
8
A R D U I N O I 2 C P R O G R A M M I N G

This first chapter on I2C programming will
start by discussing the Arduino platform,

since it’s probably safe to say that more lines
of I2C code have been written for the Arduino

than for any other.
This chapter covers the following information:

• An introduction to basic I2C programming

• A discussion of the Wire programming model that the Arduino library
and IDE uses

• Arduino I2C read and write operations

• Accessing multiple I2C ports on various Arduino devices

This book tends to use Arduino sketches (programs) as the basis for
generic examples, so a good understanding of Arduino I2C programming
will be invaluable as you continue through subsequent chapters.

502468book.indb 131502468book.indb 131 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

132 Chapter 8

T HE MCP47 25 DIGITA L-TO -A N A LOG CON V ER T ER

This book uses the MCP4725 DAC to demonstrate programming various control
devices (SBCs), since the MCP4725 is easy to program and understand . It has
the following features:

• 12-bit resolution

• On-board nonvolatile memory (EEPROM)

• External A0 address pin

• Normal or power-down mode

• Single-supply operation: 2 .7 V to 5 .5 V

• Standard (100 kbit/sec), fast (400 kbit/sec), and high (3 .4 Mbit/sec) speeds

• Eight available I2C addresses (though any given MCP4725 IC supports
only two different addresses, a full range of eight addresses is possible
since there are four different variants of the MCP4725, each supporting a
different pair of addresses)

For Part III of this book, there are two I2C operations of interest: writing
a 12-bit digital value to the DAC and reading the current DAC output and
EEPROM values from the chip .

The MCP4725 will respond to one of the following I2C addresses:
0x60/0x61, 0x62/0x63, 0x64/0x65, or 0x66/0x67 . An address pin on the
MCP4725 provides the LO bit (bit 0) of this address . Bits 1 and 2 are deter-
mined by the particular IC you purchase . For example, the Adafruit MCP4725
breakout board uses an IC that responds to addresses 0x62 and 0x63; the
SparkFun variant responds to addresses 0x60 and 0x61 . If you purchase
boards from Adafruit and SparkFun, you can put four of these boards on the
same I2C bus without having to resort to using an I2C multiplexer . (There is a
sneaky way to hook more of these boards to the same bus by using the
address selection bit as a “chip select” line; see https://mitchtronic.blogspot
.com/2017/03/addressing-multiple-mcp4724s-in-same.html for an example .) If
you want to use chips with addresses 0x64/0x65 or 0x66/0x67, you could
search for various boards on Amazon or build your own breakout board .

Both Adafruit and SparkFun have made their boards open hardware via
the Creative Commons license, so you could build these boards and substitute
in the appropriate MCP4725 IC . Note that these designs use surface-mounted
parts and are not easy to assemble by hand . Check out the Adafruit and
SparkFun designs at https://github.com/sparkfun/MCP4725_Breakout/tree/
v14 and https://github.com/adafruit/Adafruit-MCP4725-PCB . For more informa-
tion about the MCP4725, see Chapter 15 .

502468book.indb 132502468book.indb 132 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

http://mitchtronic.blogspot.com/2017/03/addressing-multiple-mcp4724s-in-same.html
http://mitchtronic.blogspot.com/2017/03/addressing-multiple-mcp4724s-in-same.html
https://github.com/sparkfun/MCP4725_Breakout/tree/v14
https://github.com/sparkfun/MCP4725_Breakout/tree/v14
https://github.com/adafruit/Adafruit-MCP4725-PCB

Arduino I2C Programming 133

 8.1 Basic I2C Programming
In Chapter 2, you learned that an I2C transmission begins with the output
of a start condition followed by an address-R/W byte, followed by zero or
more bytes of data, and, finally, end with a stop condition. The controller
places these data bytes on the I2C bus, either by bit banging or by some
hardware registers.

The only parts of this transmission that are common to all I2C devices
are the start condition, the very first address byte, and the stop condition.
Any bytes the controller transmits after the address byte until a stop condi-
tion comes along are specific to the peripheral responding to the address
in the address byte.

The MCP4725 supports several command formats based on data you
transmit immediately after the address byte. The programming examples
in this part of the book will use only one of those commands: the Fast Mode
Write command. This command requires 3 bytes on the I2C bus, as shown in
Table 8-1.

Table 8-1: Fast Mode Write Command

First byte Second byte Third byte

Address HO DAC value LO DAC value

aaaa aaax 0000 hhhh llll llll

In Table 8-1, the aaaa aaa bits are the MCP4725 address. These will be
1100cba where bits c and b are hard-coded into the IC itself and a comes
from the address line on the chip. This corresponds to addresses 0x60
through 0x67. (Keep in mind that the I2C protocol shifts these address
bits one position to the left and expects the R/W bit in bit 0. For this
reason, the address byte will actually contain the values 0xC0 through
0xCF, depending on the IC address and the state of the R/W line.) The
hhhh llll llll bits are the 12 bits to write to the digital-to-analog conver-
sion circuitry. The HO 4 bits of the second byte must contain zeros (they
specify the Fast Mode Write command and power-down mode). Assuming
a 5-V power supply to the chip, the 3-byte sequence 0xC0, 0x00, 0x00 (the
3 bytes from Table 8-1) will write the 12-bit value 0x000 to the DAC at
address 0x60, which will cause 0 V to appear on the DAC’s output. Writing
the 3-byte sequence 0xC0, 0x08, 0x00 will put 2.5 V on the output pin.
Writing the 3-byte sequence 0xC0, 0x0F, 0xFF will put 5 V on the analog
output pin. In general, a value between 0x000 and 0xFFF (linearly) maps
to a voltage between 0 V and 5 V on the DAC analog output. All you need
is some way of placing these 3 bytes on the I2C bus.

Whereas the DAC uses the HO 4 bits of the second byte to specify the
command (0b0000 is the Fast Mode Write command), the DAC read com-
mand is simpler still. The R/W bit in the address byte is all the MCP4725
needs to determine how to respond. It responds by returning 5 bytes: the

502468book.indb 133502468book.indb 133 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

134 Chapter 8

first is some status information (which you can ignore until Chapter 15,
where I discuss the MCP4725 in detail), the second byte contains the HO 8
bits of the last value written to the DAC, and the third byte contains the LO
4 bits of the last value written in bits 4 through 7 (and bits 0 through 3 don’t
contain any valid data). The fourth and fifth bytes contain some status
information and the 14 bits held in the on-chip EEPROM (see Chapter 15
for more information about the EEPROM).

How you place bytes on the I2C bus and how you read data from the
I2C bus entirely depends on the system, library functions, and operating
system (if any) you’re using. This chapter discusses I2C on the Arduino;
therefore, we’re going to consider how to read and write data on the I2C bus
using the Arduino library code.

 8.2 Basic Wire Programming
The Arduino library responsible for I2C communication is the Wire library.
I2C communication functions are not built into the Arduino language
(which is really just C++ with some default include files). Instead, you have
to enable the Arduino I2C library code by including the following statement
near the beginning of your program’s source file:

#include <Wire.h>

Note that Wire.h must have an uppercase W on certain operating sys-
tems (Linux, in particular).

The Wire.h header file creates a singleton class object named Wire that
you can use to access the class functions. You do not have to declare this
object in your programs; the header file automatically does this for you.
The following sections describe the various available Wire functions.

8.2.1 Wire Utility Functions
The Wire.begin() function initializes the Arduino Wire (I2C) library. You must
call this function once before executing any other functions in the Wire
library. The convention is to call this function in the Arduino setup() function.

Without a parameter, Wire.begin() will initialize the library to work as
a controller device on the I2C bus. If you specify a 7-bit integer as an argu-
ment, this will initialize the library to operate as a peripheral device on
the I2C bus.

The Wire.setClock() function allows you to change the I2C clock frequency,
supplied as an integer parameter. This call is optional; the default clock
speed is 100 kHz. Most Arduino boards will support 100,000 or 400,000 as
the argument. A few high-performance boards might support 3,400,000
(high-speed mode). A few will also support 10,000 (low-speed mode on the
SMBus).

Keep in mind that all peripherals and CPU(s) on the I2C bus must be
capable of supporting the clock speed you select. That is, you must set a clock
speed that is no faster than the slowest peripheral on the bus.

502468book.indb 134502468book.indb 134 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

Arduino I2C Programming 135

8.2.2 Wire Read Operations
The Wire.requestFrom() function reads data from an I2C peripheral device.
There are two forms of the Wire.requestFrom() function call:

Wire.requestFrom(address, size)
Wire.requestFrom(address, size, stopCond)

In each of these calls, address is the 7-bit peripheral address, size is
the number of bytes to read from the device, and the optional stopCond argu-
ment specifies whether the function issues a stop condition (if true) after
receiving the bytes. If false, then the function sends a restart condition.
If the optional stopCode argument is not present, the function uses true as
the default value (to issue a stop condition after receiving the data).

N O T E The Arduino library maintains a 32-byte buffer for incoming I2C data reads. Because
Wire.requestFrom() reads all incoming data before returning to its caller, an I2C
peripheral can transfer a maximum limit of 32 bytes in one operation using this call.

Once the controller receives the data from the peripheral, an applica-
tion can read that data using the Wire.read() and Wire.available() functions.
The Wire.available() function returns the number of bytes left in the inter-
nal receive buffer, while the Wire.read() function reads a single byte from
the buffer. Typically, you would use these two functions to read all the data
from the internal buffer using a loop such as the following:

while(Wire.available())
{
 char c = Wire.read(); // Read byte from buffer

 // Do something with the byte just read.
}

There is no guarantee that the peripheral will actually transmit the
number of bytes requested in the call to the Wire.requestFrom() function—
the peripheral could return less data. Therefore, it is always important
to use the Wire.available() function to determine exactly how much data
is in the internal buffer; don’t automatically assume it’s the amount you
requested.

The peripheral determines the actual amount of data it returns to the
controller. In almost all cases, the amount of data is fixed and is specified in
the datasheet for the peripheral (or by the peripheral’s design). In theory,
a peripheral could return a variable amount of data. How you retrieve such
data is determined by the peripheral’s design and is beyond the scope of
this chapter.

To read data from a peripheral device, a controller must transmit
the peripheral address and an R/W bit equal to 1 to that peripheral. The
Wire.requestFrom() function handles this. After that, the peripheral will

502468book.indb 135502468book.indb 135 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

136 Chapter 8

transmit its data bytes. The Arduino controller will receive those bytes and
buffer them to be read later. Note, however, that the full read operation
takes place with the execution of the Wire.requestFrom() function.

8.2.3 Wire Write Operations
A controller can write data to a peripheral using the Wire.beginTransmission(),
Wire.endTransmission(), and Wire.write() functions. The beginTransmission()
and endTransmission() functions bracket a sequence of write operations.

The Wire.beginTransmission() function takes the following form:

Wire.beginTransmission(address)

where address is the 7-bit peripheral address. This function call builds the
first byte of the data transmission consisting of the address and a clear
R/W bit.

There are three forms of the Wire.write() function:

Wire.write(value)
Wire.write(string)
Wire.write(data, length)

The first form appends a single byte to an internal buffer for transmis-
sion to the peripheral. The second form adds all the characters in a string
(not including the zero-terminating byte) to the internal buffer for transmission
to the peripheral. The third form copies some bytes from a byte array to the
internal buffer (the second argument specifies the number of bytes to copy).

N O T E In addition to its aforementioned 32-byte buffer for incoming I2C data reads, the
Arduino library maintains a 32-byte buffer for outgoing I2C writes. Although you can
have multiple calls to the various write functions between a Wire.beginTransmission()
call and a Wire.endTransmission() call, the cumulative length must be 32 bytes or less.

The Wire.endTransmission() function takes the address byte and data
bytes from the internal buffer and transmits them over the I2C bus. This
function call takes two forms:

Wire.endTransmission()
Wire.endTransmission(stopCond)

The first form transmits the data in the internal buffer and follows
that transmission with a stop condition. The second form uses the single
Boolean argument to determine whether it should send a stop condition
(true) after transmitting the data (the function transmits a restart if
stopCond is false).

Remember that the actual data transmission does not take place until
the execution of the Wire.endTransmission() function call. The other calls
simply build up an internal buffer for later transmission.

502468book.indb 136502468book.indb 136 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

Arduino I2C Programming 137

8.2.4 Wire Peripheral Functions
The Arduino functions up to this point have assumed that the Arduino is
acting as an I2C bus controller device. You can also program an Arduino to
act as a peripheral device. The Arduino library provides two functions for
this purpose:

Wire.onReceive(inHandler)
Wire.onRequest(outHandler)

In the first function, inHandler is a pointer to a function with the follow-
ing prototype: void inHandler(int numBytes). In the second, outHandler is a
pointer to a function with the following prototype: void outHandler().

The Arduino system will call outHandler whenever the (external) con-
troller device requests data. The outHandler function will then use the
Wire.beginTransmission(), Wire.endTransmission(), and Wire.write() functions
to transmit data from the peripheral back to the (external) controller. The
inHandler function will use the Wire.begin(), Wire.available(), and Wire.read()
functions to retrieve data from the controller device.

 8.3 Arduino I2C Write Example
The program in Listing 8-1 demonstrates using the I2C bus to talk to a
SparkFun MCP4725 DAC breakout board. This program was written for
and tested on a Teensy 3.2, though it should work with any compatible
Arduino device (with slightly different timings).

The program generates a continuous triangle wave by continuously
incrementing the DAC output from 0x0 to 0xfff (12 bits) and then decre-
menting from 0xfff back to 0x0. As you will see in the oscilloscope output,
this program produces a triangle wave with slightly less than a 2.4-second
period (around 0.42 Hz) when running on my setup (your mileage may
vary). This frequency is determined by the amount of time it takes to write
8,189 12-bit values to the DAC. Since each transmission requires 3 bytes
(address, HO byte and command, and LO byte), plus start and stop condi-
tion timings, it takes around 35 bit times at 100 kHz (10 µsec per bit time)
to transfer each value.

// Listing8-1.ino
//
// A simple program that demonstrates I2C
// programming on the Arduino platform.

#include <Wire.h>

// I2C address of the SparkFun MCP4725 I2C-based
// digital-to-analog converter.

#define MCP4725_ADDR 0x60

void setup(void)

502468book.indb 137502468book.indb 137 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

138 Chapter 8

{
 Serial.begin(9600);
 delay(1000);
 Serial.println("Test writing MCP4725 DAC");
 Wire.begin(); // Initialize I2C library
}

void loop(void)
{
 // Send the rising edge of a triangle wave:

 for(int16_t dacOut = 0; dacOut < 0xfff; ++dacOut)
 {
 // Transmit the address byte (and a zero R/W bit):

 1 Wire.beginTransmission(MCP4725_ADDR);

 // Transmit the 12-bit DAC value (HO 4 bits
 // first, LO 8 bits second) along with a 4-bit
 // Fast Mode Write command (00 in the HO 2 bits
 // of the first byte):

 2 Wire.write((dacOut >> 8) & 0xf);
 Wire.write(dacOut & 0xff);

 // Send the stop condition onto the I2C bus:

 3 Wire.endTransmission(true);

 // Uncomment this delay to slow things down
 // so it can be observed on a multimeter:
 // delay(5);
 }

 // Send the falling edge of the triangle wave:

 for(int16_t dacOut = 0xffe; dacOut > 0; --dacOut)
 {
 // See comments in previous loop.

 Wire.beginTransmission(MCP4725_ADDR);
 Wire.write((dacOut >> 8) & 0xf);
 Wire.write(dacOut & 0xff);
 Wire.endTransmission(true);

 // Uncomment this delay to slow things down
 // so it can be observed on a multimeter:
 // delay(5);
 }
}

Wire.beginTransmission() initializes the Wire package to begin accepting
data for (later) transmission on the I2C bus 1. The Wire.write() function
copies data to transmit to the internal Wire buffers for later transmission

502468book.indb 138502468book.indb 138 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

Arduino I2C Programming 139

on the I2C bus 2. After that, Wire.endTransmission() instructs the device to
actually begin transmitting the data in the internal Wire buffers onto the
I2C bus 3.

Figure 8-1 shows one of the DAC 3-byte transmissions appearing on the
I2C bus during the execution of the program in Listing 8-1 (this particular
transmission was writing 0x963 to the DAC).

Figure 8-1: Sample I2C output during triangle wave transmission

As you can see in the oscilloscope output appearing in Figure 8-2,
it takes approximately 2.4 seconds for a full cycle (one rising edge and
one falling edge) of the triangle wave. Using the logic analyzer, I was
able to determine that each 3-byte transmission took slightly less than
300 µsec, which roughly matches what you see on the oscilloscope output
in Figure 8-2. Note that the timing between transmissions isn’t constant
and will vary by several microseconds between transmissions. This means
300 µsec is not a hard transmission time for 3 bytes.

The maximum frequency this software can produce based on a 100-kHz
bus speed is approximately 0.4 Hz. To produce a higher frequency value,
you would need to run the I2C bus at a higher clock frequency (for example,
400 kHz) or reduce the number of values you write to the DAC per unit
time (for example, you can double the frequency by incrementing the loop
counter by two rather than one).

Figure 8-2: Triangle wave output from MCP4725

The code in Listing 8-1 gives up the I2C bus after each DAC transmission.
If there were other controllers on the same bus talking to different peripher-
als, this would further reduce the maximum clock frequency of the triangle

502468book.indb 139502468book.indb 139 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

140 Chapter 8

wave (not to mention that it would add some distortion to the triangle wave
if there were many pauses in the output sequence to the DAC). In theory, you
could prevent this distortion by refusing to yield the I2C bus during the trans-
mission; however, given the vast number of transmissions required here, the
only reasonable solution to producing an undistorted triangle wave would be
to ensure that the MCP4725 was the only device on the I2C bus.

 8.4 Arduino I2C Read Example
Fundamentally, a DAC is an (analog) output-only device. You write a
value to the DAC registers and an analog voltage magically appears on the
analog output pin. Reading from a DAC doesn’t make much sense. That
said, the MCP4725 IC does support I2C read operations. A read command
returns 5 bytes.

To read a value from the MCP4725, simply place the device’s address on
the I2C bus with the R/W line high. The MCP4725 will respond by return-
ing 5 bytes: the first byte will be status information, the next two will be the
last DAC value written, and the last pair of bytes will be the EEPROM value.
The EEPROM stores a default value to initialize the analog output pin when
the device powers up, before any digital value is written to the chip. See
Chapter 15 for more details.

The program in Listing 8-2 demonstrates an I2C read operation.

// Listing8-2.ino
//
// This is a simple program that demonstrates
// I2C programming on the Arduino platform.
//
// This program reads the last written DAC value
// and EEPROM settings from the MDP4725. It was
// written and tested on a Teensy 3.2, and it also
// runs on an Arduino Uno.

#include <Wire.h>

// I2C address of the SparkFun MCP4725 I2C-based
// digital-to-analog converter.

#define MCP4725_ADDR 0x60

#define bytesToRead (5)
void setup(void)
{
 int i = 0;
 int DACvalue;
 int EEPROMvalue;
 byte input[bytesToRead];

 Serial.begin(9600);
 delay(1000);
 Serial.println("Test reading MCP4725 DAC");

502468book.indb 140502468book.indb 140 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

Arduino I2C Programming 141

 Wire.begin(); // Initialize I2C library

 Wire.requestFrom(MCP4725_ADDR, bytesToRead);
 while(Wire.available())
 {
 if(i < bytesToRead)
 {
 input[i++] = Wire.read();
 }
 }

 // Status byte is the first one received:

 Serial.print("Status: ");
 Serial.println(input[0], 16);

 // The previously written DAC value is in the
 // HO 12 bits of the next two bytes:

 DACvalue = (input[1] << 4) | ((input[2] & 0xff) 4);
 Serial.print("Previous DAC value: ");
 Serial.println(DACvalue, 16);

 // The last two bytes contain EEPROM data:

 EEPROMvalue = (input[3] << 8) | input[4];
 Serial.print("EEPROM value: ");
 Serial.println(EEPROMvalue, 16);

 while(1); // Stop

}

void loop(void)
{
 // Never executes.
}

The following is the output from the program in Listing 8-2. Note that
the output is valid only for my particular setup. Other MCP4725 boards
may have different EEPROM values. Furthermore, the previous DAC value
output is specific to the last write on my particular system (this was probably
the last output written from Listing 8-1, when I uploaded the program in
Listing 8-2 while the previous program was running).

Test reading MCP4725 DAC
Status: C0
Previous DAC value: 9B
EEPROM value: 800

The only thing interesting in this output is that I had programmed the
MCP4725’s EEPROM to initialize the output pin to 2.5 V on power-up (the
halfway point with a 5-V power supply).

502468book.indb 141502468book.indb 141 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

142 Chapter 8

8.4.1 Arduino I2C Peripheral Example
The previous two sections described read and write operations from the
perspective of a controller device. This section describes how to create an
Arduino system that behaves as an I2C peripheral device. In particular, the
source code appearing in Listing 8-3 simulates an MCP4725 DAC device
using a Teensy 3.2 module. The Teensy 3.2 has an on-board, 12-bit DAC
connected to pin A14. Writing a value between 0x000 and 0xfff produces a
voltage between 0 V and +3.3 V on that pin. The code in Listing 8-3 associ-
ates rcvISR (and ISR) with the data received interrupt. When data arrives,
the system automatically calls this routine and passes it the number of
bytes received on the I2C bus.

The rcvISR interrupt service routine (ISR) fetches the bytes transmitted
to the peripheral from the controller, constructs the 12-bit DAC output value
from those bytes, and then writes the 12 bits to the DAC output (using the
Arduino analogWrite() function). Once the output is complete, the code
waits for the next transmission to occur. Just like a debug and test feature,
this program writes a string to the Serial output every 10 seconds so you
can verify that the program is still running.

// Listing8-3.ino
//
// This program demonstrates using an
// Arduino as an I2C peripheral.
//
// This code runs on a Teensy 3.2
// module. A14 on the Teensy 3.2 is
// a true 12-bit, 3.3-V DAC. This program
// turns the Teensy 3.2 into a simple
// version of the MCP4725 DAC. It reads
// inputs from the I2C line (corresponding
// to an MCP4725 fast write operation)
// and writes the 12-bit data to the
// Teensy 3.2's hardware DAC on pin A14.

#include <Wire.h>

// I2C address of the SparkFun MCP4725 I2C-based
// digital-to-analog converter.

#define MCP4725_ADDR 0x60

// Interrupt handler that the system
// automatically calls when data arrives
// on the I2C lines.

void rcvISR(int numBytes)
{
 byte LObyte;
 byte HObyte;
 word DACvalue;

502468book.indb 142502468book.indb 142 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

Arduino I2C Programming 143

 // Expecting 2 bytes to come
 // from the controller device.

 if(numBytes == 2 && Wire.available())
 {
 HObyte = Wire.read();
 if(Wire.available())
 {
 LObyte = Wire.read();

 DACvalue = ((HObyte << 8) | LObyte) & 0xfff;
 analogWrite(A14, DACvalue);
 }
 }
}

// Usual Arduino initialization function:

void setup(void)
{
 Serial.begin(9600);
 delay(1000);
 Serial.println("I2C peripheral test");

 // Initialize the Wire library to treat this
 // code as an I2C peripheral at address 0x60
 // (the SparkFun MCP4725 breakout board):

 Wire.begin(MCP4725_ADDR);

 // Set up the Teensy 3.2 DAC to have
 // 12-bit resolution:

 analogWriteResolution(12);

 // Define the I2C interrupt handler
 // for dealing with incoming I2C
 // packets:

 Wire.onReceive(rcvISR);
}

void loop(void)
{
 Serial.println("MCP4725 emulator, waiting for data");
 delay(10000); // Delay 10 seconds

}

I connected the SCL, SDA, and Gnd pins of two Teensy 3.2 devices
together (using a Teensy and an Arduino also works). On one of the units, I
programmed the DAC output code similar to that found in Listing 8-1. On
the other, I programmed the code in Listing 8-3. I put an oscilloscope on
the A14 pin on the Teensy running the peripheral code (Listing 8-3). The

502468book.indb 143502468book.indb 143 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

144 Chapter 8

output appears in Figure 8-3. Note that the peaks on the triangle waves are
between 0.0 V and 3.3 V (rather than 0 V and 5 V in Figure 8-2) because the
Teensy is a 3.3-V device.

Figure 8-3: Triangle wave output from the Teensy 3.2
A14 pin

Figure 8-4 shows a small section of the output when some clock stretch-
ing occurs.

Figure 8-4: A stretched clock signal reduces the triangle wave frequency.

As you can see in Figure 8-4, the clock is stretched to 8.4 µsec after the
transmission of the byte.

 8.5 Multiple I2C Port Programming
The standard Arduino library assumes that only a single I2C bus is on the
board (based on the hardware of the Arduino Uno). Many Arduino-
compatible boards provide multiple I2C buses. This allows you to spread
your I2C devices across multiple buses, allowing them to run faster, or to,
perhaps, include two devices with the same address without having to resort
to using an I2C bus multiplexer.

The standard Arduino library does not support multiple I2C buses; how-
ever, devices that do provide them will often provide some special library code
that lets you access the additional I2C buses in the system. The Arduino con-
vention when there are multiple instances of a device is to use a numeric suf-
fix after the name to designate a particular device. In the case of the I2C bus,
those device names are Wire (for the first, or 0th, port), Wire1, Wire2, and so on.

502468book.indb 144502468book.indb 144 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

Arduino I2C Programming 145

For example, to write a sequence of bytes to the second I2C port, you
might use code like the following:

Wire1.beginTransmission(0x60);
Wire1.write((dacOut << 8) & 0xf);
Wire1.write(dacOut & 0xff);
Wire1.endTransmission(true);

The mechanism for achieving this is hardware and system specific. Check
the documentation for your particular SBC to see how this is done.

 8.6 Chapter Summary
The Arduino library provides the Wire object to support I2C bus transactions.
This chapter described the basic Wire functions available in the Arduino library,
including those to initialize the I2C library, choose the I2C clock frequency, ini-
tiate a read from an I2C peripheral, read peripheral data placed in the internal
buffer, initialize a buffer for transmission to a peripheral, and more.

This chapter also included several real-world examples of I2C communi-
cation using the SparkFun MCP4725.

FOR MOR E INFOR M AT ION

To learn more about Wire programming on the Arduino, you should first stop
at the Arduino Wire library reference page: https://www.arduino.cc/en/
Reference/Wire .

Of course, you can find about a bazillion different websites with Arduino I2C pro-
gramming examples . A quick web search for “Arduino I2C examples” will probably
turn up more hits than you are willing to read .

Simon Monk’s book, Programming Arduino Next Steps: Going Further with
Sketches, 2nd edition (McGraw-Hill Education TAB, 2018), contains a chapter
on Arduino I2C programming .

Adafruit tutorials on Arduino I2C programming: https://learn.adafruit.com/
circuitpython-basics-i2c-and-spi/i2c-devices

SparkFun I2C tutorials on Arduino I2C programming: https://learn.sparkfun
.com/tutorials/i2c/all

Datasheets for the MCP4725 DAC: https://cdn-shop.adafruit.com/datasheets/
mcp4725.pdf

More information about the Teensy 3 .2: https://www.pjrc.com/store/teensy32.html

502468book.indb 145502468book.indb 145 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

 https://www.arduino.cc/en/Reference/Wire
 https://www.arduino.cc/en/Reference/Wire
https://learn.adafruit.com/circuitpython-basics-i2c-and-spi/i2c-devices
https://learn.adafruit.com/circuitpython-basics-i2c-and-spi/i2c-devices
https://learn.sparkfun.com/tutorials/i2c/all
https://learn.sparkfun.com/tutorials/i2c/all
https://cdn-shop.adafruit.com/datasheets/mcp4725.pdf
https://cdn-shop.adafruit.com/datasheets/mcp4725.pdf
https://www.pjrc.com/store/teensy32.html

502468book.indb 146502468book.indb 146 6/7/22 10:02 PM6/7/22 10:02 PM

The Book of I²C (Sample Chapter) 2022 by Randall Hyde

