
All security tests start with a reconnaissance
phase. In this phase, we attempt to collect as

much information as possible about our tar-
get. This information will prepare us to make

informed decisions about how to attack the applica-
tion and increase our chances of success.

You might be asking yourself, what is there to know about GraphQL,
seeing as it’s just an API layer? You’ll learn that we can gather a lot of infor-
mation, through experimentation and the use of specialized tooling, about
the application running behind a GraphQL API, as well as the GraphQL
implementation itself. While the GraphQL query structure is consistent
across all GraphQL implementations, irrespective of the programming
language they are written in, you will likely see differences in the available
operations, fields, arguments, directives, security controls, responses to
 specially crafted queries, and so on.

4
R E C O N N A I S S A N C E

72 Chapter 4

Here are a few key questions we should strive to answer during our recon-
naissance phase: Does the web server even have a GraphQL API? On which
endpoint is GraphQL configured to receive queries? What language is the
GraphQL implementation written in? What implementation of GraphQL
is running on the target server? Is the implementation known to be vulner-
able to certain attacks? What types of defenses exist for the specific GraphQL
implementation? What are some of the out-of-the-box default configuration
settings of this implementation? Does the GraphQL server have any addi-
tional security protection layers in place? Being able to answer these ques-
tions will allow us to plan a more focused attack against our target server
and uncover gaps in its defense.

N O T E Throughout this chapter, as well as the following ones, we will use the DVGA as our
target vulnerable application. You should already have it running as part of the
GraphQL security lab we built in Chapter 2.

Detecting GraphQL
To detect GraphQL in a penetration test, it’s important to first familiarize
yourself with the GraphQL server implementations that exist in the wild
today. GraphQL has many implementations written in a variety of program-
ming languages, each of which could have different default configurations
or known weaknesses. Table 4-1 lists several GraphQL implementations and
the languages in which they are written.

Table 4-1: GraphQL Server Implementations and
Their Programming Languages

Server implementation Language

Apollo TypeScript

Graphene Python

Yoga TypeScript

Ariadne Python

graphql-ruby Ruby

graphql-php PHP

graphql-go Go

graphql-java Java

Sangria Scala

Juniper Rust

HyperGraphQL Java

Strawberry Python

Tartiflette Python

Reconnaissance 73

These are some of the most popular implementations in use today, as
well as more niche implementations, such as Sangria for Scala, Juniper for
Rust, and HyperGraphQL for Java. Later in this chapter, we will discuss how
to distinguish between them during a penetration test.

Detection of GraphQL APIs can be done in several ways: either manu-
ally, which is typically harder to scale if you have more than a few hosts on
a network, or automatically, using various web scanners. The advantage of
using web-scanning tools is that they are scalable. They are threaded, and
often have the ability to read external files as program input, such as text
files with a list of hostnames to scan. These tools already have the logic to
detect web interfaces built into them, and using scripting languages (such
as Bash or Python), you can programmatically run them against hundreds
of IP addresses or subdomains. In this chapter, we will use popular scan-
ners such as Nmap, as well as GraphQL-oriented scanning tools, such as
Graphw00f, for reconnaissance.

Common Endpoints
In Chapter 1, we highlighted some of the differences between REST and
GraphQL APIs. One of these differences, relevant to the reconnaissance
phase, is that a GraphQL API endpoint is typically static, and most com-
monly /graphql.

However, although /graphql is often the default GraphQL endpoint, the
GraphQL implementation can be reconfigured to use a completely differ-
ent path. In those cases, what can we do to detect it? One way is to manually
attempt a few common alternative paths to the GraphQL API, such as ver-
sioned endpoints:

/v1/graphql

/v2/graphql

/v3/graphql

You’ll typically see these versioned API endpoints when the application
needs to support multiple versions of its API, either for backward compat-
ibility or for the introduction of a new feature in a way that doesn’t conflict
with the stable API version that customers might still be using.

Another way to find a GraphQL implementation is through IDEs, such
as GraphQL Playground or GraphiQL Explorer, which we used in Chapter 1
to experiment with GraphQL queries. When either of these interfaces
is enabled, it often uses an additional, dedicated endpoint. This means
GraphQL can potentially exist under the following endpoints as well:

/graphiql

/playground

If these endpoints happen to also be versioned, they may have a
version number prepended to their path, such as /v1/graphiql, /v2/graphiql,
/v1/ playground, /v2/playground, and so on.

74 Chapter 4

Listing 4-1 shows how Graphene, a Python-based implementation of
GraphQL, can expose two endpoints, one for GraphQL, and the other
for GraphiQL Explorer, which is built into Graphene:

app.add_url_rule('/graphql', view_func=GraphQLView.as_view(
 'graphql',
 schema=schema
))

app.add_url_rule('/graphiql', view_func=GraphQLView.as_view(
 'graphiql',
 schema = schema,
 graphiql = True
))

Listing 4-1: Graphene’s endpoint definition

Graphene defines the /graphql endpoint as its main GraphQL query
endpoint. It then defines /graphiql as a second endpoint that GraphiQL
Explorer will query against. Lastly, it enables the GraphiQL Explorer inter-
face. The GraphQL server will render the IDE to the client when it browses
to the /graphiql endpoint.

Keep in mind that each endpoint could have different security settings.
One could be stricter than the other, for example. When you find two end-
points serving GraphQL queries on the same target host, you will want to
test them separately.

N O T E In this book’s GitHub repository, you can find a more comprehensive list of common
GraphQL endpoints: https://github.com/dolevf/Black-Hat-GraphQL/blob/master/
ch04/common-graphql-endpoints.txt. You can use this as a wordlist file when you
need to scan for GraphQL servers during a penetration test or a bug bounty hunt.

The most important takeaway here is that, while the GraphQL endpoint
is typically located at a predictable path, the developer can still customize
it to fit their needs, perhaps in an attempt to hide it from curious eyes or to
simply conform to internal application deployment standards.

Common Responses
Now that you have an idea of the endpoints from which GraphQL typically
receives queries, the next step is to learn how GraphQL APIs respond to
packets. GraphQL is fairly easy to identify on a network. This is particularly
helpful whenever you are performing a zero-knowledge penetration test or
bug bounty hunt.

The GraphQL specification describes how a query response structure
should be formatted. This allows API consumers to expect a predetermined
format when they parse the GraphQL response. The following excerpt from
the GraphQL specification describes how the response to a query should look:

If the operation is a query, the result of the operation is the result
of executing the operation’s top-level selection set with the query
root operation type.

Reconnaissance 75

An initial value may be provided when executing a query
operation:

ExecuteQuery(query, schema, variableValues, initialValue)

 1. Let queryType be the root Query type in the schema.

 2. Assert: queryType is an Object type.

 3. Let selectionSet be the top-level selection set in the query.

 4. Let data be the result of running ExecuteSelectionSet(selectionSet,
queryType, initialValue, variableValues) normally (allowing
parallelization).

 5. Let errors be any field errors produced while executing the
selection set.

 6. Return an unordered map containing data and errors.

In practice, this means a GraphQL API will return a data JSON field
when there is a result to return to a client’s query. It will also return an
errors JSON field whenever errors occur during the execution of a client
query.

Knowing these two pieces of information ahead of time is valuable. To
put it simply, we now have two conditions that a response must meet before
we can say that it came from a GraphQL API:

 1. A valid query response should always have the data field populated with
query response information.

 2. An invalid query response should always have the errors field populated
with information about what went wrong.

Now we can leverage these as part of scanning and detection logic to
automate the discovery of GraphQL servers on a network. All we need to do
is send a valid or malformed query and observe the response we receive.

Let’s run a simple GraphQL query using the HTTP POST method
against the DVGA to see these response structures in action. Open the Altair
GraphQL client and ensure that the address bar has the http://localhost:5013/
graphql address set; then run the following query by entering it in Altair’s
left pane:

query {
 pastes {
 id
 }
}

Next, click the play button to send the query to the GraphQL server.
This should return the id field of the pastes object. You should be able to
see a response similar to the following output:

 "data": {
 "pastes": [
 {

76 Chapter 4

 "id": "1"
 }
]
 }

As you can see, GraphQL returns the query response as part of the data
JSON field, exactly as described in the GraphQL specification. We get the
pastes object and the id field we specified in the query. Don’t worry if you
see a different id string returned in your lab than the one shown here; this
is expected.

Now, let’s run another query to explore what happens when an invalid
query is sent to GraphQL. This will demonstrate that the errors JSON field
is returned by the GraphQL server when it encounters issues during query
execution. The following query is malformed, and GraphQL won’t be able
to process it. Run it in Altair and observe the response:

query {
 badfield {
 id
 }
}

Notice that we specify a top-level field with the name of badfield.
Because this field does not exist, the GraphQL server can’t fulfill the query.
The GraphQL response can be seen here:

{
 "errors": [
 {
 "message": "Cannot query field \"badfield\" on type \"Query\".",
 "locations": [
 {
 "line": 2,
 "column": 3
 }
]
 },
]
}

As you can see, the GraphQL server isn’t able to process our query suc-
cessfully. It returns a response containing the errors JSON field. The message
JSON field indicates to us that the server couldn’t query the field named
badfield, because it does not exist in the GraphQL schema.

Nmap Scans
Imagine that you need to conduct a penetration test against a network
containing thousands of hosts; it would be fairly difficult to manually go
through each host to find ones that are potentially serving interesting con-
tent, such as an API or a vulnerable commercial application. In these cases,
penetration testers often use web application scanners or custom scripts to

Reconnaissance 77

automatically grab information from the hosts. For example, information
such as the <title> HyperText Markup Language (HTML) tag, the entire
<body> tag, and even the server HTTP response header could all hint at spe-
cific applications that the remote server is running.

It’s important to note that web applications may not always have a user
interface, meaning they may not serve any HTML content related to the
application or even expose HTTP headers by which we can detect them.
They will often act as standalone API servers that expose data only through
designated APIs. So, how can we detect GraphQL in those cases? Luckily,
GraphQL APIs often return predictable responses under certain condi-
tions, such as the HTTP method in use or the payload sent to the server.
Listing 4-2 shows a common GraphQL response returned when a client
makes a GET request.

curl -X GET http://localhost:5013/graphql

{"errors":[{"message":"Must provide query string."}]}

Listing 4-2: A GraphQL response to an HTTP GET request

The string Must provide query string is often used in GraphQL implemen-
tations, such as Python- and Node.js-based ones. (Keep in mind that GET-
based queries are often not supported by GraphQL servers. Rest assured:
we have many other ways of detecting GraphQL should we run into such a
situation.)

With this information, we now have the ability to automate a scan and
pick up any other GraphQL servers that may exist on a network. Listing 4-3
shows how to do this with Nmap, using the http-grep NSE script, which uses
pattern matching to look for keywords in a given web page.

nmap -p 5013 -sV --script=http-grep
--script-args='match="Must provide query string", 1 http-grep.url="/graphql"' localhost 2

PORT STATE SERVICE VERSION
5013/tcp open http Werkzeug httpd
| http-grep:
| (1) http://localhost:5013/graphql:
| (1) User Pattern 1:
| + Must provide query string

Listing 4-3: A GraphQL response to word-matching using Nmap’s http-grep

At 1 we specify a script argument to http-grep called match with a value
of Must provide query string (the message we received in our GraphQL
response). At 2 we define another argument, called http-grep.url, with a
value of /graphql, which instructs Nmap to search a specific page within the
web application. Under the hood, Nmap will make an HTTP GET request
to localhost and use the argument string value we defined as the pattern
for its search within the text it extracts from the web server’s response. In
its output, Nmap shows that a pattern was found on the web page and indi-
cates the string for which it found a match.

78 Chapter 4

You may have noticed that we’re passing a specific port to Nmap (-p)—
namely, port 5013. Like any web server, GraphQL servers could run on any
port, but a few are quite common, such as 80–89, 443, 4000–4005, 8443,
8000, and 8080. We recommend scanning both common and uncommon
port ranges when possible.

The __typename Field
So far, we’ve known exactly which fields to ask for in our queries, such as
pastes with a selection set of id, as we requested earlier. You might be won-
dering, what if we don’t know what fields exist on the GraphQL API? How
can we go about identifying GraphQL without this information? Luckily,
there is a quick way to query GraphQL and return a valid response without
knowing anything about the application’s schema.

Meta-fields are built-in fields that GraphQL APIs expose to clients. One
example is __schema (part of introspection in GraphQL). Another example
of a meta-field is __typename. When used, it returns the name of the object
type being queried. Listing 4-4 shows a query that uses this meta-field.

query {
 pastes {
 __typename
 }
}

Listing 4-4: A GraphQL query with the __typename meta-field

When you run this query with Altair, the response will be the name of
the pastes object type:

 "data": {
 "pastes": [
 {
 "__typename": "PasteObject"
 }
]
 }

As you can see, GraphQL tells us that the pastes object’s type name is
PasteObject. The real hack here is that the __typename meta-field can be used
against the query root type as well, as shown in Listing 4-5.

query {
 __typename
}

Listing 4-5: A GraphQL meta-field used with the query root type

This query uses __typename to describe the query root type and will work
against pretty much any GraphQL implementation, since __typename is part
of the official specification.

Reconnaissance 79

When you’re attempting to query GraphQL from the command line,
GraphQL servers expect a certain request structure. For HTTP GET-based
queries, a request should have the following HTTP query parameters:

•	 query for the GraphQL query (mandatory parameter).

•	 operationName for the operation name, used when multiple queries
are sent in a single document. This parameter tells the GraphQL
server which specific operation to run when more than one is present
(optional parameter).

•	 variables for query variables (optional parameter).

For HTTP POST-based queries, the same parameters should be passed
in the HTTP body in JSON.

When GraphQL servers accept queries using GET, you can pass the
query parameter along with the GraphQL query (in this case, the query
{__typename}) by using shorthand syntax. With this in mind, we can auto-
mate the detection of GraphQL by using Nmap fairly easily. Listing 4-6
shows how to run a __typename query with Nmap.

nmap -p 5013 -sV --script=http-grep --script-args='match="__typename",
http-grep.url="/graphql?query=\{__typename\}"' localhost

PORT STATE SERVICE VERSION
5013/tcp open http Werkzeug httpd
| http-grep:
| (1) http://localhost:5013/graphql?query=\{__typename\}:
| (1) User Pattern 1:
|_ + __typename

Listing 4-6: Detecting GraphQL by using GET-based queries with Nmap

In this example, the Nmap script http-grep uses the GET method under
the hood to do its work.

If you have more than a handful of hosts to scan, you may want to lever-
age Nmap’s -iL flag to point to a file that contains a list of hostnames, as
shown in Listing 4-7.

nmap -p 5013 -iL hosts.txt -sV --script=http-grep
--script-args='match="__typename", http-grep.url="/graphql?query=\{__typename\}"'

Listing 4-7: Scanning multiple targets defined in a file with Nmap

The hosts.txt file in this example would contain IP addresses or Domain
Name System (DNS) hostnames listed on separate lines.

If the GraphQL server does not support GET-based queries, we can use
cURL and the __typename field to make a POST request to detect GraphQL,
as shown in Listing 4-8.

curl -X POST http://localhost:5013/graphql -d '{"query":"{__typename }"}'
-H "Content-Type: application/json"

Listing 4-8: Sending a POST-based query using cURL

80 Chapter 4

To use this detection method against a list of hosts, you can use Bash
scripting, as shown in Listing 4-9.

for host in $(cat hosts.txt); do
 curl -X POST "$host" -d '{"query":"{__typename }"}' -H "Content-Type: application/json"
done

Listing 4-9: A Bash script to automate a POST-based GraphQL detection using cURL

The hosts.txt file in this example would contain a list of full target URLs
on separate lines (including their protocol schemes, domains, ports, and
endpoints).

Graphw00f
In Chapter 2, we briefly discussed Graphw00f, a GraphQL tool based on
Python for detecting GraphQL and performing implementation-level
 fingerprinting. In this section, we will use it to detect DVGA in our lab,
walking you through how it does its detection magic.

We mentioned earlier in this chapter that GraphQL servers are found
at the endpoint /graphql by default. When this is not the case, we might
need an automated way to iterate through known endpoints in order to
figure out where queries are served from. Graphw00f allows you to specify
a custom list of endpoints when running a scan. If you don’t provide a list,
Graphw00f will use its hardcoded list of common endpoints whenever it is
tasked with detecting GraphQL, as shown in Listing 4-10.

def possible_graphql_paths():
 return [
 '/graphql',
 --snip--
 '/console',
 '/playground',
 '/gql',
 '/query',
 --snip--
]

Listing 4-10: A list of common GraphQL endpoints in Graphw00f’s source code

To see Graphw00f in action, open your terminal and execute the
command in Listing 4-11. We use command line parameters -t (target)
and -d (detection). The -t flag in this case will be the remote URL http://
localhost:5013, and the -d flag will turn on detection mode, which indicates
to Graphw00f that it should run a GraphQL detection check against the
target URL. If you have questions about Graphw00f’s arguments, use the
-h flag to read more about its options.

cd ~/graphw00f
python3 main.py -d -t http://localhost:5013

 graphw00f
 The fingerprinting tool for GraphQL

Reconnaissance 81

 [*] Checking http://localhost:5013/
 [*] Checking http://localhost:5013/graphql
 [!] Found GraphQL at http://localhost:5013/graphql

Listing 4-11: A GraphQL detection with Graphw00f

Run in detect mode, Graphw00f iterates through various web paths. It
checks for the existence of GraphQL in the main web root folder and the
/graphql folder. Then it signals to us that it found GraphQL under /graphql
based on the HTTP response heuristics we discussed earlier.

To use your own list of endpoints, you can pass the -w (wordlist) flag
and point it at a file containing your endpoints, as shown in Listing 4-12.

cat wordlist.txt

/app/graphql
/dev/graphql
/v5/graphql

python3 main.py -d -t http://localhost:5013 -w wordlist.txt

[*] Checking http://localhost:5013/app/graphql
[*] Checking http://localhost:5013/dev/graphql
[*] Checking http://localhost:5013/v5/graphql

Listing 4-12: Using a custom endpoint list with Graphw00f

Detecting GraphiQL Explorer and GraphQL Playground
The GraphiQL Explorer and GraphQL Playground IDEs are built using
the JavaScript library React. Yet when performing reconnaissance, we will
often rely on tools that are incapable of rendering web pages containing
JavaScript, such as command line HTTP clients like cURL or web appli-
cation scanners like Nikto. In the process, we might miss interesting web
interfaces.

In general, you’ll find it beneficial to look for any signs of web inter-
faces available on the network, such as administration, debugging, or con-
figuration panels, all of which are great candidates to hack. These panels
tend to be data rich and often become a way to pivot to other networks or
to escalate privileges. They also tend to be far less hardened than publicly
facing applications. Companies assume that the external space (the inter-
net) is riskier than the internal space (the corporate network). As such, they
often have guidelines for securing publicly facing servers and applications
via aggressive patching policies, configuration reviews, and frequent vulner-
ability scanning. Unfortunately, internal applications rarely get the same
treatment, which often makes them an easier target for hackers.

An interesting and often overlooked technique to scan for graphi-
cal web interfaces is through the use of tools such as headless browsers.
Headless browsers are fully functional command line web browsers that
the user can program for a variety of purposes, such as retrieving page

82 Chapter 4

contents, submitting forms, or simulating real user behavior on a web page.
For example, the headless browsers Selenium and PhantomJS can be handy
when you need to render web pages containing JavaScript code.

One security tool in particular has incorporated a headless browser to
solve this gap: EyeWitness. This web scanner is capable of taking screenshots
of web pages by leveraging the Selenium headless browser driver engine
behind the scenes. EyeWitness then generates a nice report, along with a
screen capture of the page.

Scanning for Graphical Interfaces with EyeWitness
Since the two GraphQL IDEs use JavaScript code, we need a capable scan-
ner to help us identify them when we perform network-wide scans. Let’s use
EyeWitness to identify these graphical interfaces.

EyeWitness offers many options for customizing its scanner behavior,
and you can see them by running the tool with the -h option. To detect
GraphQL IDE panels, we’ll use the --web option, which will attempt a screen
capture of the scanned site with the headless browser engine, together with
the --single option, which is suitable when you need to scan only a single
target URL. We will then use the -d flag to indicate to EyeWitness the folder
in which it should dump the report (in this case, the dvga-report folder).
Listing 4-13 puts everything together.

eyewitness --web --single http://localhost:5013/graphiql -d dvga-report

Attempting to screenshot http://localhost:5013/graphiql

 [*] Done! Report written in the dvga-report folder!
 Would you like to open the report now? [Y/n]

Listing 4-13: The runtime output of EyeWitness

In the output, EyeWitness indicates that it saved the collected web page
source files in the dvga-report folder and asks us whether to open the report.
Press Y and ENTER to open a web browser displaying the HTML report,
including the screenshot it took during the scan. Figure 4-1 shows the report.

Figure 4-1: An HTML report produced by EyeWitness

Reconnaissance 83

Additionally, the dvga-report will contain several folders, as shown here:

ls -l dvga-report/
total 112
-rw-r--r-- 1 kali kali 95957 Dec 15 15:19 jquery.min.js
-rw-r--r-- 1 kali kali 2356 Feb 11 15:10 report.html
drwxr-xr-x 2 kali kali 4096 Feb 11 15:09 screens
drwxr-xr-x 2 kali kali 4096 Feb 11 15:09 source
-rw-r--r-- 1 kali kali 684 Feb 11 15:09 style.css

The report.html file includes information about the target, such as the
HTTP response headers it sent back to the client, a screen capture of the
application running on the target, and a link to the web page’s source
code. While you can visually identify the GraphiQL IDE by using the screen
capture taken by EyeWitness, you can also confirm your finding by search-
ing the source folder, where the source code files reside. Run the command
shown in Listing 4-14 to search for any GraphiQL Explorer or GraphQL
Playground strings within the source code.

grep -Hnio "graphiql|graphql-playground" dvga-report/source/*
source/http.localhost.5013.graphiql.txt:18:graphiql
source/http.localhost.5013.graphiql.txt:18:graphiql
source/http.localhost.5013.graphiql.txt:18:graphiql

Listing 4-14: Keyword matches in the web page source code

Let’s break down the command to explain what’s happening here. We
run a case-insensitive search using grep by passing it the i flag to find any
instances of the words graphql or graphql-playground in the source folder.
Using the -H flag, we tell grep to print the names of files containing any pat-
tern matches. The -n flag indicates the line number at which the match
is located (in this case, 18). The -o flag prints only the parts of matching
lines that yielded positive results. As you can see, the search found multiple
instances of the string graphiql at line number 18.

EyeWitness can run the same type of scan against a list of URLs, as
opposed to a single URL, using the -f (file) flag. When you use this flag,
EyeWitness will expect a text file containing a list of target URLs to scan.
Listing 4-15 shows how to write a single URL (http://localhost:5013/graphiql)
to a text file (urls.txt) and pass it on to EyeWitness as its custom URL list.

echo 'http://localhost:5013/graphiql' > urls.txt
eyewitness --web -f urls.txt -d dvga-report

Starting Web Requests (1 Hosts)
Attempting to screenshot http://localhost:5013/graphiql
Finished in 8 seconds

[*] Done! Report written in the dvga-report folder!

Listing 4-15: Scanning multiple URLs with EyeWitness

84 Chapter 4

EyeWitness iterates over the URLs specified in the file, scans them, and
saves its output into the dvga-report folder for further inspection.

In this example, we used a file that contains only a single URL. Often,
you may want to search for any additional web paths beyond the /graphql
endpoint to check whether GraphQL lives in an alternative location, par-
ticularly one that’s obscure. You could create a list of URLs to use with
EyeWitness in multiple ways. The first option is to use the list of common
GraphQL endpoints mentioned in “Common Endpoints” on page 73.

Alternatively, use one of Kali’s built-in directory wordlists, located at
/usr/share/wordlists. One such example is the dirbuster wordlist. EyeWitness
needs full URLs, and this wordlist contains only web paths, so we’d first
need to format it using a Bash script, as shown in Listing 4-16.

for i in $(cat /usr/share/wordlists/dirbuster/directory-list-2.3-small.txt);
do echo http://localhost:5013/$i >> urls.txt; done

cat urls.txt

http://localhost:5013/api
http://localhost:5013/apis
http://localhost:5013/apidocs
http://localhost:5013/apilist

Listing 4-16: Using Bash and a directory wordlist to build a list of URLs

This Bash for loop ensures that the directories in the wordlist directory
-list-2.3-small.txt are appended to our target host (http://localhost:5013) so
EyeWitness can use them in its scan. All that’s left is to run EyeWitness with
our new wordlist file, urls.txt.

Attempting a Query Using Graphical Clients
Finding instances of GraphiQL Explorer or GraphQL Playground in a
penetration test doesn’t guarantee that the GraphQL API itself will allow
you to make unauthorized queries. Because both GraphiQL Explorer and
GraphQL Playground are simply frontend interfaces to a GraphQL API,
they are effectively HTTP clients that interact with a GraphQL server.

In some cases, these graphical interfaces might fail to query the API for
multiple reasons. An authentication or authorization layer might be imple-
mented in the GraphQL API that prevents unauthorized queries. The API
might also restrict queries based on client properties, such as geographical
location or an IP address–based allow list. Client-side mitigations could
also prevent clients from running queries through GraphiQL Explorer or
GraphQL Playground.

N O T E The specification doesn’t describe how to implement security measures in GraphQL
or whether authorization and authentication should exist at the GraphQL layer.
Chapter 7 covers how to identify these mechanisms when they are implemented in
GraphQL and how to test them in black-box penetration tests.

Reconnaissance 85

To confirm that we can use the interface to query the GraphQL server,
we will need to send some form of an unauthenticated GraphQL query. The
query must be one that will work on any GraphQL API. Think of this query
as a way to confirm that the remote GraphQL API is accepting unauthenti-
cated queries from clients. We might call it a canary GraphQL query.

Open the Firefox web browser in your lab machine and navigate to
http://localhost:5013/ to access the DVGA. You should see the DVGA’s main
page. Next, browse to the GraphiQL Explorer panel we discovered earlier at
http://localhost:5013/graphiql. You will notice that we get an immediate error,
indicating that our access was rejected, with the message 400 Bad Request:
GraphiQL Access Rejected, as shown in Figure 4-2.

Figure 4-2: The GraphiQL Explorer rejecting client access

As hackers, it’s important to look at how things work under the hood.
Click the Docs button located at the top right of the window. You should
see an error message, No Schema Available. This error means that GraphiQL
Explorer wasn’t able to retrieve schema information from the API. Because
GraphiQL Explorer automatically sends an introspection query to the
GraphQL API to populate the documentation section with schema informa-
tion on every page load, it relies on this documentation being available.

You can see this behavior by using the Developer Tools in Firefox.
Press SHIFT-F9 or right-click anywhere in the web page and select Inspect
Element to open the Developer Tools console. Click the Network tab; then
reload the page by pressing F5.

You should be able to see a POST request sent to the /graphiql endpoint.
Figure 4-3 shows this introspection query.

86 Chapter 4

Figure 4-3: A GraphiQL Explorer introspection query shown in Firefox Developer Tools

If the introspection query was successfully sent, what could possibly
be rejecting our access to GraphiQL Explorer? Let’s continue to explore
the Developer Tools in Firefox for clues. Click the Storage tab, shown in
Figure 4-4.

Figure 4-4: The Developer Tools Storage tab in Firefox

Reconnaissance 87

The Storage tab gives us a view of the HTTP cookies that were set up
by the application, as well as access to the browser’s local and session stor-
age. On the left pane, click the Cookies drop-down menu and select http://
localhost:5013 to see the specific cookies for the domain, as shown in
Figure 4-5.

Figure 4-5: HTTP cookies

You’ll notice that, in the right pane, we have two keys set in our HTTP
cookies: env and session. The env key in particular is interesting, because it
appears to have the string graphiql:disable set as its value. As hackers, this
should ring a bell or two. Is it possible that this cookie value is responsible
for GraphiQL Explorer’s denying access? We can find out by tampering
with its value.

Double-click the text graphiql:disable, which will allow you to modify
it; then simply remove disable and replace it with enable. Next, refresh
the web page. You’ll notice that we no longer see the rejection message
in GraphiQL Explorer. To confirm that tampering with the cookie actu-
ally works, attempt to run a GraphQL query. You should be able to get a
response from the GraphQL API! This is an example of a weak client-side
security control that can easily be circumvented.

Developers often create web applications with the mindset that clients
are to be trusted, but not everyone will play by the rules. Threat actors
who are interested in finding loopholes will tamper with applications and
attempt to defeat any countermeasures in place. It’s important to remember
that anything an attacker can directly control can potentially be circum-
vented. Yet controls implemented on the client are not a rare thing to see;
you may find applications implementing input validation or file upload vali-
dation only on the client side. These can often be bypassed. In Chapter 7,
you’ll learn more about defeating GraphQL authorization and authentica-
tion mechanisms.

Querying GraphQL by Using Introspection
Introspection is one of GraphQL’s key features, as it provides information
about the various types and fields the GraphQL schema supports. A self-
documenting API is very useful for anyone who needs to consume it, such
as third-party businesses or other clients.

88 Chapter 4

As hackers, one of the first things we want to test when we run into a
GraphQL application is whether its introspection mechanism is enabled.
Many GraphQL implementations enable introspection by default. Some
implementations might have an option to disable introspection, but others
might not. For example, the Python GraphQL implementation Graphene
does not provide the option to disable introspection. To do so, the con-
sumer would have to dig into the code and identify ways to prevent intro-
spection queries from being processed. On the other hand, the GraphQL
PHP implementation graphql-php enables introspection by default but also
documents how to completely disable this feature. Table 4-2 shows the state
of introspection in some of the popular GraphQL server implementations.

Table 4-2: The State of Introspection in GraphQL Implementations

Language Implementation
Introspection
configuration

Disable introspection
option

Python Graphene Enabled by default Not available

Python Ariadne Enabled by default Available

PHP graphql-php Enabled by default Available

Go graphql-go Enabled by default Not available

Ruby graphql-ruby Enabled by default Available

Java graphql-java Enabled by default Not available

Any default setting that directly impacts security is always good news
for hackers. Application maintainers rarely change these default set-
tings. (Some maintainers may not even be aware of them.) In Table 4-2,
you can see that in some cases—such as in graphql-go, graphql-java, and
Graphene—introspection can be disabled only if the application maintain-
ers code the solution into the GraphQL API themselves; there is no official,
vendor-vetted solution to disable it.

While opinions on this matter vary, especially in security circles, intro-
spection in GraphQL is widely considered a feature and not a vulnerability.
Companies that adopt GraphQL may choose to keep it enabled, while oth-
ers may disable it to avoid disclosing information that could be leveraged
in attacks. If no external consumers integrate with a GraphQL API, it’s pos-
sible that developers could disable introspection altogether without impact-
ing normal application flows.

Depending on your target, the response to an introspection query
could be fairly large. Also, if you’re attacking a target with a mature secu-
rity program, these queries may be monitored for any attempts from
untrusted clients, such as those in new geographical locations or with new
IP addresses.

To experiment with the introspection query by using our vulnerable
server, open the Altair client in your lab and ensure that the address bar is
set to http://localhost:5013/graphql. Next, enter the introspection query shown
in Listing 4-17 and execute it in Altair.

Reconnaissance 89

query {
 __schema {
 types {
 name
 }
 }
}

Listing 4-17: An introspection query in its simplest form

This query uses the meta-field __schema, which is the type name of the
GraphQL schema introspection system. It then requests the name of all types
available in the GraphQL server. The following output shows the server’s
response to the query:

{
 "data": {
 "__schema": {
 "types": [
--snip--
 {
 "name": "PasteObject"
 },
 {
 "name": "CreatePaste"
 },
 {
 "name": "DeletePaste"
 },
 {
 "name": "UploadPaste"
 },
 {
 "name": "ImportPaste"
 },
--snip--
]
 }
 }
}

While we receive a valid response, this query in its current form gives us
only a partial view of the features available through the API. The response
is missing key information, such as query and mutation names, information
about which queries allow arguments to be passed by clients, the data types
of arguments (such as scalar types like String and Boolean), and so on. These
are important, because queries that accept arguments could be prone to
vulnerabilities, such as injections, server-side request forgeries, and so on.

We can craft a more specialized introspection query that would give
us more data about the target application’s schema. A useful introspec-
tion query is one that will give us information on the entry points into the
application, such as queries, mutations, subscriptions, and the type of data

90 Chapter 4

that can be injected into them. Consider the introspection query shown in
Listing 4-18.

query IntrospectionQuery {
 __schema {
 1 queryType { name }
 mutationType { name }
 subscriptionType { name }
 2 types {
 kind
 name
 3 fields {
 name
 4 args {
 name
 }
 }
 }
 }
}

Listing 4-18: A more useful introspection query

The introspection query in Listing 4-18 gives us a bit more insight into the
API. At 1 we get the name of all queries (queryType), mutations (mutationType),
and subscriptions (subscriptionType) available in the GraphQL API. These
names are typically self-explanatory, to make it easier for clients to use the
API, so knowing these query names gives us an idea of the information we
could receive.

At 2 we get all the types in the schema, along with their kind (such as
an object) and name (such as PasteObject). At 3 we get the fields along with
the name of each one, which will allow us to know the types of fields we can
fetch when we use different GraphQL objects. Next, we get the arguments
(args) of these fields along with their name 4. Arguments could be any infor-
mation the API is expecting the client to supply when it queries the API
(typically, dynamic data). For example, when a client creates a new paste, it
will supply an arbitrary title argument and a content argument containing
the body of the paste, which might be a code snippet or other text.

In penetration tests, you may want to run an introspection query
against an entire network, assuming a GraphQL server may be present. In
this case, you would either need to write your own script or use the Nmap
NSE script graphql-introspection.nse we installed in Chapter 2. This script is
simple: it queries GraphQL by using the __schema meta-field to determine if
it’s fetchable.

Say you have a list of IP addresses in a text file such as hosts.txt. Using
Nmap’s -iL flag, you can tell Nmap to use it as its list of targets. Using the
--script flag, you can then tell Nmap to run the graphql-introspection NSE
script against any host that has port 5013 open (-p flag). The -sV flag per-
forms a service and version scan. The command in Listing 4-19 shows how
this is accomplished.

Reconnaissance 91

nmap --script=graphql-introspection -iL hosts.txt -sV -p 5013

PORT STATE SERVICE VERSION
5013/tcp open http Ajenti http control panel
| graphql-introspection:
| VULNERABLE:
| GraphQL Server allows Introspection queries at endpoint:
| Endpoint: /graphql is vulnerable to introspection queries!
| State: VULNERABLE
| Checks if GraphQL allows Introspection Queries.
|
| References:
|_ https://graphql.org/learn/introspection/

Listing 4-19: A GraphQL introspection detection with the Nmap NSE

Using nmap to detect when introspection is enabled is just the first step.
The next step is to extract all possible schema information by using a more
robust query.

In the book’s GitHub repository, you can find a comprehensive intro-
spection query that, when executed, will extract a lot of useful information
about the target’s schema: https://github.com/dolevf/Black-Hat-GraphQL/blob/
master/queries/introspection_query.txt. This query will return information
such as queries, mutations, and subscriptions names, with the arguments
they accept; names of objects and fields, along with their types; names and
descriptions of GraphQL directives; and object relationships. If you run
that query in Altair, the server should return a fairly large response, as
shown in Figure 4-6.

Figure 4-6: An introspection in Altair

92 Chapter 4

The response is large enough (containing approximately 2,000 lines)
that it would be challenging for any human to go through it manually and
make sense of it without investing a significant amount of time. This is
where GraphQL visualizers such as GraphQL Voyager come in handy.

Visualizing Introspection with GraphQL Voyager
GraphQL Voyager, which can be found at either https://ivangoncharov.github
.io/graphql-voyager or http://lab.blackhatgraphql.com:9000, is an open source
tool that processes either introspection query responses or GraphQL SDL
files and visualizes them, making it easy to identify the various queries,
mutations, and subscriptions and the relationships between them.

The tool’s introspection query option is most suitable for scenarios such
as black-box penetration tests, in which the application’s code base is not
accessible to us. The SDL option is useful when we might have direct access
to the GraphQL schema files, such as during a white-box penetration test in
which the company provides us with full access to the source code.

Try visualizing the introspection query response you just received in
Altair and importing it into GraphQL Voyager. Copy the response and then
open your browser and navigate to GraphQL Voyager. Click the Change
Schema button located at the top-left corner. Select the Introspection tab,
paste in the response, and click the Display button. You should see a visual-
ization similar to the one shown in Figure 4-7.

Figure 4-7: The schema view in Voyager

The visualization we receive from Voyager represents the queries, muta-
tions, and subscriptions available in our target application and how they
relate to the different objects and fields that exist in the schema.

Under Query, you can see that the application supports 12 queries. The
arrows in the view represent the mapping between these queries and the
schema objects. For example, when you use the pastes query, it will return
an array of [PasteObject] objects, which is also the reason you’re seeing an

Reconnaissance 93

arrow pointing to the PasteObject table. The system queries (update, diag-
nostics, debug, and health) are not tied to any other schema objects; they
simply return a string whenever you use them.

You can also see that we have relationships (edges) between fields. For
example, the owner field in the PasteObject object is linked to OwnerObject, and
the paste field in OwnerObject is linked back to PasteObject. This circular con-
dition could lead to DoS conditions, as you will learn in Chapter 5.

N O T E You can toggle between the Query view, Mutation view, and Subscription view by
using the drop-down menu at the bottom of Voyager.

Now that we’ve experimented with visualizing an introspection response
in Voyager, let’s do the same with SDL files. Voyager accepts SDL files and
can process them just as well as it does introspection responses. To see this
in action, click the Change Schema button located at the top-left corner in
Voyager, select the SDL tab, and paste in the SDL file located at https://github
.com/dolevf/Black-Hat-GraphQL/blob/master/ch04/sdl.graphql. Then click the
Display button. You should see a similar visualization to the one generated
in the Introspection tab.

Generating Introspection Documentation with SpectaQL
SpectaQL (https://github.com/anvilco/spectaql) is an open source project that
allows you to generate static documentation based on an SDL file. The
document that gets generated will include information about how to con-
struct queries, mutations, and subscriptions; the different types; and their
fields. We’ve hosted an example SpectaQL-generated schema of DVGA at
http://lab.blackhatgraphql.com:9001 so you can see how SpectaQL looks when
it’s functional.

Exploring Disabled Introspection
At some point, you’ll probably encounter a GraphQL API that has intro-
spection disabled. To see what this looks like, let’s use one of the neat fea-
tures of our vulnerable GraphQL server: turning on its hardened mode.

The DVGA works in two modes, a Beginner mode and an Expert (hard-
ened) mode. Both versions are vulnerable; the only difference is that the
Expert mode has a few security mechanisms to protect the application from
any dangerous queries.

To change the application’s mode, open the Altair client and ensure
that the address points to http://localhost:5013/graphql. In the left sidebar,
click the Set Headers icon, which looks like a small sun symbol. Set Header
Key to X-DVGA-MODE and set Header Value to Expert. This HTTP header
set instructs DVGA to perform security checks on any incoming queries that
include the headers as part of the request. Alternatively, you can toggle on
Expert mode from within DVGA’s web interface by using the drop-down
menu located at the top-right corner (the cubes icon).

94 Chapter 4

Now attempt a simple introspection query using Altair:

query {
 __schema {
 __typename
 }
}

You should see an error response indicating that introspection is dis-
abled, causing the query to fail (Listing 4-20).

{
 "errors": [
 {
 "message": "400 Bad Request: Introspection is Disabled",
 "locations": [
 {
 "line": 2,
 "column": 7
 }
],
 "path": [
 "__schema"
]
 }
],
 "data": null
}

Listing 4-20: An error returned when introspection is disabled

In cases like this one, you’ll need a plan B. In Chapter 6, you’ll learn
how to discover information about the GraphQL application even if intro-
spection data isn’t available.

Fingerprinting GraphQL
Earlier in this chapter, we highlighted the many GraphQL implementa-
tions available. How can we tell which one is running on the server we’re
trying to hack? The answer is server fingerprinting, the operation of identify-
ing information about the target’s running services and their versions. For
example, a common and simple technique for fingerprinting web servers is
to make an HTTP HEAD request using a tool like cURL and observe the
HTTP response headers that are returned.

Once we know the specific technology and version running an appli-
cation, we can perform a more accurate vulnerability assessment against
the service. For example, we can look for publicly available exploits to run
against the target’s version or read the software’s documentation to identify
weaknesses.

Reconnaissance 95

Popular web servers such as Apache or Nginx are great examples of ser-
vices that are easy to fingerprint, since both typically set the server HTTP
response header when a client makes a request to them. Listing 4-21 shows
an example of how the web server behind the Apache Software Foundation
website identifies itself by using the server header:

curl -I https://apache.org/

HTTP/2 200
server: Apache
vary: Accept-Encoding
content-length: 73190

Listing 4-21: The Apache web server fingerprinting using a HEAD request

As expected, the Apache Software Foundation’s website is, in fact, run-
ning on the Apache web server. (It would have been a little odd if this were
not the case!)

Fingerprinting services in a penetration test won’t always be this easy;
sometimes accurate fingerprinting requires looking closely at the details,
as not all software self-identifies, including GraphQL servers. The tech-
niques used to fingerprint GraphQL implementations are relatively new in
the security industry. We (the authors of this book) have developed several
strategies for doing so, based on our research, and incorporated them into
Graphw00f.

GraphQL fingerprinting relies on the observation of various dis-
crepancies between implementations of GraphQL servers. Here are a few
examples:

•	 Inconsistencies in error messages

•	 Inconsistencies in response outputs to malformed GraphQL queries

•	 Inconsistencies in response outputs to properly structured queries

•	 Inconsistencies in response outputs to queries deviating from the
GraphQL specification

Using all four of these factors, we can uniquely identify the implemen-
tation behind a GraphQL-backed application.

Let’s examine how two GraphQL server implementations respond
to a malformed query. This query, shown in Listing 4-22, introduces an
additional y character in the word queryy, which is not compliant with the
GraphQL specification. We want to see how two GraphQL implementations
respond to it. The first implementation is Sangria, a Scala-based GraphQL
server.

queryy {
 __typename
}

Listing 4-22: A malformed GraphQL query

96 Chapter 4

Listing 4-23 shows Sangria’s response to the malformed query.

{
 "syntaxError": "Syntax error while parsing GraphQL query.
 Invalid input \"queryy\", expected ExecutableDefinition or
 TypeSystemDefinition (line 1, column 1):\nqueryy {\n^",
 "locations": [
 {
 "line": 1,
 "column": 1
 }
]
}

Listing 4-23: Sangria’s response to the malformed query

The second implementation is HyperGraphQL, a Java-based GraphQL
server. Listing 4-24 shows how it responds to the malformed query.

{
 "extensions": {},
 "errors": [
 {
 "message": "Validation error of type InvalidSyntax: Invalid query syntax.",
 "locations": [
 {
 "line": 0,
 "column": 0,
 "sourceName": null
 }
],
 "description": "Invalid query syntax.",
 "validationErrorType": "InvalidSyntax",
 "queryPath": null,
 "errorType": "ValidationError",
 "extensions": null,
 "path": null
 }
]
}

Listing 4-24: HyperGraphQL’s response to the malformed query

As you can observe, the two responses are different in every possible
way, and we can distinguish between these implementations based solely on
their responses.

Next, we’ll attempt the same malformed query in our lab against the
DVGA to see the kind of response we get. Open the Altair client and send
the GraphQL query. You should see output similar to Figure 4-8.

As you can see, the output is different from both the Sangria and
HyperGraphQL responses. This is because DVGA is based on Graphene, a
Python GraphQL implementation.

Reconnaissance 97

Figure 4-8: Sending a malformed query with Altair

Running queries manually and analyzing the discrepancies between
implementations doesn’t really scale well, which is why we built a server
fingerprinting capability into Graphw00f. In the next section, we’ll use it
for server fingerprinting purposes.

Detecting Servers with Graphw00f
Graphw00f is currently the only tool available for GraphQL server finger-
printing. It can detect many of the popular GraphQL server implemen-
tations and provide meaningful information whenever it successfully
fingerprints a server.

In your lab, open the terminal emulator. If you enter the graphw00f
directory and run python3 main.py -l, you’ll see that Graphw00f is capable of
fingerprinting over 24 GraphQL implementations. This list comprises the
majority of GraphQL targets currently in use.

Let’s use it to fingerprint the DVGA. We’ll run Graphw00f with the
-f flag to enable fingerprint mode and the -t flag to specify the target
(Listing 4-25). You could combine the -f flag with the -d flag (covered ear-
lier in this chapter) if you wanted to detect GraphQL and fingerprint at the
same time. Here, we’ll use the -f flag on its own, as we already know the
path to GraphQL on the server.

cd ~/graphw00f
python3 main.py -f -t http://localhost:5013/graphql

 [*] Checking if GraphQL is available at http://localhost:5013/graphql...
 [!] Found GraphQL.
 [*] Attempting to fingerprint...

98 Chapter 4

 [*] Discovered GraphQL Engine: (Graphene)
 [!] Attack Surface Matrix: https://github.com/nicholasaleks
 /graphql-threat-matrix/blob/master/implementations/graphene.md
 [!] Technologies: Python
 [!] Homepage: https://graphene-python.org
 [*] Completed.

Listing 4-25: The fingerprinting of a GraphQL server

The tool first checks whether the target is, in fact, a GraphQL server. It
does so by sending a few queries and inspecting their responses against its
own database of signatures. As you can see, it is able to discover a GraphQL
server running on Graphene and provides us with an attack surface matrix
link. The attack surface matrix is essentially knowledge about the security
posture of the various GraphQL implementations that Graphw00f can
fingerprint. Graphw00f uses the GraphQL Threat Matrix we discussed in
Chapter 3 as its implementation security posture database.

Since we now know that DVGA runs Graphene, we need to analyze
Graphene’s weaknesses to determine which attacks we can run against this
specific implementation. Some implementations have been around longer
than others. Thus, they are more mature, stable, and offer more security
features than others. This is why knowing the backend implementation is
an advantage when we hack a GraphQL target.

Analyzing Results
Take a look at the attack surface threat matrix, which provides information
about the implementation’s default behavior and the security controls avail-
able for it (for example, the settings that are enabled by default, the security
controls that exist, and other useful features we can leverage for hacking
purposes). Figure 4-9 shows the attack surface matrix for Graphene. You can
also find it on GitHub at https://github.com/nicholasaleks/graphql-threat-matrix/
blob/master/implementations/graphene.md.

Figure 4-9: Graphene’s attack surface matrix

Reconnaissance 99

The table under Security Considerations shows various GraphQL fea-
tures and whether they are available in Graphene. If they do exist, the table
lists whether they are enabled or disabled by default. Some of the items in
the table are security controls, while others are native GraphQL features:

•	 Field Suggestions informs a client whenever they send a query with a
spelling mistake and suggests alternative options. This can be leveraged
for information disclosure.

•	 Query Depth Limit is a security control to prevent DoS attacks that may
abuse conditions such as cyclical node relationships in schemas.

•	 Query Cost Analysis is a security control to prevent DoS attacks that stem
from computationally complex queries.

•	 Automatic Persisted Queries is a caching mechanism. It allows the client to
pass a hash representing a query as a way to save bandwidth and can be
used as a security control with an allow list of safe queries.

•	 Introspection provides access to information about queries, mutations,
subscriptions, fields, objects, and so on through the __schema meta-field.
This can be abused to disclose information about the application’s
schema.

•	 Debug Mode is a mode in GraphQL that provides additional information
in the response for debugging purposes. This can potentially introduce
information disclosure issues.

•	 Batch Requests is a feature that provides clients with the ability to send a
sequence of queries in a single HTTP request. Batch queries are a great
vector for DoS attacks.

In later chapters, you’ll learn how each of these features can make our
hacking lives easier (or harder).

Summary
In this chapter, you learned the art of performing reconnaissance against
GraphQL servers by using a variety of security tools. We discussed how to
detect and fingerprint GraphQL servers deployed in standard and non-
standard locations, as well as how to find GraphQL IDE clients by using the
EyeWitness security tool. We also visualized an introspection query and SDL
files by using GraphQL Voyager to better understand queries, mutations,
and object relationships.

