶ default

...

Containers:

nginx:

Container ID: containerd://9da09b3671418...

...

· Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 22m default-scheduler Successfully assigned ...

Normal Pulling 22m kubelet Pulling image "nginx"

Normal Pulled 21m kubelet Successfully pulled image ...

Normal Created 21m kubelet Created container nginx

Normal Started 21m kubelet Started container nginx

We can use kubectl describe with many different Kubernetes resources,
so we first tell kubectl that we are interested in a Pod and provide the name.
Because we didn’t specify a Namespace, Kubernetes will look for this Pod in
the default Namespace ¶.

NO T E We use the default Namespace for most of the examples in this book to save typing,
but it’s a good practice to use multiple Namespaces to keep applications separate,
both to avoid naming conflicts and to manage access control. We look at Name
spaces in more detail in Chapter 11.

The kubectl describe command output provides an event log ·, which is
the first place to look for issues when we have problems starting a container.

Kubernetes takes a few steps when deploying a container. First, it needs
to schedule it onto a node, which requires that node to be available with suf
ficient resources. Then, control passes to kubelet on that node, which has to
interact with the container engine to pull the image, create a container, and
start it.

114 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

After the container is started, kubelet collects the standard out and stan
dard error. We can view this output by using the kubectl logs command:

root@host01:~# kubectl logs nginx

...

2021/07/13 22:37:03 [notice] 1#1: start worker processes

2021/07/13 22:37:03 [notice] 1#1: start worker process 33

2021/07/13 22:37:03 [notice] 1#1: start worker process 34

The kubectl logs command always refers to a Pod because Pods are the
basic resource used to run containers, and our Pod has only one container,
so we can just specify the name of the Pod as a single parameter to kubectl

logs. As before, Kubernetes will look in the default Namespace because we
didn’t specify the Namespace.

The container output is available even if the container has exited, so the
kubectl logs command is the place to look if a container is pulled and started
successfully but then crashes. Of course, we have to hope that the container
printed a log message explaining why it crashed. In Chapter 10, we look at
what to do if we can’t get a container going and don’t have any log messages.

We’re done with the NGINX Pod, so let’s clean it up:

root@host01:~# kubectl delete -f /opt/nginx-pod.yaml

pod "nginx" deleted

We can use the same YAML configuration file to delete the Pod, which
is convenient when we have multiple Kubernetes resources defined in a sin
gle file, as a single command will delete all of them. The kubectl command
uses the name of each resource defined in the file to perform the delete.

Deployments
To run a container, we need a Pod, but that doesn’t mean we generally want
to create the Pod directly. When we create a Pod directly, we don’t get all of
the scalability and failover that Kubernetes offers, because Kubernetes will
run only one instance of the Pod. This Pod will be allocated to a node only
on creation, with no reallocation even if the node fails.

To get scalability and failover, we instead need to create a controller to
manage the Pod for us. We’ll look at multiple controllers that can run Pods,
but let’s start with the most common: the Deployment.

Creating a Deployment
A Deployment manages one or more identical Kubernetes Pods. When we
create a Deployment, we provide a Pod template. The Deployment then cre
ates Pods matching that template with the help of a ReplicaSet.

Deploying Containers to Kubernetes 115

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

DEPLOYMENTS AND REPLICASETS

Kubernetes has evolved its controller resources over time. The first type of con-
troller, the ReplicationController, provided only basic functionality. It was re-
placed by the ReplicaSet, which has improvements in how it identifies which
Pods to manage.

Part of the reason to replace ReplicationControllers with ReplicaSets is that
ReplicationControllers were becoming more and more complicated, making the
code difficult to maintain. The new approach splits up controller responsibility
between ReplicaSets and Deployments. ReplicaSets are responsible for basic
Pod management, including monitoring Pod status and performing failover.
Deployments are responsible for tracking changes to the Pod template caused
by configuration changes or container image updates. Deployments and
ReplicaSets work together, but the Deployment creates its own ReplicaSet, so
we usually need to interact only with Deployments. For this reason, I use the
term Deployment generically to refer to features provided by the ReplicaSet,
such as monitoring Pods to provide the requested number of replicas.

Here’s the YAML file we’ll use to create an NGINX Deployment:

nginx-deploy.yaml ---

kind: Deployment

apiVersion: apps/v1

metadata:

¶ name: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

· labels:

app: nginx

¸ spec:

containers:

- name: nginx

image: nginx

¹ resources:

requests:

cpu: "100m"

Deployments are in the apps API group, so we specify apps/v1 for
apiVersion. Like every Kubernetes resource, we need to provide a unique
name ¶ to keep this Deployment separate from any others we might create.

The Deployment specification has a few important fields, so let’s look
at them in detail. The replicas field tells Kubernetes how many identical in
stances of the Pod we want. Kubernetes will work to keep this many Pods

116 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

running. The next field, selector, is used to enable the Deployment to find
its Pods. The content of matchLabels must exactly match the content in the
template.metadata.labels field ·, or Kubernetes will reject the Deployment.

Finally, the content of template.spec ¸ will be used as the spec for any
Pods created by this Deployment. The fields here can include any configu
ration we can provide for a Pod. This configuration matches nginxpod.yaml
that we looked at earlier except that we add a CPU resource request ¹ so
that we can configure autoscaling later on.

Let’s create our Deployment from this YAML resource file:

root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml

deployment.apps/nginx created

We can track the status of the Deployment with kubectl get:

root@host01:~# kubectl get deployment nginx

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 4s

When the Deployment is fully up, it will report that it has three replicas
ready and available, which means that we now have three separate NGINX
Pods managed by this Deployment:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-6vn44 1/1 Running 0 18s

nginx-6799fc88d8-dcwx5 1/1 Running 0 18s

nginx-6799fc88d8-sh8qs 1/1 Running 0 18s

The name of each Pod begins with the name of the Deployment. Ku
bernetes adds some random characters to build the name of the ReplicaSet,
followed by more random characters so that each Pod has a unique name.
We don’t need to create or manage the ReplicaSet directly, but we can use
kubectl get to see it:

root@host01:~# kubectl get replicasets

NAME DESIRED CURRENT READY AGE

nginx-6799fc88d8 3 3 3 30s

Although we generally interact only with Deployments, it is important
to know about the ReplicaSet, as some specific errors encountered when
creating Pods are only reported in the ReplicaSet event log.

The nginx prefix on the ReplicaSet and Pod names are purely for con
venience. The Deployment does not use names to match itself to Pods. In
stead, it uses its selector to match the labels on the Pod. We can see these
labels if we run kubectl describe on one of the three Pods:

root@host01:~# kubectl describe pod nginx-6799fc88d8-6vn44

Name: nginx-6799fc88d8-6vn44

Namespace: default

Deploying Containers to Kubernetes 117

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

...

Labels: app=nginx

...

This matches the Deployment’s selector:

root@host01:~# kubectl describe deployment nginx

Name: nginx

Namespace: default

...

Selector: app=nginx

...

The Deployment queries the API server to identify Pods matching its se
lector. Whereas the Deployment uses the programmatic API, the kubectl get

command in the following example generates a similar API server query,
giving us an opportunity to see how that works:

root@host01:~# kubectl get all -l app=nginx

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-6vn44 1/1 Running 0 69s

nginx-6799fc88d8-dcwx5 1/1 Running 0 69s

nginx-6799fc88d8-sh8qs 1/1 Running 0 69s

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-6799fc88d8 3 3 3 69s

Using kubectl get all in this case allows us to list multiple different kinds
of resources as long as they match the selector. As a result, we see not only
the three Pods but also the ReplicaSet that was created by the Deployment
to manage those Pods.

It may seem strange that the Deployment uses a selector rather than just
tracking the Pods it created. However, this design makes it easier for Kuber
netes to be selfhealing. At any time, a Kubernetes node might go offline, or
we might have a network split, during which some control nodes lose their
connection to the cluster. If a node comes back online, or the cluster needs
to recombine after a network split, Kubernetes must be able to look at the
current state of all of the running Pods and figure out what changes are re
quired to achieve the desired state. This might mean that a Deployment that
started an additional Pod as the result of a node disconnection would need
to shut down a Pod when that node reconnects so that the cluster can main
tain the appropriate number of replicas. Using a selector avoids the need for
the Deployment to remember all the Pods it has ever created, even Pods on
failed nodes.

118 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

Monitoring and Scaling
Because the Deployment is monitoring its Pods to make sure we have the
correct number of replicas, we can delete a Pod, and it will be automatically
recreated:

root@host01:~# kubectl delete pod nginx-6799fc88d8-6vn44

pod "nginx-6799fc88d8-6vn44" deleted

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 3m52s

nginx-6799fc88d8-dtddk 1/1 Running 0 ¶ 14s

nginx-6799fc88d8-sh8qs 1/1 Running 0 3m52s

As soon as the old Pod is deleted, the Deployment created a new Pod ¶.
Similarly, if we change the number of replicas for the Deployment, Pods are
automatically updated. Let’s add another replica:

root@host01:~# kubectl scale --replicas=4 deployment nginx

deployment.apps/nginx scaled

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 8m22s

nginx-6799fc88d8-dtddk 1/1 Running 0 4m44s

nginx-6799fc88d8-kk7r6 1/1 Running 0 ¶ 5s

nginx-6799fc88d8-sh8qs 1/1 Running 0 8m22s

The first command sets the number of replicas to four. As a result, Ku
bernetes needs to start a new identical Pod to meet the number we requested
¶. We can scale the Deployment by updating the YAML file and rerunning
kubectl apply, or we can use the kubectl scale command to edit the Deploy
ment directly. Either way, this is a declarative approach; we are updating
the Deployment’s resource declaration; Kubernetes then updates the actual
state of the cluster to match.

Similarly, scaling the Deployment down causes Pods to be automatically
deleted:

root@host01:~# kubectl scale --replicas=2 deployment nginx

deployment.apps/nginx scaled

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 10m

nginx-6799fc88d8-sh8qs 1/1 Running 0 10m

When we scale down, Kubernetes selects two Pods to terminate. These
Pods take a moment to finish shutting down, at which point we have only
two NGINX Pods running.

Deploying Containers to Kubernetes 119

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

Autoscaling
For an application that is receiving real requests from users, we would choose
the number of replicas necessary to provide a quality application, while scal
ing down when possible to reduce the amount of resources used by our ap
plication. Of course, the load on our application is constantly changing, and
it would be tedious to monitor each component of our application continu
ally to scale it independently. Instead, we can have the cluster perform the
monitoring and scaling for us using a HorizontalPodAutoscaler. The term hor
izontal in this case just refers to the fact that the autoscaler can update the
number of replicas of the same Pod managed by a controller.

To configure autoscaling, we create a new resource with a reference to
our Deployment. The cluster then monitors resources used by the Pods and
reconfigures the Deployment as needed. We could add a HorizontalPod
Autoscaler to our Deployment using the kubectl autoscale command, but
using a YAML resource file so that we can keep the autoscale configuration
under version control is better. Here’s the YAML file:

nginx-scaler.yaml ---

¶ apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

name: nginx

labels:

app: nginx

spec:

· scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: nginx

¸ minReplicas: 1

maxReplicas: 10

metrics:

- type: Resource

resource:

name: cpu

target:

type: Utilization

averageUtilization: ¹ 50

In the metadata field, we add the label app: nginx. This does not change
the behavior of the resource; its only purpose is to ensure that this resource
shows up if we use an app=nginx label selector in a kubectl get command. This
style of tagging the components of an application with consistent metadata
is a good practice to help others understand what resources go together and
to make debugging easier.

120 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

This YAML configuration uses version 2 of the autoscaler configuration
¶. Providing new versions of API resource groups is how Kubernetes accom
modates future capability without losing any of its backward compatibility.
Generally, alpha and beta versions are released for new resource groups be
fore the final configuration is released, and there is at least one version of
overlap between the beta version and the final release to enable seamless
upgrades.

Version 2 of the autoscaler supports multiple resources. Each resource
is used to calculate a vote on the desired number of Pods, and the largest
number wins. Adding support for multiple resources requires a change in
the YAML layout, which is a common reason for the Kubernetes maintainers
to create a new resource version.

We specify our NGINX Deployment · as the target for the autoscaler
using its API resource group, kind, and name, which is enough to uniquely
identify any resource in a Kubernetes cluster. We then tell the autoscaler to
monitor the CPU utilization of the Pods that belong to the Deployment ¹.
The autoscaler will work to keep average CPU utilization by the Pods close to
50 percent over the long run, scaling up or down as necessary. However, the
number of replicas will never go beyond the range we specify ¸.

Let’s create our autoscaler using this configuration:

root@host01:~# kubectl apply -f /opt/nginx-scaler.yaml

horizontalpodautoscaler.autoscaling/nginx created

We can query the cluster to see that it was created:

root@host01:~# kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

nginx Deployment/nginx 0%/50% 1 10 3 96s

The output shows the autoscaler’s target reference, the current and de
sired resource utilization, and the maximum, minimum, and current num
ber of replicas.

We use hpa as an abbreviation for horizontalpodautoscaler. Kubernetes
allows us to use either singular or plural names and provides abbreviations
for most of its resources to save typing. For example, we can type deploy for
deployment and even po for pods. Every extra keystroke counts!

The autoscaler uses CPU utilization data that the kubelet is already col
lecting from the container engine. This data is centralized by the metrics
server we installed as a cluster addon. Without that cluster addon, there
would be no utilization data, and the autoscaler would not make any changes
to the Deployment. In this case, because we’re not really using our NGINX
server instances, they aren’t consuming any CPU, and the Deployment is
scaled down to a single Pod, the minimum we specified:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6799fc88d8-dcwx5 1/1 Running 0 15m

Deploying Containers to Kubernetes 121

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

The autoscaler has calculated that only one Pod is needed and has scaled
the Deployment to match. The Deployment then selected a Pod to terminate
to reach the desired scale.

For accuracy, the autoscaler will not use CPU data from the Pod if it re
cently started running, and it has logic to prevent it from scaling up or down
too often, so if you ran through these examples very quickly you might need
to wait a few minutes before you see it scale.

We explore Kubernetes resource utilization metrics in more detail when
we look at limiting resource usage in Chapter 14.

Other Controllers
Deployments are the most generic and commonly used controller, but Ku
bernetes has some other useful options. In this section, we explore Jobs and
CronJobs, StatefulSets, and DaemonSets.

Jobs and CronJobs
Deployments are great for application components because we usually want
one or more instances to stay running indefinitely. However, for cases for
which we need to run a command, either once or on a schedule, we can use
a Job. The primary difference is a Deployment ensures that any container
that stops running is restarted, whereas a Job can check the exit code of the
main process and restart only if the exit code is nonzero, indicating failure.

A Job definition looks very similar to a Deployment:

sleep-job.yaml ---

apiVersion: batch/v1

kind: Job

metadata:

name: sleep

spec:

template:

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "30"

restartPolicy: OnFailure

The restartPolicy can be set to OnFailure, in which case the container will
be restarted for a nonzero exit code, or to Never, in which case the Job will
be completed when the container exits regardless of the exit code.

We can create and view the Job and the Pod it has created:

122 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

root@host01:~# kubectl apply -f /opt/sleep-job.yaml

job.batch/sleep created

root@host01:~# kubectl get job

NAME COMPLETIONS DURATION AGE

sleep 0/1 3s 3s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

sleep-fgcnz 1/1 Running 0 10s

The Job has created a Pod per the specification provided in the YAML
file. The Job reflects 0/1 completions because it is waiting for its Pod to exit
successfully.

When the Pod has been running for 30 seconds, it exits with a code of
zero, indicating success, and the Job and Pod status are updated accordingly:

root@host01:~# kubectl get jobs

NAME COMPLETIONS DURATION AGE

sleep 1/1 31s 40s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-65db7cf9c9-2wcng 1/1 Running 0 31m

sleep-fgcnz 0/1 Completed 0 43s

The Pod is still available, which means that we could review its logs if de
sired, but it shows a status of Completed, so Kubernetes will not try to restart
the exited container.

A CronJob is a controller that creates Jobs on a schedule. For example,
we could set up our sleep Job to run once per day:

sleep-cronjob.yaml ---

apiVersion: batch/v1

kind: CronJob

metadata:

name: sleep

spec:

¶ schedule: "0 3 * * *"

· jobTemplate:

spec:

template:

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "30"

restartPolicy: OnFailure

Deploying Containers to Kubernetes 123

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

The entire contents of the Job specification are embedded inside the
jobTemplate field ·. To this, we add a schedule ¶ that follows the standard
format for the Unix cron command. In this case, 0 3 * * * indicates that a
Job should be created at 3:00 AM every day.

One of Kubernetes’ design principles is that anything could go down at
any time. For a CronJob, if the cluster has an issue during the time the Job
would be scheduled, the Job might not be scheduled, or it might be sched
uled twice, this means that you should take care to write Jobs in an idempo
tent way so that they can handle missing or duplicated scheduling.

If we create this CronJob

root@host01:~# kubectl apply -f /opt/sleep-cronjob.yaml

cronjob.batch/sleep created

it now exists in the cluster, but it does not immediately create a Job or a Pod:

root@host01:~# kubectl get jobs

NAME COMPLETIONS DURATION AGE

sleep 1/1 31s 2m32s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-65db7cf9c9-2wcng 1/1 Running 0 33m

sleep-fgcnz 0/1 Completed 0 2m23s

Instead, the CronJob will create a new Job each time its schedule is
triggered.

StatefulSets
So far, we’ve been looking at controllers that create identical Pods. With
both Deployments and Jobs, we don’t really care which Pod is which, or
where it is deployed, as long as we run enough instances at the right time.
However, that doesn’t always match the behavior we want. For example,
even though a Deployment can create Pods with persistent storage, the stor
age must either be brand new for each new Pod, or the same storage must
be shared across all Pods. That doesn’t align well with a “primary and sec
ondary” architecture such as a database. For those cases, we want specific
storage to be attached to specific Pods.

At the same time, because Pods can come and go due to hardware fail
ures or upgrades, we need a way to manage the replacement of a Pod so that
each Pod is attached to the right storage. This is the purpose of a StatefulSet.
A StatefulSet identifies each Pod with a number, starting at zero, and each
Pod receives matching persistent storage. When a Pod must be replaced, the
new Pod is assigned the same numeric identifier and is attached to the same
storage. Pods can look at their hostname to determine their identifier, so a
StatefulSet is useful both for cases with a fixed primary instance as well as
cases for which a primary instance is dynamically chosen.

We’ll explore a lot more details related to Kubernetes StatefulSets in
the next several chapters, including persistent storage and Services. For this

124 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

chapter, we’ll look at a basic example of a StatefulSet and then build on it as
we introduce other important concepts.

For this simple example, let’s create two Pods and show how they each
get unique storage that stays in place even if the Pod is replaced. We’ll use
this YAML resource:

sleep-set.yaml ---

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: sleep

spec:

¶ serviceName: sleep

replicas: 2

selector:

matchLabels:

app: sleep

template:

metadata:

labels:

app: sleep

spec:

containers:

- name: sleep

image: busybox

command:

- "/bin/sleep"

- "3600"

· volumeMounts:

- name: sleep-volume

mountPath: /storagedir

¸ volumeClaimTemplates:

- metadata:

name: sleep-volume

spec:

storageClassName: longhorn

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 10Mi

There are a few important differences here compared to a Deployment
or a Job. First, we must declare a serviceName to tie this StatefulSet to a Ku
bernetes Service ¶. This connection is used to create a Domain Name Ser
vice (DNS) entry for each Pod. We must also provide a template for the
StatefulSet to use to request persistent storage ¸ and then tell Kubernetes
where to mount that storage in our container ·.

Deploying Containers to Kubernetes 125

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

The actual sleepset.yaml file that the automation scripts install includes
the sleep Service definition. We cover Services in detail in Chapter 9.

Let’s create the sleep StatefulSet:

root@host01:~# kubectl apply -f /opt/sleep-set.yaml

The StatefulSet creates two Pods:

root@host01:~# kubectl get statefulsets

NAME READY AGE

sleep 2/2 1m14s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

sleep-0 1/1 Running 0 57s

sleep-1 1/1 Running 0 32s

The persistent storage for each Pod is brand new, so it starts empty.
Let’s create some content. The easiest way to do that is from within the con
tainer itself, using kubectl exec, which allows us to run commands inside a
container, similar to crictl. The kubectl exec command works no matter
what host the container is on, even if we’re connecting to our Kubernetes
API server from outside the cluster.

Let’s write each container’s hostname to a file and print it out so that we
can verify it worked:

root@host01:~# kubectl exec sleep-0 -- /bin/sh -c \

'hostname > /storagedir/myhost'

root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost

sleep-0

root@host01:~# kubectl exec sleep-1 -- /bin/sh -c \

'hostname > /storagedir/myhost'

root@host01:~# kubectl exec sleep-1 -- /bin/cat /storagedir/myhost

sleep-1

Each of our Pods now has unique content in its persistent storage. Let’s
delete one of the Pods and verify that its replacement inherits its predeces
sor’s storage:

root@host01:~# kubectl delete pod sleep-0

pod "sleep-0" deleted

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

...

sleep-0 1/1 Running 0 28s

sleep-1 1/1 Running 0 8m18s

root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost

sleep-0

126 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

After deleting sleep-0, we see a new Pod created with the same name,
which is different from the Deployment for which a random name was gen
erated for every new Pod. Additionally, for this new Pod, the file we created
previously is still present because the StatefulSet attached the same persis
tent storage to the new Pod it created when the old one was deleted.

Daemon Sets
The DaemonSet controller is like a StatefulSet in that the DaemonSet also
runs a specific number of Pods, each with a unique identity. However, the
DaemonSet runs exactly one Pod per node, which is useful primarily for
control plane and addon components for a cluster, such as a network or
storage plugin.

Our cluster already has multiple DaemonSets installed, so let’s look at
the calico-node DaemonSet that’s already running, which runs on each node
to provide network configuration for all containers on that node.

The calico-node DaemonSet is in the calico-system Namespace, so we’ll
specify that Namespace to request information about the DaemonSet:

root@host01:~# kubectl -n calico-system get daemonsets

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ...

calico-node 3 3 3 3 3 ...

Our cluster has three nodes, so the calico-node DaemonSet has created
three instances. Here’s the configuration of this DaemonSet in YAML
format:

root@host01:~# kubectl -n calico-system get daemonset calico-node -o yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

...

name: calico-node

namespace: calico-system

...

spec:

...

selector:

matchLabels:

k8s-app: calico-node

...

The -o yaml parameter to kubectl get prints out the configuration and
status of one or more resources in YAML format, allowing us to inspect Ku
bernetes resources in detail.

Deploying Containers to Kubernetes 127

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

The selector for this DaemonSet expects a label called k8s-app to be set
to calico-node. We can use this to show just the Pods that this DaemonSet
creates:

root@host01:~# kubectl -n calico-system get pods \

-l k8s-app=calico-node -o wide

NAME READY STATUS ... NODE ...

calico-node-h9kjh 1/1 Running ... host01 ...

calico-node-rcfk7 1/1 Running ... host03 ...

calico-node-wj876 1/1 Running ... host02 ...

The DaemonSet has created three Pods, each of which is assigned to one
of the nodes in our cluster. If we add additional nodes to our cluster, the
DaemonSet will schedule a Pod on the new nodes as well.

Final Thoughts
This chapter explored Kubernetes from the perspective of a regular cluster
user, creating controllers that in turn create Pods with containers. Having
this core knowledge of controller resource types is essential for building our
applications. At the same time, it’s important to remember that Kubernetes
is using the container technology we explored in Part I.

One key aspect of container technology is the ability to isolate contain
ers in separate network namespaces. Running containers in a Kubernetes
cluster adds additional requirements for networking because we now need
to connect containers running on different cluster nodes. In the next chap
ter, we consider multiple approaches to make this work as we look at overlay
networks.

128 Chapter 7

The Book of Kubernetes (Sample Chapter) © 7/8/22 by Alan Hohn

