INDEX

Note: Page numbers in *italics* refer to comic pages

Numbers & Symbols

µBTC (microbitcoins), 9
51 percent attacks, 167

A

addEventListener function, 234
addition, and elliptic curves, 147–148
AddressFormatException exception type, 239
addWallet() function, 240
Adleman, Leonard, 133–134
alternative coins (altcoins), 64
 comic on, 181–184
Andresen, Gavin, 113–114
anonymity, Bitcoin ATMs and, 62
anonymity by default, 124
anonymous rating service, 208
application specific integrated circuits (ASICs), for mining, 174
arbitrage, 64
Armory Bitcoin Client, 41
ASICs (application specific integrated circuits), for mining, 174
ask order, 63
asymmetric key cryptography, 133
asynchronous programming, 221
ATMs, Bitcoin, 62
Austrian economics, 126
authentication
 password for, 40
 two-factor, 36, 53–54
Authy app, 58–59
average net worth, 121–122

B

Back, Adam, 120
bank account
 linking to Coinbase, 59–60
 linking to exchange, 65
bid orders, 63
BigInteger class (Java), 235
BIP38 encryption, 40
BIPs (Bitcoin Improvement Proposals), 40
bitaddress.org, 38
Bitcoin, 1
 in 2030, 199–212
 beginnings, 112–116
 benefits of using, 3
 cap on total supply, 26
 complexity of, 4–5, 27–29
 cryptocurrencies as side chains, 121
 energy costs of, 124–125
 future role, 121–123
 how it works, 8–9
 motive for creating, 2–3
 potential of, 116–127
 risk of destruction, 118–119
 safety and security, 31, 61
 units, 9–10
 value growth, 114, 116
Bitcoin addresses, 10–11, 139
 generating
 with Bitcoin wallet program, 19
 with master public key, 190
 sharing, 156
 SPV wallets vs. full wallets, 193–195
Bitcoin ATMs, 62
Bitcoin classes (Java), 231
bitcoin.conf file, 218
Bitcoin Core, 38, 214
 initializing connection, 220–221
JSON-RPC API, 222
 programming techniques and, 217–218
 starting, 218–219
 version 0.1, 113
bitcoind, 214
 programming techniques and, 217–218
Bitcoin exchanges, 52
 intermediaries, 53–54
 live exchanges, 71
Bitcoiniacs, 55
Bitcoin Improvement Proposals (BIPs), 40
BitcoinJ, 226
 exception types, 239
 installing, 227–228
 issues for wallets, 239–240
Bitcoin network, 169
 code for connecting, 233–234
Bitcoin sellers, finding, 67–68
Bitcoin software applications in JavaScript, 217
 security notes on programming, 215–216
 writing approaches, 214–215
Bitcoin wallets. See wallets
BitPay, 214
Bitrated, 70
Bitstamp, 64
BitTorrent, 119, 127
black hat hacker, 216
blind signatures, 111
block
 anatomy of, 171–175
 number of transactions included in, 180
blockchain, 19–26, 96, 165
 distribution, 138
 forking, 23–25
 importance of, 211
 initializing, 232
 lottery, 21–23
 orphaned, 24–25
 reasons for, 232–233
 recording transactions, 161, 170
 size of, 191
 storing, 33
Blockchain.info, 37
 block depth, 25
 block difficulty, 172–173
 block hash, 138
 block header, 171
 data in, 172
 and SPV wallets, 192, 193
BlockStoreException exception type, 239
Bosselaers, Antoon, 140
brain wallets, 45–46
broadcast-only node, 169
BTC, 9
BTC China, 64
BTC-E, 64
BTCquick, 53
Buffett, Warren, 110
buttonwood exchanges, 71
buying bitcoins, 49–71
 with Coinbase, 58–61
 from currency exchange, 62–66
 methods, 51–52
 from middleman, 52–57
 person-to-person, 67–71
bye-bye-money program, 236–239
 ensuring money transmission, 238
 running, 238–239
Byzantine Generals’ Problem, 2–3, 164–165

C
C#, 226
C++, 226
calculus, 211
callback function, 221
cap on total bitcoin supply, 26
Cavirtex, 64
change address, 187
charities, accepting bitcoins, 18
Chaum, David, 111
Circle, 53
client.getBalance function, 222
client.listTransactions function, 223
client-server architecture, 119
Coinbase, 36, 53
 buying bitcoins with, 58–61
 linking bank account to, 59–60
 registering at, 58
coin control, 196
cold storage, 47
 vs. hot storage, 33–34
collision, hash functions, 132
colored coins, 205, 206
comic
 on altcoins, 181–184
 on Bitcoin, 73–108
commodities, spread for, 65–66
computer viruses, threat to wallets, 216
confirmed payments, security, 194
confirming transactions
 in Hello Money! app, 222
 infinite loop of, 164
contracts, 55–56
convenience, of storage, 35
credit cards, 111, 112
 vs. Bitcoin transactions, 57
 issuers, 125
cross-domain restrictions, 217
cryptocurrencies, 129
 competition with Bitcoin, 119–121
cryptography, 129–159
 Bitcoin need for, 137–139
 elliptic curve, 141
 methods in Bitcoin, 139–141
 overview, 130–137
 and rounding errors, 151
 security for Bitcoin, 157–158
currencies
 Bitcoin advantages over existing, 117–118
 converting to bitcoins, 55–57
decentralized, 1
 ideal, 117
 stateless, 2
currency codes, standard for, 9
currency exchanges, 50
 buying bitcoins from, 62–70
 opening, 114
 transferring dollars to account, 65
Cybercash, 111

D
Data Universal Numbering Service (DUNS), 214
 decentralization, in mining, 179–180
decoding, cryptography, 134
decrypting messages, 130
deflation, dangers of, 126
dependencies section, 229
deterministic key generation, 187–190
 combining with watch-only wallet, 189
difficulty target, 171
DigiCash, 111
 bankruptcy, 112
digital currencies, 1, 64
 dangers of decentralized, 123–127
discussions on government role, 116
 history, 110–112
digital signatures, 11, 91, 131–132, 135–136
 authorizing transactions with, 137–138
 using elliptic curves, 154–155
discounts, for limit orders, 66
discrete logarithm, 131–132
distributed autonomous corporations, 208
distributed computing projects,
 Bitcoin as largest, 115
distribution of bitcoins, 162
divisibility, of currency, 117
DnsDiscovery class, 234
Dobbertin, Hans, 140
dollar bill, life span of, 118
dollars, converting to bitcoins, 55–57
double SHA256 hash, 171
 security and, 156
double spending, 25, 167
Draper, Adam, 110
DUNS (Data Universal Numbering Service), 214
 durability, of currency, 118
Index

E

e-cash, 111
ECDSA (elliptic curve digital signature algorithm), 146–153
signing Bitcoin transaction with, 153–156
verifying signature with, 155
e-commerce, building app using, 214
e-gold, 112
Electrum wallet, 14–16, 38, 188
elliptic curve cryptography, 141
calculating sum of adding two points, 149
pseudocode for summation and multiplication, 158–159
elliptic curve digital signature algorithm (ECDSA), 146–153
signing Bitcoin transaction with, 153–156
verifying signature with, 155
encoding, cryptography, 134
encryption, 130
BIP38, 40
paper wallets, 39–40
password for, 40
energy costs, of Bitcoin, 124–125
error handling, Bitcoin programming, 239
escrow services, 68, 69
face-to-face bitcoin purchase with, 69–71
face-to-face bitcoin purchase without, 68
setting up, 70
exchange intermediary,
Coinbase as, 58
exec-maven-plugin plug-in, 229
ExecutionException exception type, 239

F

face-to-face bitcoin purchases with escrow, 69–70
problems, 69
without escrow, 68

fees, 26–27, 170, 238
for Bitcoin transaction, 18
for currency exchange, 63
for middleman, 53
field programmable gate arrays (FPGAs), for mining, 174
Finney, Hal, 113
first bits scheme, 10
FPGAs (field programmable gate arrays), for mining, 174
fragmented private keys, and multi-signature addresses, 41–42
fraud prevention, 125
Freenet, 127
Friedman, Milton, 110
full node, 191
full payment verification, 191
full wallets, 187
vs. SPV wallets, 193–195
fungibility, of currency, 118

generator point, elliptic curve cryptography, 152
genesis block, 113, 165
German mark, 2
Git, installing, 227
git checkout command, 228
Gnutella, 119, 127
gold, wealth stored as, 121
gold coins, 1
goods, first exchange for bitcoins, 114
Go programming language, 226
government
digital currency companies and, 111–112
risk of Bitcoin destruction by, 119
stability, and Bitcoin, 126–127
graphics-processing units (GPUs), for mining, 174

H

hacker theft, likelihood of, 38
hardware, for mining, 174–175
2030 requirements, 202
energy efficiency of, 178
profitability threshold curves for comparing, 179
hardware wallets, 42–43
hash, 98, 132–133
 of transactions in block, 172
hash functions, 131
 for verifying information, 132–133
hash rate
 projecting future, 177
 theoretical limits, 178–179
Hayek, Friedrich, 126
health of network, SPV wallets vs. full wallets, 195
heavyweight wallets, 191
hello-money.js file, 220
Hello Money! program, 217–218, 220–222
hello-money starter project
 creating, 228–229
 declarations, 231
 hook for detecting money arrival, 234
 running and testing, 235–236
 writing code, 230–235
hierarchical deterministic wallets, 190
Hill, Austin, 120
history of Bitcoin, 112–116
homebrew (command-line tool), 219
hosted wallets
 online services, 36
 vs. personal wallets, 34–35
hot storage, 47
 vs. cold storage, 33–34
hot wallets, personal, 37–38
human-readable Bitcoin addresses, 10n
hybrid wallets, 187
irreversibility, of transactions, 25–26, 56
 superiority of, 57
Java, 226
 initializing objects, 231–233
 installing, 226–227
Java.io.File class, 231
Java JDK (Java Development Kit), 226
java.math.BigInteger class, 231
JavaScript, 213–223
 preparing machine for, 218–219
 writing Bitcoin program in, 217–218
jelly-filled donut incident, 141–156
JSON-RPC API (JavaScript Object Notation - Remote Protocol Call), 222
limitations of writing Bitcoin programs using, 223
JSON-RPC protocol, 214
Kaminsky, Dan, 118
Keynesian economics, 126
Kienzle, Jörg, 110–111
Koblitz curve, 151
Kraken, 64
Krugman, Paul, 117
Landauer limit, 157
laptops, private keys on, 44
ledger, 11
length extension, 171n
liability, for stolen bitcoins, 34
lightweight wallets, 192
limit orders, 66
Linux
 installing Git, 227
 installing Maven, 227
 OpenJDK version of Java, 227
 setting up Bitcoin Core server, 219
live Bitcoin exchanges, 71
LocalBitcoins.com, 67, 68
 escrow service, 70
Mac OS
installing Git, 227
installing Maven, 227
setting up Bitcoin Core server, 219
man-in-the-middle attacks, 216
market orders, 65–66
MasterCard, 112
master private key, 188
master public key, 188
generating Bitcoin address with, 190
Maven
empty starter project created with, 228
installing, 227
mBTC (millibitcoins), 9
MD5 (message digest algorithm), 132
meeting places, for Bitcoin transactions, 68
MemoryBlockStore function (bitcoinJ), 237
merchant services, 214
Merkle trees, 192
mesh networks, 169
message digest algorithm (MD5), 132
microbitcoins (µBTC), 9
middleman, buying bitcoins from, 52–57
Miller-Rabin primality test, 90
millibitcoins (mBTC), 9
mining, 5, 20, 26–27, 96, 99, 161–180
in 2030, 201–202
decentralization of, 179–180
difficulty of, 173
distributing new currency with, 167–168
hardware, 174–175
2030 requirements, 202
energy efficiency of, 178
profitability threshold curves for comparing, 179
need for, 162–168
nodes, 170
pooled, 175–176
practicality, 50
preventing attacks with, 166–167
process for, 168–176
for profit, 176–177
proof-of-work in, 138–139
solving a block, 171
modular arithmetic, 131
“m of n” private key, 42
money laundering, 112–113
Moore’s law, 179
Moxie Jean, 67
Multibit, 38
multi-signature addresses, and fragmented private keys, 41–42
multi-signature transactions, 57, 69–70
mvn install command, 230
My Wallet Service, 37
N
Nakamoto, Satoshi, 3, 110, 211
identity, 113
last comment, 114
white paper on Bitcoin, 112
network effect, 120
NetworkParameters structure, 232
newbiecoins.com, 13
newly minted bitcoins, 26–27
Newton, Isaac, *Principia*, 210–211
node-bitcoin, installing, 218
Node.js library, 217, 221
installing, 218
Node Package Manager, 218
nodes
broadcast only, 169
full, 191
relay, 170
nominal deflation, 126
nonprofit organizations, accepting bitcoins, 18
NXT, 125
O
off-chain transactions, 201
offline transaction signing, 40–41
onCoinsReceived function, 234–235
online wallet services
hosted, 36
personal, 34, 37
Oracle Corporation, 226
orders, placing to buy bitcoins, 65
order of curve, elliptic curve
cryptography, 152–153
orphaned blocks, 24–25

P
paper money, color copiers as
threat, 110
paper wallets, 39
 encrypted, 39–40
passwords, 14, 40
 for brain wallet, 45
 function of, 40
 loss of, 37
Peercoin, 125
PeerGroup object, 233–234, 240
peer-to-peer architecture, 119
pegging, 120
pending transaction, 18
Perrig, Adrian, 110–111
personal wallets
 vs. hosted wallet, 34–35
 hot storage, 37–38
 online services, 37
person-to-person bitcoin purchases,
52, 67–71
point multiplication, 150, 158–159
point-of-sale terminals, watch-only
wallet for, 187
polling, Bitcoin programming, 223
 pom.xml file, 229, 236–237
pooled mining, 175–176
portability, of currency, 117
Preneel, Bart, 140
price discovery process, 120
privacy, 11n
 and criminals, 124
 multiple addresses and, 12
private currencies, 2
private key, 11–12, 150
 compromise of, 41
 extra protection for, 139
 fragmented, and multi-signature
 addresses, 41–42
 generating, 37
 importing, 237
 master, 188
 memorizing, 45
 parable on, 141–145
 reversing function of, 136
 security for, 39, 186
 signing transaction with, 156
 SPV wallets vs. full wallets, 194
 storing, 33
profit, mining for, 176–177
programming languages, for Bitcoin
 network connection, 225–226
proof-of-stake, 125
proof-of-work, 125, 166
 and blockchain, 165
 in mining, 138–139
protecting bitcoins, 61. See also
 security
protocol, for Bitcoin, 112
public information, transactions as, 11
public key, 150
 encryption, 91
 master, 188
 parable of, 141–145
 reversing function of, 136
 sharing, 156
public key cryptography, 133–135
public/private key pair, creating with
 ECDSA, 154
pushing, Bitcoin programming, 223
Python, 226

Q
quick response (QR) codes, for
 Bitcoin address, 10

R
Race Integrity Primitives Evaluation
 Message Digest (RIPEMD),
 139–141, 188
radical decentralization, 126
random key generation, 187–190
randomness, for generating Bitcoin
 address, 39
relay node, 170
RelayRides, 67
remote servers, Electrum
 connection to, 15
retailers, acceptance of Bitcoin, 116
reversible transactions, 55–56
rewards, 170
 from Bitcoin-mining lottery, 22
 for transaction processing, 26
RIPEMD (Race Integrity Primitives Evaluation Message Digest), 139–141, 188
risks, to Bitcoin, 117–121
Rivest, Ron, 133–134
rounding errors, 235
 and cryptography, 151
RSA encryption, 133–134, 137
Ruby, 226
S
safety, of storage, 35
satoshi (bitcoin unit), 9
SatoshiLabs, 43
Satoshi Square, 71
savings, Bitcoin for, 121–122
scarcity, of currency, 118
Sean’s Outpost, 18
Secure Hash Algorithm (SHA), 139–141, 188
 ASIC optimization to calculate, 174
security, 14, 118–119
 of Bitcoin exchanges, 63
 confidence in, 216–217
 double hash scheme and, 156
 SPV wallets vs. full wallets, 193–194
 of storage, 35
seed, in Electrum, 14, 15
sending money
 from Bitcoin address, 236–239
 code for, 238
SendRequest object, 238
settlement period, 55, 56
SHA (Secure Hash Algorithm), 139–141, 188
 ASIC optimization to calculate, 174
Shamir, Adi, 133–134
Shamir’s Secret Sharing method, 42
shares, of mining reward, 176
side chains, 121
Silk Road website, 124
simplified payment verification (SPV), 191, 233
 vs. full wallets, 193–195
single key generation wallet programs, 188
smartphones
 private keys on, 44
 wallets on, 192
software as a service, 34
speed of payments, SPV wallets vs. full wallets, 193
spending bitcoins, 17–19
SPV (simplified payment verification), 191, 233
 vs. full wallets, 193–195
SPVBlockStore object, 232, 233
stateless currencies, 2
storage, Bitcoin, 31–47
 choosing method, 46–47
 hot vs. cold, 33–34
 of large amounts of bitcoins, 38–42
 private key, 33
 safety, security, and convenience, 35
 of small amounts of bitcoins, 35–38
 SPV wallets vs. full wallets, 194
Trezor, 43–45
summation, pseudocode for, elliptic curve cryptography, 158–159
symmetric key cryptography, 133
synchronization, SPV wallets vs. full wallets, 193
T
Takhteyev, Yuri, 112n
tangent to curve, elliptic curve cryptography, 150
thick wallets, 191
thin wallets, 192
third-party service provider, as bank, 33
timestamp, for block, 172
Tor, 127
trade volume, of exchange, 63
transaction confirmation, 25
transaction fees. See fees
transaction history, verifying validity, 138
transactions
 authorizing with digital signatures, 137–138
 full vs. simplified payment verification, 191–195
 information in, 138
 off-chain, 201
 ordering, 166
 potential, in 2030, 201
 signing
 with ECDSA, 153–156
 offline, 40–41
 offline vs. online, 186–187
 with private key, 156
transferring dollars to exchange account, 66
Trezor, 43–45
two-factor authentication, 36, 53–54
 setting up in Coinbase, 58–59

U
unit of account, 123
units, Bitcoin, 9
unspent output, 196

V
valid transaction, 191
vendor APIs, 214–215
Visa, 112
volatility, of Bitcoin, 120

W
wallet file, 13, 33, 186
 Wallet.loadFromFile() function, 240
 walletNotify feature, 223
 Wallet.saveToFile() function, 240
 watch-only wallet, 186
 combining deterministic key generation with, 189
 math supporting, 189–190
 full vs. SPV, 191–195
 for point-of-sale terminals, 187
 Windows development environment, JavaScript on, 218–219

X
XBT, 9

Z
zero point, elliptic curve cryptography, 152–153