
C
A N S W E R S  T O  T H E  E X E R C I S E S

Here you’ll find all the exercise questions 
and their answers. For some exercises, there 

are multiple ways we could come up with a 
solution, so I’ve provided at least one option.

Part I: Introduction to Probability

Chapter 1: Bayesian Thinking and Everyday Reasoning
Q1. Rewrite the following statements as equations using the mathematical 
notation you learned in this chapter: 

•	 The probability of rain is low

•	 The probability of rain given that it is cloudy is high

•	 The probability of you having an umbrella given it is raining is 
much greater than the probability of you having an umbrella in 
general.



230   Appendix C

A1. 
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rain low

rain cloudy high

umbrella rain umbrella
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�

� 

Q2. Organize the data you observe in the following scenario into a math-
ematical notation, using the techniques we’ve covered in this chapter. Then 
come up with a hypothesis to explain this data:

You come home from work and notice that your front door is 
open and the side window is broken. As you walk inside, you 
immediately notice that your laptop is missing.

A2. We first want to describe our data with a variable:

D = door open, window broken, laptop missing

Our data represents three facts you observed upon arriving home. 
An immediate explanation for this data is that you’ve been robbed! We 
would express this mathematically as:

H1 = you ve been robbed!’

Now we can express this as “The probability of seeing all these 
things, given that you’ve been robbed” as:

P D H� 1� �

Q3. The following scenario adds data to the previous one. Demonstrate 
how this new information changes your beliefs and come up with a second 
hypothesis to explain the data, using the notation you’ve learned in this 
chapter. 

A neighborhood child runs up to you and apologizes profusely 
for accidentally throwing a rock through your window. They 
claim that they saw the laptop and didn’t want it stolen so they 
opened the front door to grab it, and your laptop is safe at their 
house.

A3. Now we have another hypothesis for the things you observed:

H 2 = child accidentally broke your window 
  and took the lapttop for safekeeping

We can express this as:

P D H P D H� �2 1� � � �
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And we would expect:

P D H

P D H

�

�
2

1

� �
� �

� a large number

Of course, you might think that this child is untrustworthy and 
notorious for causing trouble, which might change your mind about 
how likely their explanation is and lead you to hypothesize that they 
have robbed you! As you move through this book, you’ll learn more 
about how you can reflect that mathematically.

Chapter 2: Measuring Uncertainty
Q1. What is the probability of rolling two six-sided dice and getting a 
value greater than 7?

A1. There are 36 possible ways that we could roll the two dice (if we 
consider 1 and 6 different from 6 and 1). You can list this all out on 
paper (or find a way to do it in code, which will be faster). Fifteen of 
these 36 pairs are greater than 7. So the probability that you’ll get a 
value greater than 7 is 15/36.

Q2. What is the probability of rolling three six-sided dice and getting a 
value greater than 7?

A2. With three rolls there are 216 different possible outcomes. You 
can write these out on a sheet of paper, which is fine but will take you 
quite a while. You can see why learning the basics of coding is helpful, 
as there are various programs (even messy ones) you can write to solve 
this problem. For example, we can find the answer with this simple set 
of for loops in R:

count <- 0
for(roll1 in c(1:6)){
  for(roll2 in c(1:6)){
    for(roll3 in c(1:6)){
      count <- count + ifelse(roll1+roll2+roll3 > 7,1,0)
    }
  }
}

Here you can see the count is 181, so the probability of the rolls 
totaling more than 7 is 181/216. As noted, however, there are many 
ways to compute this. One alternative is this single (difficult to read!) 
line of R, which does the same thing as the for loops:

sum(apply(expand.grid(c(1:6),c(1:6),c(1:6)),1,sum) > 7)

When learning to code, you should focus on getting the correct 
answer over using a particular approach to arrive at it.
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Q3. The Yankees are playing the Red Sox. You’re a diehard Sox fan and 
bet your friend they’ll win the game. You’ll pay your friend $30 if the Sox 
lose and your friend will have to pay you only $5 if the Sox win. What is 
the probability you have intuitively assigned to the belief that the Red Sox 
will win?

A3. We can see that the odds you’ve given for the Red Sox to win is:

O Red Sox win� � � �
30
5

6

Recalling our formula for converting odds to probabilities, we can 
translate the odds into a probability that the Red Sox will win:

P
O

O
Red Sox win

Red Sox win

Red Sox win
� � � � �

� � �
�

1
6
7

So, based on the bet you take, you would say there’s about an 86 
percent chance that the Red Sox will win!

Chapter 3: The Logic of Uncertainty
Q1. What is the probability of rolling a 20 three times in a row on a 
20-sided die?

A1. The probability of rolling a 20 is 1/20, and to determine the prob-
ability of rolling three in a row, we must use our product rule:

P three 20s� � � � � �
1

20
1

20
1

20
1

8 000,

Q2. The weather report says there’s a 10 percent chance of rain tomorrow, 
and you forget your umbrella half the time you go out. What is the prob-
ability that you’ll be caught in the rain without an umbrella tomorrow?

A2. Again, we can use the product rule to solve this problem. We know 
that P(rain) = 0.1 and P(forgetting umbrella) = 0.5, so:

P P Prain, forget umbrella rain forget umbrella� � � � � � � � � 0 05.

As you can see, there’s only a 5 percent chance that you’ll find your-
self caught in the rain without an umbrella.

Q3. Raw eggs have a 1/20,000 probability of having salmonella. If you eat 
two raw eggs, what is the probability you ate a raw egg with salmonella?
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A3. For this question, we need to use the sum rule because if either egg 
has salmonella, you’ll get sick:

P P P Pegg egg egg egg1 2 1 2

1
20 000

1
20 000

1
20 000

1
2

� � � � � � � � � �

� � �

�

�
, , , 00 000

39 999
400 000 000

,
,

, ,
�

. . . which is just a hair under 1/10,000.

Q4. What is the probability of either flipping two heads in two coin tosses 
or rolling three 6s in three six-sided dice rolls?

A4. For this exercise, we need to combine our product rule and our 
sum rule. First, let’s calculate P(two heads) and P(three 6s) separately. 
Each probability uses the product rule:

P

P

two heads

three 6s

� � � � �

� � � � � �

1
2

1
2

1
4

1
6

1
6

1
6

1
216

Now we need to use the sum rule to figure out the probability of 
either of these happening, P(two heads or three 6s):

P P P Ptwo heads three 6s two heads three 6s� � � � � � � � � �

� �

�

�
1
4

1
216

11
4

1
216

73
288

� �

. . . which is just a little bit more than a 25 percent chance.

Chapter 4: Creating a Binomial Probability Distribution
Q1. What are the parameters of the binomial distribution for the prob-
ability of rolling either a 1 or a 20 on a 20-sided die, if we roll the die 
12 times?

A1. We’re looking for an event to happen 1 time out of 12 trials, so 
n = 12, and k = 1. We have 20 sides and care about 2 of them, so  
p = 2/20 = 1/10.

Q2. There are four aces in a deck of 52 cards. If you pull a card, return 
the card, then reshuffle and pull a card again, how many ways can you pull 
just one ace in five pulls?
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A2. We don’t even need combinatorics for this one. There are five pos-
sible cases, if we imagine A stands for “ace” and x for anything else:

•	 Axxxx

•	 xAxxx

•	 xxAxx

•	 xxxAx

•	 xxxxA

We could just call this
 

5

1
�

�
�
�

�
�  or, in R, choose(5,1). Either way, the 

answer is 5.

Q3. For the example in question 2, what is the probability of pulling five 
aces in 10 pulls (remember the card is shuffled back in the deck when it is 
pulled)?

A3. This is the same as B(5; 10, 1/13).
As expected, the probability of this is low: about 1/2,200.

Q4. When you’re searching for a new job, it’s always helpful to have more 
than one offer on the table so you can use it in negotiations. If you have a 
1/5 probability of receiving a job offer when you interview, and you inter-
view with seven companies in a month, what is the probability you’ll have 
at least two competing offers by the end of that month?

A4. We can use the following R code to compute this answer:

> pbinom(1,7,1/5,lower.tail = FALSE)
 0.4232832

As you can see, there’s about a 42 percent chance of receiving two 
or more job offers if you interview at seven companies.

Q5. You get a bunch of recruiter emails and find out you have 25 inter-
views lined up in the next month. Unfortunately, you know this will leave 
you exhausted, and the probability of getting an offer will drop to 1/10 
if you’re tired. You really don’t want to go on this many interviews unless 
you are at least twice as likely to get at least two competing offers. Are you 
more likely to get at least two offers if you go for 25 interviews, or stick to 
just 7?

A5. Let’s write a bit more R code to sort this out:

p.two.or.more.7 <- pbinom(1,7,1/5,lower.tail = FALSE)
p.two.or.more.25 <- pbinom(1,25,1/10,lower.tail = FALSE)

Even with the reduced probability of an offer, your probability of 
getting at least two offers in 25 interviews is 73 percent. However, you’ll 
go this route only if you are twice as likely. 
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As we can see in R:

> p.two.or.more.25/p.two.or.more.7
[1] 1.721765

. . . you’re only 1.72 times more likely to get two or more offers, so 
all the hassle isn’t worth it.

Chapter 5: The Beta Distribution
Q1. You want to use the beta distribution to determine whether or not a 
coin you have is a fair coin—meaning that the coin gives you heads and 
tails equally. You flip the coin 10 times and get 4 heads and 6 tails. Using 
the beta distribution, what is the probability that the coin will land on 
heads more than 60 percent of the time?

A1. We would model this as Beta(4,6). We want to calculate the integral 
from 0.6 to 1, which we can do in R like so:

integrate(function(x) dbeta(x,4,6),0.6,1)

This tells us there is about a 10 percent chance that the true prob-
ability of getting heads is 60 percent or greater.

Q2. You flip the coin 10 more times and now have 9 heads and 11 tails 
total. What is the probability that the coin is fair, using our definition of 
fair, give or take 5 percent?

A2. Our beta distribution is now Beta(9,11). But we want to know the 
probability that the coin is fair, meaning the chance of getting heads is 
0.5, within 0.05 probability either way. This means we need to integrate 
our new distribution between 0.45 and 0.55. We can do so with this line 
of R:

integrate(function(x) dbeta(x,9,11),0.45,0.55)

Now we find that there’s a 30 percent chance that our coin is fair, 
given the new data we have.

Q3. Data is the best way to become more confident in your assertions. You 
flip the coin 200 more times and end up with 109 heads and 111 tails. Now 
what is the probability that the coin is fair, give or take 5 percent?

A3. Given the previous question, this answer is pretty straightforward:

integrate(function(x) dbeta(x,109,111),0.45,0.55)

Now we’re 86 percent certain that the coin is reasonably fair. Notice 
that the key to becoming more certain was to include more data.
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Part II: Bayesian Probability and Prior Probabilities

Chapter 6: Conditional Probability
Q1. What piece of information would we need in order to use Bayes’ 
theorem to determine the probability that someone in 2010 who had GBS 
also had the flu vaccine that year?

A1. We want to figure out P(flu vaccines | GBS). We can solve this using 
Bayes’ theorem, provided we have all these pieces of information:

P
P P

P
�u vaccine GBS

�u vaccine GBS flu vaccine

GBS
|

|( ) = ( ) × ( )
( )

Of these pieces of information, the only one we don’t know is the 
probability of getting the flu vaccine in the first place. We could prob-
ably get this information from the Centers for Disease Control and 
Prevention or another national data collection service.

Q2. What is the probability that a random person picked from the 
population is female and is not color blind?

A2. We know that P(female) = 0.5 and that P(color blind | female) 
= 0.005, but we want to know the probability that someone is female 
and not color blind, which is 1 – P(color blind | female) = 0.995. So:

P P Pfemale, not color blind female not color blind fema( ) = ( ) × | lle( )
= × =0 5 0 995 0 4975. . .

Q3. What is the probability that a male who received the flu vaccine in 
2010 is either color blind or has GBS?

A3. This problem may initially seem complex, but we can simplify it a 
bit. Let’s start by just working on the probability of being color blind 
given someone is male, and the probability of having GBS given they’ve 
received the flu vaccine. Notice that we’re taking a bit of a shortcut, 
since being male is independent from GBS (as far as we’re concerned 
here) and having a flu vaccine has no impact on being color blind. 
We’ll make each of these into a separate probability:

P A P

P B P

( ) = ( )
( ) = ( )

color blind male

GBS flu vaccine

|

|

Luckily we already did all this work earlier in the chapter, so we 
know that P(A) = 8/100 and P(B) = 3/100,000.

Now we can just use our sum rule to solve this:

P A B P A P B P A P B A or ( ) = ( ) + ( ) ( ) × ( )− |
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And because the probability of being color blind, as far as we know, 
has nothing to do with the probability of GBS, we know that P(B | A)  
= P(B). Plugging in our numbers, we get an answer of 800,276/10,000,000 
or 0.0800276. This is just bit larger than the chance of being color blind 
given someone is male, because the probability of GBS is so small.

Chapter 7: Bayes’ Theorem with LEGO
Q1. Kansas City, despite its name, sits on the border of two US states: 
Missouri and Kansas. The Kansas City metropolitan area consists of 
15 counties, 9 in Missouri and 6 in Kansas. The entire state of Kansas has 
105 counties and Missouri has 114. Use Bayes’ theorem to calculate the 
probability that a relative who just moved to a county in the Kansas City 
metropolitan area also lives in a county in Kansas. Make sure to show 
P(Kansas) (assuming your relative lives either in Kansas or Missouri), 
P(Kansas City metropolitan area), and P(Kansas City metropolitan area | 
Kansas).

A1. Hopefully it is pretty clear that there are 15 counties in the Kansas 
City metro area, and 6 of them are in Kansas, so the probability of 
being in Kansas, given you know someone lives in the Kansas City 
metro area, should be 6/15, which is equivalent to 2/5. The purpose 
of this question, however, is not just to get an answer but to show that 
Bayes’ theorem provides the tools to solve it. When we work on harder 
problems, it will be very helpful to have established trust in Bayes’ 
theorem.

So, to solve P(Kansas | Kansas City), we can use Bayes’ theorem as 
follows:

P
P P

P
Kansas Kansas City

Kansas City Kansas Kansas

Kans
|

|
( ) = ( ) × ( )

aas City( )

From our data we know that of the 105 counties in Kansas, 6 are in 
the Kansas City metro area:

P Kansas City Kansas|( ) = 6
105

And between Missouri and Kansas there are 219 counties, 105 of 
which are in Kansas:

P Kansas( ) = 105
219

And of this total of 219 counties, 15 are in the Kansas City 
metro area:

P Kansas City( ) = 15
219
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Filling in all of the parts of Bayes’ theorem, then, gives us:

P Kansas Kansas City�� � �
�

�

6
105

105
219

15
219

2
5

Q2. A deck of cards has 52 cards with suits that are either red or black. 
There are four aces in a deck of cards: two red and two black. You remove 
a red ace from the deck and shuffle the cards. Your friend pulls a black 
card. What is the probability that it is an ace?

A2. As with the previous question, we can easily see there are 26 black 
cards and 2 of them are aces, so there is a 2/26 or 1/13 probability of 
getting an ace if we have a black card. But, again, we want to establish 
some trust in Bayes’ theorem and not take so many mathematical men-
tal shortcuts. Using Bayes’ theorem we get:

P
P P

P
ace black card

black card ace ace

black card
�

�� � � � � � � �
� �

There are 26 black cards in the deck, out of what is now 51 cards 
since we removed 1 red ace. If we know that we have an ace, the prob-
ability it is black is:

P black card ace�� � � 2
3

In this deck there are now 51 cards, only 3 of which are aces, so 
we have:

P ace� � � 3
51

Finally, we know that of the remaining 51 cards, 26 of them are 
black, so:

P black card� � � 26
51

Now we have enough information to solve our problem:

P ace black card�� � �
�

�

2
3

3
51

26
51

1
13
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Chapter 8: The Prior, Likelihood, and Posterior of Bayes’ Theorem
Q1. As mentioned, you might disagree with the our original probability 
assigned to the likelihood: 

P(broken window, open front door, missing laptop | robbed) = 3/10

How much does this change our strength in believing H1 over H2?

A1. To start, remember that:

P

P

broken window, open front door, missing laptop robbed�� �
� DD H� 1� �

To see how this changes our beliefs, all we have to do now is replace 
this part in our ratio:

P H P D H

P H P D H
1 1

2 2

� � � � �
� � � � �

�
�

We already know that the denominator of our formula is 
1/21,900,000 and that P(H1) = 1/1,000, so to get our answer we just 
have to add our changed belief in P(D | H1):

1
1 000

3
100

1
21 900 000

657,

, ,

�
�

So when we believe (D | H1) is 10 times less likely, our ratio is 10 
times smaller (though still very much in favor of H1).

Q2. How unlikely would you have to believe being robbed is—our prior 
for H1—in order for the ratio of H1 to H2 to be even?

A2. In the previous answer, decreasing our probability in P(D | H1) 
by 10 times reduced our ratio 10 times. This time, we want to change 
P(H1) so that our ratio is 1, which means we need to make it 657 times 
smaller:

1
1 000 657

3
100

1
21 900 000

1,

, ,

�
�

�

So our new P(H1) needs to be 1/657,000, which is a pretty extreme 
belief in the unlikeliness of getting robbed!
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Chapter 9: Bayesian Priors and Working with Probability Distributions
Q1. A friend finds a coin on the ground, flips it, and gets six heads in a 
row and then one tails. Give the beta distribution that describes this. 
Use integration to determine the probability that the true rate of flipping 
heads is between 0.4 and 0.6, reflecting that the coin is reasonably fair.

A1. We can represent this as a beta distribution with α = 6 and β = 1, since 
we have six heads and one tail. In R we can integrate this as follows:

> integrate(function(x) dbeta(x,6,1),0.4,0.6) 
0.04256 with absolute error < 4.7e-16

With about a 4 percent chance this coin is fair, based on likelihood 
alone, we would consider it unfair.

Q2. Come up with a prior probability that the coin is fair. Use a beta 
distribution such that there is at least a 95 percent chance that the true 
rate of flipping heads is between 0.4 and 0.6.

A2. Any αprior = βprior will give us a “fair” prior; and the larger those val-
ues are, the stronger that prior is. For example, if we use 10, we get:

> prior.val <- 10
> integrate(function(x) dbeta(x,6+prior.val,1+prior.val),0.4,0.6)
0.4996537 with absolute error < 5.5e-15

But, of course, that’s only a 50 percent chance that the coin is 
fair. Using a bit of trial and error, we can find a number that works for 
us. Using αprior = βprior = 55, we find that this gives a prior that achieves 
our goal:

> prior.val <- 55
> integrate(function(x) dbeta(x,6+prior.val,1+prior.val),0.4,0.6)
0.9527469 with absolute error < 1.5e-11

Q3. Now see how many more heads (with no more tails) it would take to 
convince you that there is a reasonable chance that the coin is not fair. In 
this case, let’s say that this means that our belief in the rate of the coin 
being between 0.4 and 0.6 drops below 0.5.

A3. Again, we can solve this problem simply through trial and error 
until we get an answer that works. Remember that we’re still using 
Beta(55,55) as our prior. This time, we want to see how much we can 
add to our α in order to change the probability of a fair coin to around 
50 percent. We can see that with five more heads, our posterior drops 
to 90 percent:

> more.heads <- 5
> integrate(function(x) dbeta(x,6+prior.val+more.heads,1+prior.val),0.4,0.6)
0.9046876 with absolute error < 3.2e-11



Answers to the Exercises   241

And if we got 23 more heads, we’d find that the probability of the 
coin being fair now would be about 50 percent. This shows that even a 
strong prior belief can be overcome with more data.

Part III: Parameter Estimation

Chapter 10: Introduction to Averaging and Parameter Estimation
Q1. It’s possible to get errors that don’t quite cancel out the way we want. 
In the Fahrenheit temperature scale, 98.6 degrees is the normal body 
temperature and 100.4 degrees is the typical threshold for a fever. Say 
you are taking care of a child that feels warm and seems sick, but you take 
repeated readings from the thermometer and they all read between 99.5 
and 100.0 degrees: warm, but not quite a fever. You try the thermometer 
yourself and get several readings between 97.5 and 98. What could be 
wrong with the thermometer?

A1. It looks like the thermometer might be giving biased measurements 
that tend to be off by 1 degree F. If you added 1 degree to your results, 
you’d see that they were between 98.5 and 99, which seems correct for 
someone that normally has a 98.6 degree body temperature.

Q2. Given that you feel healthy and have traditionally had a very consis-
tently normal temperature, how could you alter the measurements 100, 
99.5, 99.6, and 100.2 to estimate if the child has a fever?

A2. If measurements are biased, it means that they are systematically 
wrong, so no amount of sampling will correct this on its own. To correct 
our original measurements, we could just add 1 degree to each.

Chapter 11: Measuring the Spread of Our Data
Q1. One of the benefits of variance is that squaring the differences makes 
the penalties exponential. Give some examples of when this would be a 
useful property.

A1. Exponential penalties are very useful for many everyday situations. 
One of the most obvious is physical distance. Suppose someone invents 
a teleporter that can transport you to another location. If you miss the 
mark by 3 feet, that’s fine; 3 miles might be okay; but 30 miles could be 
incredibly dangerous. In this case, you want the penalty for being far 
away from your target to get much more severe as it grows.

Q2. Calculate the mean, variance, and standard deviation for the 
following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

A2. Mean = 5.5, variance = 8.25, standard deviation = 2.87.
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Chapter 12: The Normal Distribution

Q1. What is the probability of observing a value five sigma greater than 
the mean or more?

A1. We can use integrate() on a normal distribution with a mean of 0 
and standard deviation of 1. Then we just integrate from 5 to some rea-
sonably large number like 100:

> integrate(function(x) dnorm(x,mean=0,sd=1),5,100)
2.88167e-07 with absolute error < 5.6e-07

Q2. A fever is any temperature greater than 100.4 degrees Fahrenheit. 
Given the following measurements, what is the probability that the patient 
has a fever?

100.0, 99.8, 101.0, 100.5, 99.7

A2. We’ll start by figuring out the mean and standard deviation of 
our data:

temp.data <- c(100.0, 99.8, 101.0, 100.5, 99.7)
temp.mean <- mean(temp.data)
temp.sd <- sd(temp.data)

A NOT E ON S TA NDA R D DE V I AT ION

R has a built-in function, sd, that computes the sample standard deviation, 
rather than the standard deviation we’ve discussed in the book. The idea of 
sample standard deviation is that you average by n – 1 instead of n. Sample 
standard deviation is used in classical statistics to make estimates about popu-
lation means given data. Here, the function my.sd computes the standard devia-
tion used in this book:

my.sd <- function(val){
  val.mean <- mean(val)
  sqrt(mean((val.mean-val)^2))
}

As your data set grows in size, the difference between sample standard 
deviation and the true standard deviation will become irrelevant. But for the 
small data sizes in these examples, it will make a small difference. For all the 
examples in Chapter 12 I’ve used my.sd, but sometimes for convenience I’ll just 
use the default, sd.
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Then we just use integrate() to find out the probability that the 
temperature is over 100.4:

> integrate(function(x) dnorm(x,mean=temp.mean,sd=temp.sd),100.4,200)
0.3402821 with absolute error < 1.1e-08

Given these measurements, there’s about a 34 percent chance of 
fever.

Q3. Suppose in Chapter 11 we tried to measure the depth of a well by 
timing coin drops and got the following values: 

2.5, 3, 3.5, 4, 2

The distance an object falls can be calculated (in meters) with the 
following formula:

distance = 1/2 × G × time2 

where G is 9.8 m/s/s. What is the probability that the well is over 500 
meters deep?

A3. Let’s start by putting our time data in R:

time.data <- c(2.5,3,3.5,4,2)
time.data.mean <- mean(time.data)
time.data.sd <- my.sd(time.data)

Next we need to figure out how much time it takes to reach 500 
meters. We need to solve:

1
2

5002� � �G t

If G is 9.8, we can work out that time (t) is about 10.10 seconds (you 
can also solve this by making a function in R and just manually iterat-
ing, or look up the solution on something like Wolfram Alpha). Now we 
just have to integrate our normal distribution to beyond 10.1:

> integrate(function(x) 
dnorm(x,mean=time.data.mean,sd=time.data.sd),10.1,200)
2.056582e-24 with absolute error < 4.1e-24

This is basically 0 probability, so we can be pretty certain that the 
well is not 500 meters deep.

Q4. What is the probability there is no well (i.e., the well is really 0 meters 
deep)? You’ll notice that probability is higher than you might expect, given 
your observation that there is a well. There are two good explanations for 
this probability being higher than it should. The first is that the normal 
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distribution is a poor model for our measurements; the second is that, 
when making up numbers for an example, I chose values that you likely 
wouldn’t see in real life. Which is more likely to you?

A4. If we do the same integration but with –1 to 0, we get:

> integrate(function(x)
dnorm(x,mean=time.data.mean,sd=time.data.sd),-1,0) 
1.103754e-05 with absolute error < 1.2e-19

It’s small, but the probability that there is no well is greater than 1 
in 100,000. But you can see a well! It’s right in front of you! So, even 
if the probability is small, it’s not really that close to zero. Now should 
we question the model, or should we question the data? As a Bayesian, 
generally you should favor questioning the model over the data. For 
example, movement in stock prices will typically have very high σ events 
during financial crises. This means that the normal distribution is a 
bad model for stock movements. However, in this example, there’s no 
reason to question the assumptions of the normal distribution, and in 
fact these are the original numbers that I picked for the previous chap-
ter until my editor pointed out that the values seemed too spread out.

One of the greatest virtues in statistical analysis is skepticism. In 
practice I have been given bad data to work with on a few occasions. 
Even though models are always imperfect, it’s very important to make 
sure that you can trust your data as well. See if the assumptions you 
have about the world hold up and, if they don’t, see if you can be con-
vinced that you still trust your model and your data.

Chapter 13: Tools of Parameter Estimation: The PDF, CDF, and 
Quantile Function
Q1. Using the code example for plotting the PDF on page 127, plot the 
CDF and quantile functions.

A1. Taking the code from the chapter, you just need to substitute 
dbeta() with pbeta() for the CDF like so:

xs <- seq(0.005,0.01,by=0.00001)
plot(xs,pbeta(xs,300,40000-300),type='l',lwd=3,
     ylab="Cumulative probability",
     xlab="Probability of subscription",
     main="CDF Beta(300,39700)")
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And for quantile we need to change the xs to the actual quantiles:

xs <- seq(0.001,0.99,by=0.001)
plot(xs,qbeta(xs,300,40000-300),type='l',lwd=3, 
     ylab="Probability of subscription",
     xlab="Quantile",
     main="Quantile of Beta(300,39700)")

Quantile Beta(300,39700)

Pr
ob

ab
ili

ty
 o

f s
ub

sc
rip

tio
n

Quantile

0.
00

65
0.

00
75

0.
00

85

0.0 0.2 0.4 0.6 0.8 1.0

Q2. Returning to the task of measuring snowfall from Chapter 10, say you 
have the following measurements (in inches) of snowfall: 

7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4

What is your 99.9 percent confidence interval for the true value of 
snowfall?

A2. We’ll calculate the mean and standard deviation for this data first:

snow.data <- c(7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4)
snow.mean <- mean(snow.data)
snow.sd <- sd(snow.data)
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Then we use qnorm() to calculate the 99.9 percent confidence inter-
val upper and lower bounds.

•	 Lower is qnorm(0.0005,mean=snow.mean,sd=snow.sd) = 4.46

•	 Upper is qnorm(0.9995,mean=snow.mean,sd=snow.sd) = 11.92

This means that we’re very confident that there’s no less than 4.46 
inches of snowfall and no more than 11.92.

Q3. A child is going door to door selling candy bars. So far she has visited 
30 houses and sold 10 candy bars. She will visit 40 more houses today. 
What is the 95 percent confidence interval for how many candy bars she 
will sell the rest of the day?

A3. First we have to calculate the 95 percent confidence interval for the 
probability of selling a candy bar. We can model this as Beta(10,20) and 
then use qbeta() to figure out these values:

•	 Lower is qbeta(0.025,10,20) = 0.18

•	 Upper is qbeta(0.975,10,20) = 0.51

Given there is 40 houses left, we can expect she’ll sell between 
40 × 0.18 = 7.2 and 40 × 0.51 = 20.4 candy bars. Of course, she can sell 
only whole bars, so we’ll say we’re pretty confident she’ll sell between 
7 and 20 candy bars.

If you really want to be particular, we could actually calculate the 
quantile for the binomial distribution at each extreme of her selling 
rates using qbinom()! I’ll leave that as an exercise for you to explore on 
your own.

Chapter 14: Parameter Estimation with Prior Probabilities
Q1. Suppose you’re playing air hockey with some friends and flip a coin 
to see who starts with the puck. After playing 12 times, you realize that 
the friend who brings the coin almost always seems to go first: 9 out of 
12 times. Some of your other friends start to get suspicious. Define prior 
probability distributions for the following beliefs:

•	 One person who weakly believes that the friend is cheating and 
the true rate of coming up heads is closer to 70 percent.

•	 One person who very strongly trusts that the coin is fair and pro-
vided a 50 percent chance of coming up heads.

•	 One person who strongly believes the coin is biased to come up 
heads 70 percent of the time.

A1. Picking these priors is a bit subjective, but here are some examples 
that correspond to each of the beliefs:

•	 Beta(7,3) is a reasonably weak prior representing the belief that the 
rate is closer to 70 percent.

•	 Beta(1000,1000) is a very strong belief that the coin is fair.
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•	 Beta(70,30) is a much stronger belief that the coin is biased to 70 
percent heads.

Q2. To test the coin, you flip it 20 more times and get 9 heads and 11 tails. 
Using the priors you calculated in the previous question, what are the 
updated posterior beliefs in the true rate of flipping a heads in terms of 
the 95 percent confidence interval?

A2. Now we have an updated data set with a total of 32 observations, 
which includes 18 heads and 14 tails. Using R’s qbeta() and the priors 
from the preceding questions, we can come up with the 95 percent con-
fidence intervals for these different beliefs:

We’ll just show the code for Beta(7,3) since the other examples are 
identical.

•	 The lower bound for the 95 percent interval is qbeta(0.025,18+7,14+3) 
= 0.445, and the upper bound is qbeta(0.975,18+7,14+3) = 0.737.

•	 For Beta(1000,1000) we have: 0.479 – 0.523.

•	 And for Beta(70,30) we have: 0.5843 – 0.744.

So, as you can see, the weak prior provides the widest range of pos-
sibility, the very strong fair prior remains quite certain that the coin is 
fair, and the strong 70 percent prior still leans toward a higher range of 
possible values for the true rate of the coin.

Part IV: Hypothesis Testing: The Heart of Statistics

Chapter 15: From Parameter Estimation to Hypothesis Testing:  
Building a Bayesian A/B Test
Q1. Suppose a director of marketing with many years of experience tells 
you he believes very strongly that the variant without images (B) won’t 
perform any differently than the original variant. How could you account 
for this in our model? Implement this change and see how your final 
conclusions change as well.

A1. You can account for this by increasing the strength of the prior. For 
example:

prior.alpha <- 300
prior.beta <- 700

This will require much more evidence to change our beliefs. To see 
how this changes our conclusions, we can rerun our code:

a.samples <- rbeta(n.trials,36+prior.alpha,114+prior.beta)
b.samples <- rbeta(n.trials,50+prior.alpha,100+prior.beta)
p.b_superior <- sum(b.samples > a.samples)/n.trials
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And our new p.b_superior is 0.74, which is much lower than our 
original 0.96.

Q2. The lead designer sees your results and insists that there’s no way that 
variant B should perform better with no images. She feels that you should 
assume the conversion rate for variant B is closer to 20 percent than 
30 percent. Implement a solution for this and again review the results of 
our analysis.

A2. Rather than using one prior to change our beliefs, we want to use 
two—one that reflects the original prior we had for A and one that 
reflects the lead designer’s belief in B. Rather than use the weak prior, 
we’ll use a slightly stronger one:

a.prior.alpha <- 30
a.prior.beta <- 70

b.prior.alpha <- 20
b.prior.beta <- 80

And when we run this simulation, we need to use two separate 
priors:

a.samples <- rbeta(n.trials,36+a.prior.alpha,114+a.prior.beta)
b.samples <- rbeta(n.trials,50+b.prior.alpha,100+b.prior.beta)
p.b_superior <- sum(b.samples > a.samples)/n.trials

The p.b_superior this time is 0.66, which is lower than before, but 
still slightly suggests that B might be the superior variant.

Q3. Assume that being 95 percent certain means that you’re more or less 
“convinced” of a hypothesis. Also assume that there’s no longer any limit 
to the number of emails you can send in your test. If the true conversion 
for A is 0.25 and for B is 0.3, explore how many samples it would take to 
convince the director of marketing that B was in fact superior. Explore 
the same for the lead designer. You can generate samples of conversions 
with the following snippet of R:

true.rate <- 0.25
number.of.samples <- 100
results <- runif(number.of.samples) <= true.rate

A3. Here’s the basic code to figure out this problem for the case of the 
director of marketing (for the lead designer, you’ll need to add the 
separate priors). You can use a while loop in R to iterate through the 
examples (or just manually try new values).

a.true.rate <- 0.25 
b.true.rate <- 0.3
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prior.alpha <- 300
prior.beta <- 700

number.of.samples <- 0
#using this as an initial value so that the loop starts
p.b_superior <- -1
while(p.b_superior < 0.95){
  number.of.samples <- number.of.samples + 100
  a.results <- runif(number.of.samples/2) <= a.true.rate
  b.results <- runif(number.of.samples/2) <= b.true.rate
  a.samples <- rbeta(n.trials,
                   sum(a.results==TRUE)+prior.alpha,
                   sum(a.results==FALSE)+prior.beta)
  b.samples <-  rbeta(n.trials,
                   sum(b.results==TRUE)+prior.alpha,
                   sum(b.results==FALSE)+prior.beta)
  p.b_superior <- sum(b.samples > a.samples)/n.trials
}

Note that because this code itself is a simulation, you’ll get different 
results each time you run it, so run it a few times (or build a more com-
plicated example that runs itself a few more times).

For the director of marketing it should take about 1,200 samples 
to be convinced. The lead designer should take about 1,000 samples. 
Notice that even though the lead designer believes that B is worse, 
she also has weaker priors in our example, so it takes less evidence to 
change her mind.

Chapter 16: Introduction to the Bayes Factor and Posterior Odds:  
The Competition of Ideas
Q1. Returning to the dice problem, assume that your friend made a 
mistake and suddenly realized that there were, in fact, two loaded dice 
and only one fair die. How does this change the prior, and therefore the 
posterior odds, for our problem? Are you more willing to believe that the 
die being rolled is the loaded die?

A1. The original prior odds were the following:

1
3
2
3

1
2

=

And the Bayes factor was 3.77, giving us posterior odds of 1.89. 
Our new prior odds are the following:

2
3
1
3

2=
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So our posterior odds are 2 × 3.77 = 7.54. We’re certainly more will-
ing now to believe that the die being rolled is loaded, but our posterior 
odds are still not very strong either way. We’d want to collect more evi-
dence before completely giving up.

Q2. Returning to the rare diseases example, suppose you go to the doctor, 
and after having your ears cleaned you notice that your symptoms persist. 
Even worse, you have a new symptom: vertigo. The doctor proposes an-
other possible explanation, labyrinthitis, which is a viral infection of the 
inner ear in which 98 percent of cases involve vertigo. However, hearing 
loss and tinnitus are less common in this disease; hearing loss occurs only 
30 percent of the time, and tinnitus occurs only 28 percent of the time. 
Vertigo is also a possible symptom of vestibular schwannoma, but occurs 
in only 49 percent of cases. In the general population, 35 people per mil-
lion contract labyrinthitis annually. What is the posterior odds when you 
compare the hypothesis that you have labyrinthitis against the hypothesis 
that you have vestibular schwannoma?

A2. We’ll mix things up a bit and make H1 “has labryinthitis” and H2 
“has vestibular schwannoma,” since we already saw how unlikely vestibu-
lar schwannoma is. We need to recalculate every piece of our posterior 
odds because we’re looking at a new piece of data, “has vertigo,” and an 
entirely new hypothesis as well.

Let’s start with the Bayes factor. For H1 we have:

P D H| 1 0 98 0 30 0 28 0 082( ) = × × =. . . .

And the new likelihood for H2 is:

P(D | H2) = 0.94 × 0.83 × 0.49 = 0.382

So the Bayes factor for the new hypothesis is:

P D H

P D H

|
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0 48
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This means that given the Bayes factor alone, vestibular schwan-
noma is a roughly four times better explanation than labyrinthitis. Now 
we have to look at the prior odds ratio:
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Labyrinthitis is much less common than impacted earwax, and only 
about three times more common than vestibular schwannoma. When 
we put posterior odds together, we can see:

O H
P D H

P D H1
1

2

3 18 0 48 1 53( ) × ( )
( )

= × =
|
|

. . .

The end result is that vestibular schwannoma is only a slightly bet-
ter explanation than labryinthitis.

Chapter 17: Bayesian Reasoning in the Twilight Zone
Q1. Every time you and your friend get together to watch movies, you flip 
a coin to determine who gets to choose the movie. Your friend always 
picks heads, and every Friday for 10 weeks, the coin lands on heads. You 
develop a hypothesis that the coin has two heads sides, rather than both 
a heads side and a tails side. Set up a Bayes factor for the hypothesis that 
the coin is a trick coin over the hypothesis that the coin is fair. What does 
this ratio alone suggest about whether or not your friend is cheating you?

A1. Let’s say H1 is the hypothesis that the coin is in fact a trick coin, and 
H2 is the hypothesis that it is fair. If the coin is indeed a trick coin, the 
probability of getting 10 heads in a row is 1, so we know that:

P D H| 1 1( ) =

And if the coin is fair, then the probability of observing 10 heads is 
0.510 = 1/1,024. So we know that:

P D H| 2

1
1 024

( ) =
,

The Bayes factor for this tells us that:

P D H
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,

This means that, given the Bayes factor alone, it is 1,024 times more 
likely that the coin is a trick coin.
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Q2. Now imagine three cases: that your friend is a bit of a prankster, that 
your friend is honest most of the time but can occasionally be sneaky, and 
that your friend is very trustworthy. In each case, estimate some prior 
odds ratios for your hypothesis and compute the posterior odds.

A2. This is a bit subjective, but let’s make some estimates. We need to 
come up with three different prior odds ratios. For each case we just 
multiply the prior odds by the Bayes factor from the previous question 
to get our posterior.

Being a prankster means your friend is more likely than not to 
trick you, so we’ll set O(H1) = 10. Then our posterior odds becomes 
10 × 1,024 = 10,240.

If your friend is mostly honest but can be sneaky, you wouldn’t be 
that surprised if he was tricking you, but don’t expect it, so we’ll make 
the prior odds O(H1) = 1/4, which means that our posterior odds 
become 240.

If you really trust your friend, you might want to put the prior 
odds very low for cheating. Prior odds here might be O(H1) = 1/10,000, 
which gives you a posterior odds of roughly 1/10, meaning you still 
think it’s 10 times more likely that the coin is fair than that your friend 
is cheating.

Q3. Suppose you trust this friend deeply. Make the prior odds of them 
cheating 1/10,000. How many times would the coin have to land on heads 
before you feel unsure about their innocence—say, a posterior odds of 1?

A3. At 14 coin tosses the Bayes factor would be the following:

1
1

0 5

16 384

14.

,=

Your posterior odds would be 16,384/10,000 = 1.64. At this point, 
you start to feel unsure about your friend’s innocence. But with fewer 
than 14 coin tosses, you might still favor the idea that the coin is fair.

Q4. Another friend of yours also hangs out with this same friend and, 
after only four weeks of the coin landing on heads, feels certain you’re 
both being cheated. This confidence implies a posterior odds of about 
100. What value would you assign to this other friend’s prior belief that 
the first friend is a cheater?

A4. We can solve this by filling in the blanks. We know the following, 
meaning that our Bayes factor would be 16: 

P D H� 2
40 5

1
16
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We just need to find a value to multiply by 16 that equals 100.

100 16

100
16
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� � � �

� � � �

O H

O H

And now we’ve assigned an exact value to the prior odds in your 
suspicious friend’s mind!

Chapter 18: When Data Doesn’t Convince You
Q1. When two hypotheses explain the data equally well, one way to change 
our minds is to see if we can attack the prior probability. What are some 
factors that might increase your prior belief in your friend’s psychic 
powers?

A1. Since we’re talking about prior beliefs, the answers to this are likely 
to be a little bit different for everyone. For me, merely predicting the 
outcome of the roll of a die seems particularly easy to fake. I’d like to 
see this friend demonstrate psychic powers in an experiment of my 
choosing—for example, asking the friend to predict the last digit on 
the serial number of the dollar bills in my wallet—so that it would be 
much more difficult to trick me. 

Q2. An experiment claims that when people hear the word Florida, they 
think of the elderly and this has an impact on their walking speed. To test 
this, we have two groups of 15 students walk across a room; one group 
hears the word Florida and one does not. Assume H1 = the groups don’t 
move at different speeds, and H2 = the Florida group is slower because of 
hearing the word Florida. Also assume: 

BF
P D H

P D H
�

� �
� �

��

��
2

1

The experiment shows that H2 has a Bayes factor of 19. Suppose 
someone is unconvinced by this experiment because H2 had a lower prior 
odds. What prior odds would explain someone being unconvinced and 
what would the BF need to be to bring the posterior odds to 50 for this 
unconvinced person?

A2. This question comes from an actual paper, “Automaticity of Social 
Behavior.”1 If the experiment seems questionable, you’re not alone. 
The results of the study have been notoriously difficult to reproduce. 

1. John A. Bargh, Mark Chen, and Lara Burrows, “Automaticity of Social Behavior: Direct 
Effects of Trait Construct and Stereotype Activation on Action,” Journal of Personality and 
Social Psychology 71, no. 2 (1996).
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If you were unconvinced, we’ll say that means prior odds must be 
about 1/19 to negate the results. In order to have a posterior odds of 
50, you would need:

50
9

19
950= ×

BF = 950

So you’d need a Bayes factor of 950 to get your posterior odds into 
the “strong belief” range, given your initial skepticism.

Now suppose the prior odds do not change the skeptic’s mind. Think 
of an alternate H3 that explains the observation that the Florida group is 
slower. Remember if H2 and H3 both explain the data equally well, only 
prior odds in favor of H3 would lead someone to claim H3 is true over H2, 
so we need to rethink the experiment so that these odds are decreased. 
Come up with an experiment that could change the prior odds in H3 
over H2.

It is entirely possible that the second group was on average slower. With 
only 15 participants, it’s not hard to imagine that the group hearing the 
word Florida just happened to include a higher number of shorter peo-
ple who might walk a short distance in a longer time. To be convinced 
I would need to, at minimum, see this experiment reproduced many 
times with many different groups of people to ensure that it wasn’t just 
chance that led the group hearing the word Florida to be slower.

Chapter 19: From Hypothesis Testing to Parameter Estimation
Q1. Our Bayes factor assumed that we were looking at H1: P(prize) = 0.5. 
This allowed us to derive a version of the beta distribution with an alpha 
of 1 and a beta of 1. Would it matter if we chose a different probability 
for H1 ? Assume H1: P(prize) = 0.24 , then see if the resulting distribution, 
once normalized to sum to 1, is any different than the original hypothesis.

A1. We can rerun all of our code but this time make one group of bfs 
for the 0.5 version, and another for the 0.24 version:

dx <- 0.01
hypotheses <- seq(0,1,by=dx)
bayes.factor <- function(h_top,h_bottom){
  ((h_top)^24*(1-h_top)^76)/((h_bottom)^24*(1-h_bottom)^76)
}
bfs.v1 <- bayes.factor(hypotheses,0.5) 
bfs.v2 <- bayes.factor(hypotheses,0.24) 

Next we’ll plot these each out separately:

plot(hypotheses,bfs.v1,type='l')
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Here we see the only difference is the y-axis. Choosing a weaker or 
stronger hypothesis changes only the scale of the distribution, not the 
shape of it. If we normalize and plot these two together, we see they are 
identical:

plot(hypotheses,bfs.v1/sum(bfs.v1),type='l')
points(hypotheses,bfs.v2/sum(bfs.v2))
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Q2. Write a prior for the distribution in which each hypothesis is 1.05 
times more likely than the previous hypothesis (assume our dx remains 
the same).

A2. Let’s re-create our bfs from the original (see the code in the previ-
ous answer for the first part of this):

bfs <- bayes.factor(hypotheses,0.5)

Next our new priors are going to start with 1 (since there is no 
previous hypothesis), then 1.05, 1.05*1.05, 1.05*1.05*1.05, and so on. 
There’s a few ways to do this, but we’ll just start with a vector of 1.05s 
one less than the length our hypotheses (since the first one is 1), using 
R’s replicate() function:

vals <- replicate(length(hypotheses)-1,1.05)

Then we add 1 to this list, and we can use the cumprod() function 
(which is just like cumsum() but for multiplying) to create our priors:

vals <- c(1,vals)
priors <- cumprod(vals)

Finally, we just compute our posteriors and normalize them, and 
then we can visualize our new distribution:

posteriors <- bfs*priors
p.posteriors <- posteriors/sum(posteriors)
plot(hypotheses,p.posteriors,type='l')
#add the bfs alone for comparison
points(hypotheses,bfs/sum(bfs))

hypotheses
0.0 0.2 0.4 0.6 0.8 1.0

p.
po
st
er
io
rs

0.
0

0.
4

0.
8

Note that this doesn’t change our final distribution all that much. 
Even though it gives much stronger prior odds to the last hypothesis—
around 125 times more likely—the Bayes factor is so low that it doesn’t 
make much of a difference in the end.
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Q3. Suppose you observed another duck game that included 34 ducks 
with prizes and 66 ducks without prizes. How would you set up a test 
to determine “What is the probability that you have a better chance of 
winning a prize in this game than in the game we used in our example?” 
Implementing this requires a bit more sophistication than the R used 
in this book, but see if you can learn this on your own to kick off your 
adventures in more advanced Bayesian statistics!

A3. Clearly what we need to do to solve this problem is to set up an 
A/B test like in Chapter 15. We can easily come up with our two dis-
tributions for the “34 prizes, 66 no prizes” example just by repeating 
the process we used in this chapter. The tricky part is sampling from 
our posterior that we created ourselves. In the past, to sample from a 
known distribution, we used built-in functions like rbeta(), but we have 
no equivalent function for this case. To solve this problem you’ll need 
to use an advanced sampling technique like rejection sampling or even 
Metropolis–Hastings. If you’re eager to solve this problem, it’s a good 
time to start looking into a more advanced book on Bayesian analysis. 
But you should be proud, as it means you have a solid understanding of 
the basics!






