
You may be familiar with the process of
searching for text by pressing ctrl-F and

entering the words you’re looking for. Regular
expressions go one step further: they allow you

to specify a pattern of text to search for. You may not
know a business’s exact phone number, but if you live
in the United States or Canada, you know it will consist
of a three-digit area code, followed by a hyphen, then
three more digits, another hyphen, and four more dig-
its. This is how you, as a human, know a phone number
when you see it: 415-555-1234 is a phone number, but
$4,155,551,234 is not.

We recognize all sorts of other text patterns every day: email addresses
have @ symbols in the middle, US Social Security numbers have nine digits
and two hyphens, website URLs often have periods and forward slashes,

9
T E X T P A T T E R N M A T C H I N G W I T H

R E G U L A R E X P R E S S I O N S

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

186 Chapter 9

news headlines use title case, and social media hashtags begin with # and
contain no spaces, to give some examples.

Regular expressions are helpful, but few nonprogrammers know about
them, even though most modern text editors and word processors have
find-and-replace features that can search based on regular expressions.
Regular expressions are huge time-savers, not just for software users but
also for programmers. In fact, in the Guardian article “Here’s What ICT
Should Really Teach Kids: How to Do Regular Expressions,” tech writer
Cory Doctorow argues that we should be teaching regular expressions
before we teach programming:

Knowing [regular expressions] can mean the difference between
solving a problem in 3 steps and solving it in 3,000 steps. When
you’re a nerd, you forget that the problems you solve with a cou-
ple keystrokes can take other people days of tedious, error-prone
work to slog through.

In this chapter, you’ll start by writing a program to find text patterns
without using regular expressions and then learn how to use regular expres-
sions to make the code simpler. I’ll show you basic matching with regular
expressions, then move on to some more powerful features, such as string
substitution and creating your own character classes. You’ll also learn how
to use the Humre module, which offers plain-English substitutes for regular
expressions’ cryptic symbol-based syntax.

Finding Text Patterns Without Regular Expressions
Say you want to find a US phone number in a string; you’re looking for
three numbers, a hyphen, three numbers, a hyphen, and four numbers.
Here’s an example: 415-555-4242.

Let’s write a function named is_phone_number() to check whether a string
matches this pattern and return either True or False. Open a new file editor
tab and enter the following code, then save the file as isPhoneNumber.py:

def is_phone_number(text):
 1 if len(text) != 12: # Phone numbers have exactly 12 characters.
 return False
 for i in range(0, 3): # The first three characters must be numbers.
 2 if not text[i].isdecimal():
 return False
 3 if text[3] != '-': # The fourth character must be a dash.
 return False
 for i in range(4, 7): # The next three characters must be numbers.
 4 if not text[i].isdecimal():
 return False
 5 if text[7] != '-': # The eighth character must be a dash.
 return False
 for i in range(8, 12): # The next four characters must be numbers.
 6 if not text[i].isdecimal():
 return False
 7 return True

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 187

print('Is 415-555-4242 a phone number?', is_phone_number('415-555-4242'))
print(is_phone_number('415-555-4242'))
print('Is Moshi moshi a phone number?', is_phone_number('Moshi moshi'))
print(is_phone_number('Moshi moshi'))

When this program is run, the output looks like this:

Is 415-555-4242 a phone number?
True
Is Moshi moshi a phone number?
False

The is_phone_number() function has code that does several checks to
determine whether the string in text is a valid phone number. If any of these
checks fail, the function returns False. First, the code checks that the string is
exactly 12 characters long 1. Then, it checks that the area code (that is, the
first three characters in text) consists of only numeric characters 2 by call-
ing the isdecimal() string method. The rest of the function checks that the
string follows the pattern of a phone number: the number must have the first
hyphen after the area code 3, three more numeric characters 4, another
hyphen 5, and finally, four more numeric characters 6. If the program
execution manages to get past all the checks, it returns True 7.

Calling is_phone_number() with the argument '415-555-4242' will return
True. Calling is_phone_number() with 'Moshi moshi' will return False; the first
test fails because 'Moshi moshi' is not 12 characters long.

If you wanted to find a phone number within a larger string, you would
have to add even more code to locate the pattern. Replace the last four
print() function calls in isPhoneNumber.py with the following:

message = 'Call me at 415-555-1011 tomorrow. 415-555-9999 is my office.'
for i in range(len(message)):
 1 segment = message[i:i+12]
 2 if is_phone_number(segment):
 print('Phone number found: ' + segment)
print('Done')

When this program is run, the output will look like this:

Phone number found: 415-555-1011
Phone number found: 415-555-9999
Done

On each iteration of the for loop, a new segment of 12 characters from
message is assigned to the variable segment 1. For example, on the first itera-
tion, i is 0, and segment is assigned message[0:12] (that is, the string 'Call me
at 4'). On the next iteration, i is 1, and segment is assigned message[1:13]
(the string 'all me at 41'). In other words, on each iteration of the for loop,
segment takes on the following values

'Call me at 4'
'all me at 41'

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

188 Chapter 9

'll me at 415'
'l me at 415-'

and so on, until its last value is 's my office.'
The loop’s code passes segment to is_phone_number() to check whether

it matches the phone number pattern 2, and if so, it prints the segment.
Once it has finished going through message, we print Done.

While the string in message is short in this example, the program would
run in less than a second even if it were millions of characters long. A simi-
lar program that finds phone numbers using regular expressions would also
run in less than a second; however, regular expressions make writing these
programs much quicker.

Finding Text Patterns with Regular Expressions
The previous phone number–finding program works, but it uses a lot of
code to do something limited. The is_phone_number() function is 17 lines but
can find only one phone number format. What about a phone number for-
matted like 415.555.4242 or (415) 555-4242? And what if the phone number
had an extension, like 415-555-4242 x99? The is_phone_number() function
would fail to find them. You could add yet more code for these additional
patterns, but there is an easier way to tackle the problem.

Regular expressions, called regexes for short, are a sort of mini language
that describes a pattern of text. For example, the characters \d in a regex
stand for a decimal numeral between 0 and 9. Python uses the regex string
r'\d\d\d-\d\d\d-\d\d\d\d' to match the same text pattern the previous is_phone​
_number() function did: a string of three numbers, a hyphen, three more
numbers, another hyphen, and four numbers. Any other string would not
match the r'\d\d\d-\d\d\d-\d\d\d\d' regex.

Regular expressions can be much more sophisticated than this one. For
example, adding a numeral, such as 3, in curly brackets ({3}) after a pattern
is like saying, “Match this pattern three times.” So the slightly shorter regex
r'\d{3}-\d{3}-\d{4}' also matches the phone number pattern.

Note that we often write regex strings as raw strings, with the r prefix.
This is useful, as regex strings often have backslashes. Without using raw
strings, we would have to enter expressions such as '\\d'.

Before we cover all of the details of regular expression syntax, let’s go over
how to use them in Python. We’ll stick with the example regular expression
string r'\d{3}-\d{3}-\d{4}' used to find US phone numbers in a text string 'My
number is 415-555-4242'. The general process of using regular expressions in
Python involves four steps:

	 1.	Import the re module.

	 2.	Pass the regex string to re​.compile() to get a Pattern object.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 189

	 3.	Pass the text string to the Pattern object’s search() method to get a Match
object.

	 4.	Call the Match object’s group() method to get the string of the matched text.

In the interactive shell, these steps look like this:

>>> import re
>>> phone_num_pattern_obj = re​.compile(r'\d{3}​-\d{3}​-\d{4}')
>>> match_obj = phone_num_pattern_obj.search('My number is 415-555-4242.')
>>> match_obj.group()
'415-555-4242'

All regex functions in Python are in the re module. Most of the exam-
ples in this chapter will require the re module, so remember to import it at
the beginning of the program. Otherwise, you’ll get a NameError: name 're'
is not defined error message. As with importing any module, you need to
import it only once per program or interactive shell session.

Passing the regular expression string to re​.compile() returns a Pattern
object. You only need to compile the Pattern object once; after that, you can
call the Pattern object’s search() method for as many different text strings as
you want.

A Pattern object’s search() method searches the string it is passed for any
matches to the regex. The search() method will return None if the regex pat-
tern isn’t found in the string. If the pattern is found, the search() method
returns a Match object, which will have a group() method that returns a string
of the matched text.

N O T E 	 While I encourage you to enter the example code into the interactive shell, you could
also make use of web-based regular expression testers, which can show you exactly
how a regex matches a piece of text that you enter. I recommend the testers at https://
pythex​.org and https://regex101​.com. Different programming languages have
slightly different regular expression syntax, so be sure to select the “Python” flavor on
these websites.

The Syntax of Regular Expressions
Now that you know the basic steps for creating and finding regular expres-
sion objects using Python, you’re ready to learn the full range of regular
expression syntax. In this section, you’ll learn how to group regular expres-
sion elements together with parentheses, escape special characters, match
several alternative groups with the pipe character, and return all matches
with the findall() method.

Grouping with Parentheses
Say you want to separate one smaller part of the matched text, such as the
area code, from the rest of the phone number (to, for example, perform
some operation on it). Adding parentheses will create groups in the regex

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

190 Chapter 9

string: r'(\d\d\d)-(\d\d\d-\d\d\d\d)'. Then, you can use the group() method
of Match objects to grab the matching text from just one group.

The first set of parentheses in a regex string will be group 1. The sec-
ond set will be group 2. By passing the integer 1 or 2 to the group() method,
you can grab different parts of the matched text. Passing 0 or nothing to
the group() method will return the entire matched text. Enter the following
into the interactive shell:

>>> import re
>>> phone_re = re​.compile(r'(\d\d\d)​-(\d\d\d​-\d\d\d\d)')
>>> mo = phone_re.search('My number is 415-555-4242.')
>>> mo.group(1) # Returns the first group of the matched text
'415'
>>> mo.group(2) # Returns the second group of the matched text
'555-4242'
>>> mo.group(0) # Returns the full matched text
'415-555-4242'
>>> mo.group() # Also returns the full matched text
'415-555-4242'

If you would like to retrieve all the groups at once, use the groups()
method (note the plural form in the name):

>>> mo.groups()
('415', '555-4242')
>>> area_code, main_number = mo.groups()
>>> print(area_code)
415
>>> print(main_number)
555-4242

Because mo.groups() returns a tuple of multiple values, you can use the
multiple-assignment trick to assign each value to a separate variable, as in
the previous area_code, main_number = mo.groups() line.

Using Escape Characters
Parentheses create groups in regular expressions and are not interpreted
as part of the text pattern. So, what do you do if you need to match a paren-
thesis in your text? For instance, maybe the phone numbers you are trying
to match have the area code set in parentheses: '(415) 555-4242'.

In this case, you need to escape the (and) characters with a backslash.
The \(and \) escaped parentheses will be interpreted as part of the pattern
you are matching. Enter the following into the interactive shell:

>>> pattern = re​.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')
>>> mo = pattern.search('My phone number is (415) 555-4242.')
>>> mo.group(1)
'(415)'
>>> mo.group(2)
'555-4242'

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 191

The \(and \) escape characters in the raw string passed to re​.compile()
will match actual parenthesis characters. In regular expressions, the follow-
ing characters have special meanings:

$ () * + - . ? [\] ^ { | }

If you want to detect these characters as part of your text pattern, you
need to escape them with a backslash:

\$ \(\) * \+ \- \. \? \[\\ \] \^ \{ \| \}

Always double-check that you haven’t mistaken escaped parentheses
\(and \) for unescaped parentheses (and) in a regular expression. If you
receive an error message about “missing)” or “unbalanced parenthesis,”
you may have forgotten to include the closing unescaped parenthesis for a
group, like in this example:

>>> import re
>>> re​.compile(r'(\(Parentheses\)')
Traceback (most recent call last):
--snip--
re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at
index 0 of the r'(\(Parentheses\)' string that is missing its corresponding
closing parenthesis. Using the Humre module described later in this chap-
ter helps prevent these kinds of typos.

Matching Characters from Alternate Groups
The | character is called a pipe, and it’s used as the alternation operator in
regular expressions. You can use it anywhere you want to match one of mul-
tiple expressions. For example, the regular expression r'Cat|Dog' will match
either 'Cat' or 'Dog'.

You can also use the pipe to match one of several patterns as part of your
regex. For example, say you wanted to match any of the strings 'Caterpillar',
'Catastrophe', 'Catch', or 'Category'. Since all of these strings start with Cat, it
would be nice if you could specify that prefix only once. You can do this by
using the pipe within parentheses to separate the possible suffixes. Enter the
following into the interactive shell:

>>> import re
>>> pattern = re​.compile(r'Cat(erpillar|astrophe|ch|egory)')
>>> match = pattern.search('Catch me if you can.')
>>> match.group()
'Catch'
>>> match.group(1)
'ch'

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

192 Chapter 9

The method call match.group() returns the full matched text 'Catch',
while match.group(1) returns just the part of the matched text inside the
first parentheses group, 'ch'. By using the pipe character and grouping
parentheses, you can specify several alternative patterns you would like your
regex to match.

If you need to match an actual pipe character, escape it with a back
slash, like \|.

Returning All Matches
In addition to a search() method, Pattern objects have a findall() method.
While search() will return a Match object of the first matched text in the
searched string, the findall() method will return the strings of every match
in the searched string.

There is one detail you need to keep in mind when using findall(). The
method returns a list of strings as long as there are no groups in the regular
expression. Enter the following into the interactive shell:

>>> import re
>>> pattern = re​.compile(r'\d{3}​-\d{3}​-\d{4}') # This regex has no groups.
>>> pattern.findall('Cell: 415-555-9999 Work: 212-555-0000')
['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return
a list of tuples. Each tuple represents a single match, and the tuple has
strings for each group in the regex. To see this behavior in action, enter the
following into the interactive shell (and notice that the regular expression
being compiled now has groups in parentheses):

>>> import re
>>> pattern = re​.compile(r'(\d{3})​-(\d{3})​-(\d{4})') # This regex has groups.
>>> pattern.findall('Cell: 415-555-9999 Work: 212-555-0000')
[('415', '555', '9999'), ('212', '555', '0000')]

Also keep in mind that findall() doesn’t overlap matches. For example,
matching three numbers with the regex string r'\d{3}' matches the first
three numbers in '1234' but not the last three:

>>> import re
>>> pattern = re​.compile(r'\d{3}')
>>> pattern.findall('1234')
['123']
>>> pattern.findall('12345')
['123']
>>> pattern.findall('123456')
['123', '456']

Because the first three digits in '1234' have been matched as '123', the
digits '234' won’t be included in further matches, even though they fit the
r'\d{3}' pattern.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 193

Qualifier Syntax: What Characters to Match
Regular expressions are split into two parts: the qualifiers that dictate what
characters you are trying to match followed by the quantifiers that dictate
how many characters you are trying to match. In the r'\d{3}-\d{3}-\d{4}'
phone number regex string example we’ve been using, the r'\d' and '-'
parts are qualifiers and the '{3}' and '{4}' are quantifiers. Let’s now exam-
ine the syntax of qualifiers.

Using Character Classes and Negative Character Classes
Although you can define a single character to match, as we’ve done in the
previous examples, you can also define a set of characters to match inside
square brackets. This set is called a character class. For example, the charac-
ter class [aeiouAEIOU] will match any vowel, both lowercase and uppercase.
It’s the equivalent of writing a|e|i|o|u|A|E|I|O|U, but it’s easier to type. Enter
the following into the interactive shell:

>>> import re
>>> vowel_pattern = re​.compile(r'[aeiouAEIOU]')
>>> vowel_pattern.findall('RoboCop eats BABY FOOD.')
['o', 'o', 'o', 'e', 'a', 'A', 'O', 'O']

You can also include ranges of letters or numbers by using a hyphen.
For example, the character class [a-zA-Z0-9] will match all lowercase letters,
uppercase letters, and numbers.

Note that, inside the square brackets, the normal regular expression
symbols are not interpreted as such. This means you do not need to escape
characters such as parentheses inside the square brackets if you want to
match literal parentheses. For example, the character class [()] will match
either an open or close parenthesis. You do not need to write this as [\(\)].

By placing a caret character (̂) just after the character class’s opening
bracket, you can make a negative character class. A negative character class
will match all the characters that are not in the character class. For exam-
ple, enter the following into the interactive shell:

>>> import re
>>> consonant_pattern = re​.compile(r'[^aeiouAEIOU]')
>>> consonant_pattern.findall('RoboCop eats BABY FOOD.')
['R', 'b', 'C', 'p', ' ', 't', 's', ' ', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

Now, instead of matching every vowel, we’re matching every character
that isn’t a vowel. Keep in mind that this includes spaces, newlines, punctua-
tion characters, and numbers.

Using Shorthand Character Classes
In the earlier phone number regex example, you learned that \d could
stand for any numeric digit. That is, \d is shorthand for the regular

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

194 Chapter 9

expression 0|1|2|3|4|5|6|7|8|9 or [0-9]. There are many such shorthand char-
acter classes, as shown in Table 9-1.

Table 9-1: Shorthand Codes for Common Character Classes

Shorthand character class Represents . . .

\d Any numeric digit from 0 to 9.

\D Any character that is not a numeric digit from 0 to 9.

\w Any letter, numeric digit, or the underscore character.
(Think of this as matching “word” characters.)

\W Any character that is not a letter, numeric digit, or the
underscore character.

\s Any space, tab, or newline character. (Think of this as
matching “space” characters.)

\S Any character that is not a space, tab, or newline
character.

Note that while \d matches digits and \w matches digits, letters, and the
underscore, there is no shorthand character class that matches only letters.
Though you can use the [a-zA-Z] character class, this character class won’t
match accented letters or non-Roman alphabet letters such as 'é'. Also,
remember to use raw strings to escape the backslash: r'\d'.

For example, enter the following into the interactive shell:

>>> import re
>>> pattern = re​.compile(r'\d+\s\w+')
>>> pattern.findall('12 drummers, 11 pipers, 10 lords, 9 ladies, 8 maids,
7 swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')
['12 drummers', '11 pipers', '10 lords', '9 ladies', '8 maids', '7 swans', '
6 geese', '5 rings', '4 birds', '3 hens', '2 doves', '1 partridge']

The regular expression \d+\s\w+ will match text that has one or more
numeric digits (\d+), followed by a whitespace character (\s), followed by
one or more letter/digit/underscore characters (\w+). The findall() method
returns all matching strings of the regular expression pattern in a list.

Matching Everything with the Dot Character
The . (or dot) character in a regular expression string matches any charac-
ter except for a newline. For example, enter the following into the interac-
tive shell:

>>> import re
>>> at_re = re​.compile(r'​.at')
>>> at_re.findall('The cat in the hat sat on the flat mat.')
['cat', 'hat', 'sat', 'lat', 'mat']

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 195

Remember that the dot character will match just one character, which
is why the text flat in the previous example matched only lat. To match an
actual period, escape the dot with a backslash: \.

Being Careful What You Match For
The best and worst thing about regular expressions is that they will match
exactly what you ask for. Here are some common points of confusion
regarding character classes:

•	 The [A-Z] or [a-z] character class matches uppercase or lowercase
letters, respectively, but not both. You need to use [A-Za-z] to match
both cases.

•	 The [A-Za-z] character class matches only plain, unaccented letters. For
example, the regex string r'First Name: ([A-Za-z]+)' would match “First
Name: ” followed by a group of one or more unaccented letters. But
singer Sinéad O’Connor’s first name would match up to the é only, and
the group would be set to 'Sin'.

•	 The \w character class matches all letters, including accented letters
and characters from other alphabets. But it also matches numbers and
the underscore character, so the regex string r'First Name: (\w+)' may
match more than you intended.

•	 The \w character class matches all letters, but the regex string r'Last
Name: (\w+)' would capture Sinéad O’Connor’s last name only up until
the apostrophe character. This means the group would capture her last
name as 'O'.

•	 Straight and smart quote characters (' " ‘ ’ “ ”) are considered com-
pletely different from each other and must be specified separately.

Real-world data is complicated. Even if your program manages to cap-
ture Sinéad O’Connor’s name, it could fail with Jean-Paul Sartre’s name
because of the hyphen.

Of course, when software declares a name to be invalid input, it is
the software, and not the name, that has a bug; people’s names cannot be
invalid. You can learn more about this issue from Patrick McKenzie’s article
“Falsehoods Programmers Believe About Names” at https://www​.kalzumeus​
.com​/2010​/06​/17​/falsehoods​-programmers​-believe​-about​-names​/. This article
spawned a genre of similar “falsehoods programmers believe” pieces about
how software mishandles dates, time zones, currencies, postal addresses,
genders, airport codes, and love. Watch Carina C. Zona’s 2015 PyCon talk
on the topic, “Schemas for the Real World,” at https://youtu​.be​/PYYfVqtcWQY.

Quantifier Syntax: How Many Qualifiers to Match
In a regular expression string, quantifiers follow qualifier characters to dic-
tate how many of them to match. For example, in the phone number regex
considered earlier, the {3} follows the \d to match exactly three digits. If

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

196 Chapter 9

there is no quantifier following a qualifier, the qualifier must appear exactly
once: you can think of r'\d' as being the same as r'\d{1}'.

Matching an Optional Pattern
Sometimes you may want to match a pattern only optionally. That is, the
regex should match zero or one of the preceding qualifiers. The ? character
flags the preceding qualifier as optional. For example, enter the following
into the interactive shell:

>>> import re
>>> pattern = re​.compile(r'42!​?')
>>> pattern.search('42!')
<re.Match object; span=(0, 3), match='42!'>
>>> pattern.search('42')
<re.Match object; span=(0, 2), match='42'>

The ? part of the regular expression means that the pattern ! is optional.
So it matches both 42! (with the exclamation mark) and 42 (without it).

As you’re beginning to see, regular expression syntax’s reliance on sym-
bols and punctuation makes it tricky to read: the ? question mark has mean-
ing in regex syntax, but the ! exclamation mark doesn’t. So r'42!?' means
'42' optionally followed by a '!', but r'42?!' means '4' optionally followed
by '2' followed by '!':

>>> import re
>>> pattern = re​.compile(r'42​?!')
>>> pattern.search('42!')
<re.Match object; span=(0, 3), match='42!'>
>>> pattern.search('4!')
<re.Match object; span=(0, 2), match='4!'>
>>> pattern.search('42') == None # No match
True

To make multiple characters optional, place them in a group and put
the ? after the group. In the earlier phone number example, you can use ?
to make the regex look for phone numbers that either do or do not have an
area code. Enter the following into the interactive shell:

>>> pattern = re​.compile(r'(\d{3}​-)​?\d{3}​-\d{4}')
>>> match1 = pattern.search('My number is 415-555-4242')
>>> match1.group()
'415-555-4242'

>>> match2 = pattern.search('My number is 555-4242')
>>> match2.group()
'555-4242'

You can think of the ? as saying, “Match zero or one of the group pre-
ceding this question mark.”

If you need to match an actual question mark character, escape it with \?.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 197

Matching Zero or More Qualifiers
The * (called the star or asterisk) means “match zero or more.” In other
words, the qualifier that precedes the star can occur any number of times in
the text. It can be completely absent or repeated over and over again. Take
a look at the following example:

>>> import re
>>> pattern = re​.compile('Eggs(and spam)*')
>>> pattern.search('Eggs')
<re.Match object; span=(0, 4), match='Eggs'>
>>> pattern.search('Eggs and spam')
<re.Match object; span=(0, 13), match='Eggs and spam'>
>>> pattern.search('Eggs and spam and spam')
<re.Match object; span=(0, 22), match='Eggs and spam and spam'>
>>> pattern.search('Eggs and spam and spam and spam')
<re.Match object; span=(0, 31), match='Eggs and spam and spam and spam'>

While the 'Eggs' part of the string must appear once, there can be any
number of ' and spam' following it, including zero instances.

If you need to match an actual star character, prefix the star in the
regular expression with a backslash, *.

Matching One or More Qualifiers
While * means “match zero or more,” the + (or plus) means “match one or
more.” Unlike the star, which does not require its qualifier to appear in the
matched string, the plus requires the qualifier preceding it to appear at least
once. It is not optional. Enter the following into the interactive shell, and
compare it with the star regexes in the previous section:

>>> pattern = re​.compile('Eggs(and spam)+')
>>> pattern.search('Eggs and spam')
<re.Match object; span=(0, 13), match='Eggs and spam'>
>>> pattern.search('Eggs and spam and spam')
<re.Match object; span=(0, 22), match='Eggs and spam and spam'>
>>> pattern.search('Eggs and spam and spam and spam')
<re.Match object; span=(0, 31), match='Eggs and spam and spam and spam'>

The regex 'Eggs(and spam)+' will not match the string 'Eggs', because
the plus sign requires at least one ' and spam'.

You’ll often use parentheses in your regex strings to group together
qualifiers so that a quantifier can apply to the entire group. For example,
you could match any combination of dots and dashes of Morse code with
r'(\.|\-)+' (though this expression would also match invalid Morse code
combinations).

If you need to match an actual plus sign character, prefix the plus sign
with a backslash to escape it: \+.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

198 Chapter 9

Matching a Specific Number of Qualifiers
If you have a group that you want to repeat a specific number of times, fol-
low the group in your regex with a number in curly brackets. For example,
the regex (Ha){3} will match the string 'HaHaHa' but not 'HaHa', since the lat-
ter has only two repeats of the (Ha) group.

Instead of one number, you can specify a range by writing a minimum,
a comma, and a maximum in between the curly brackets. For example, the
regex (Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.

You can also leave out the first or second number in the curly brackets
to keep the minimum or maximum unbounded. For example, (Ha){3,} will
match three or more instances of the (Ha) group, while (Ha){,5} will match
zero to five instances. Curly brackets can help make your regular expres-
sions shorter. These two regular expressions match identical patterns:

(Ha){3}
HaHaHa

So do these two regular expressions:

(Ha){3,5}
(HaHaHa)|(HaHaHaHa)|(HaHaHaHaHa)

Enter the following into the interactive shell:

>>> import re
>>> haRegex = re​.compile(r'(Ha){3}')
>>> match1 = haRegex.search('HaHaHa')
>>> match1.group()
'HaHaHa'

>>> match = haRegex.search('HaHa')
>>> match == None
True

Here, (Ha){3} matches 'HaHaHa' but not 'Ha'. Because it doesn’t match
'HaHa', search() returns None.

The syntax of the curly bracket quantifier is similar to Python’s slice
syntax (such as 'Hello, world!'[3:5], which evaluates to 'lo'). But there are
key differences. In the regex quantifier, the two numbers are separated by
a comma and not a colon. Also, the second number in the quantifier is
inclusive: '(Ha){3,5}' matches up to and including five instances of the
'(Ha)' qualifier.

Greedy and Non-greedy Matching
Because (Ha){3,5} can match three, four, or five instances of Ha in the string
'HaHaHaHaHa', you may wonder why the Match object’s call to group() in the
previous curly bracket example returns 'HaHaHaHaHa' instead of the shorter

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 199

possibilities. After all, 'HaHaHa' and 'HaHaHaHa' are also valid matches of the
regular expression (Ha){3,5}.

Python’s regular expressions are greedy by default, which means that
in ambiguous situations, they will match the longest string possible. The
non-greedy (also called lazy) version of the curly brackets, which matches
the shortest string possible, must follow the closing curly bracket with a
question mark.

Enter the following into the interactive shell, and notice the difference
between the greedy and non-greedy forms of the curly brackets searching
the same string:

>>> import re
>>> greedy_pattern = re​.compile(r'(Ha){3,5}')
>>> match1 = greedy_pattern.search('HaHaHaHaHa')
>>> match1.group()
'HaHaHaHaHa'

>>> lazy_pattern = re​.compile(r'(Ha){3,5}​?')
>>> match2 = lazy_pattern.search('HaHaHaHaHa')
>>> match2.group()
'HaHaHa'

Note that the question mark can have two meanings in regular expres-
sions: declaring a lazy match or declaring an optional qualifier. These
meanings are entirely unrelated.

It’s worth pointing out that, technically, you could get by without using
the optional ? quantifier, or even the * and + quantifiers:

•	 The ? quantifier is the same as {0,1}.

•	 The * quantifier is the same as {0,}.

•	 The + quantifier is the same as {1,}.

However, the ?, *, and + quantifiers are common shorthand.

Matching Everything
Sometimes you may want to match everything and anything. For example,
say you want to match the string 'First Name:', followed by any and all text,
followed by 'Last Name:' and any text once again. You can use the dot-star
(.*) to stand in for that “anything.” Remember that the dot character means
“any single character except the newline,” and the star character means
“zero or more of the preceding character.”

Enter the following into the interactive shell:

>>> import re
>>> name_pattern = re​.compile(r'First Name: (.*) Last Name: (.*)')
>>> name_match = name_pattern.search('First Name: Al Last Name: Sweigart')
>>> name_match.group(1)
'Al'
>>> name_match.group(2)
'Sweigart'

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

200 Chapter 9

The dot-star uses greedy mode: it will always try to match as much text
as possible. To match any and all text in a non-greedy or lazy fashion, use the
dot, star, and question mark (.*?). As when it’s used with curly brackets,
the question mark tells Python to match in a non-greedy way.

Enter the following into the interactive shell to see the difference
between the greedy and non-greedy expressions:

>>> import re
>>> lazy_pattern = re​.compile(r'<​.*​?>')
>>> match1 = lazy_pattern.search('<To serve man> for dinner.>')
>>> match1.group()
'<To serve man>'

>>> greedy_re = re​.compile(r'<​.*>')
>>> match2 = greedy_re.search('<To serve man> for dinner.>')
>>> match2.group()
'<To serve man> for dinner.>'

Both regexes roughly translate to “Match an opening angle bracket,
followed by anything, followed by a closing angle bracket.” But the string
'<To serve man> for dinner.>' has two possible matches for the closing angle
bracket. In the non-greedy version of the regex, Python matches the short-
est possible string: '<To serve man>'. In the greedy version, Python matches
the longest possible string: '<To serve man> for dinner.>'.

Matching Newline Characters
The dot in .* will match everything except a newline. By passing re.DOTALL
as the second argument to re​.compile(), you can make the dot character
match all characters, including the newline character.

Enter the following into the interactive shell:

>>> import re
>>> no_newline_re = re​.compile('​.*')
>>> no_newline_re.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.'

>>> newline_re = re​.compile('​.*', re.DOTALL)
>>> newline_re.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.\nProtect the innocent.\nUphold the law.'

The regex no_newline_re, which did not have re.DOTALL passed to the
re​.compile() call that created it, will match everything only up to the first
newline character, whereas newline_re, which did have re.DOTALL passed to
re​.compile(), matches everything. This is why the newline_re.search() call
matches the full string, including its newline characters.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 201

Matching at the Start and End of a String
You can use the caret symbol (̂) at the start of a regex to indicate that a
match must occur at the beginning of the searched text. Likewise, you can
put a dollar sign ($) at the end of the regex to indicate that the string must
end with this regex pattern. And you can use the ^ and $ together to indi-
cate that the entire string must match the regex—that is, it’s not enough for
a match to be made on some subset of the string.

For example, the r'^Hello' regular expression string matches strings
that begin with 'Hello'. Enter the following into the interactive shell:

>>> import re
>>> begins_with_hello = re​.compile(r'^Hello')
>>> begins_with_hello.search('Hello, world!')
<re.Match object; span=(0, 5), match='Hello'>
>>> begins_with_hello.search('He said "Hello."') == None
True

The r'\d$' regular expression string matches strings that end with a
numeric character between 0 and 9. Enter the following into the interac-
tive shell:

>>> import re
>>> ends_with_number = re​.compile(r'\d$')
>>> ends_with_number.search('Your number is 42')
<re.Match object; span=(16, 17), match='2'>
>>> ends_with_number.search('Your number is forty two.') == None
True

The r'^\d+$' regular expression string matches strings that both begin
and end with one or more numeric characters. Enter the following into the
interactive shell:

>>> import re
>>> whole_string_is_num = re​.compile(r'^\d+$')
>>> whole_string_is_num.search('1234567890')
<re.Match object; span=(0, 10), match='1234567890'>
>>> whole_string_is_num.search('12345xyz67890') == None
True

The last two search() calls in the previous interactive shell example
demonstrate how the entire string must match the regex if ^ and $ are used.
(I always confuse the meanings of these two symbols, so I use the mnemonic
“carrots cost dollars” to remind myself that the caret comes first and the
dollar sign comes last.)

You can also use \b to make a regex pattern match only on a word
boundary: the start of a word, end of a word, or both the start and end of a
word. In this case, a “word” is a sequence of letters separated by non-letter

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

202 Chapter 9

characters. For example, r'\bcat.*?\b' matches a word that begins with 'cat'
followed by any other characters up to the next word boundary:

>>> import re
>>> pattern = re​.compile(r'\bcat​.*​?\b')
>>> pattern.findall('The cat found a catapult catalog in the catacombs.')
['cat', 'catapult', 'catalog', 'catacombs']

The \B syntax matches anything that is not a word boundary:

>>> import re
>>> pattern = re​.compile(r'\Bcat\B')
>>> pattern.findall('certificate') # Match
['cat']
>>> pattern.findall('catastrophe') # No match
[]

It is useful for finding matches in the middle of a word.

A R E V IE W OF R EGE X S Y MBOL S

This chapter has covered a lot of notation so far, so here’s a quick review of
what you’ve learned about basic regular expression syntax:

•	 The ? matches zero or one instance of the preceding qualifier.

•	 The * matches zero or more instances of the preceding qualifier.

•	 The + matches one or more instances of the preceding qualifier.

•	 The {n} matches exactly n instances of the preceding qualifier.

•	 The {n,} matches n or more instances of the preceding qualifier.

•	 The {,m} matches 0 to m instances of the preceding qualifier.

•	 The {n,m} matches at least n and at most m instances of the preceding
qualifier.

•	 {n,m}? or *? or +? performs a non-greedy match of the preceding qualifier.

•	 ^spam means the string must begin with spam.

•	 spam$ means the string must end with spam.

•	 The . matches any character, except newline characters.

•	 The \d, \w, and \s match a digit, word, or space character, respectively.

•	 The \D, \W, and \S match anything except a digit, word, or space charac-
ter, respectively. [abc] matches any character between the square brackets
(such as a, b, or c).

•	 [̂ abc] matches any character that isn’t between the square brackets.

•	 (Hello) groups 'Hello' together as a single qualifier.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 203

Case-Insensitive Matching
Normally, regular expressions match text with the exact casing you specify.
For example, the following regexes match completely different strings:

>>> import re
>>> pattern1 = re​.compile('RoboCop')
>>> pattern2 = re​.compile('ROBOCOP')
>>> pattern3 = re​.compile('robOcop')
>>> pattern4 = re​.compile('RobocOp')

But sometimes you care only about matching the letters, and aren’t
worried about whether they’re uppercase or lowercase. To make your regex
case-insensitive, you can pass re.IGNORECASE or re.I as a second argument to
re​.compile(). Enter the following into the interactive shell:

>>> import re
>>> pattern = re​.compile(r'robocop', re.I)
>>> pattern.search('RoboCop is part man, part machine, all cop.').group()
'RoboCop'

>>> pattern.search('ROBOCOP protects the innocent.').group()
'ROBOCOP'

>>> pattern.search('Have you seen robocop?').group()
'robocop'

The regular expression now matches strings with any casing.

Substituting Strings
Regular expressions don’t merely find text patterns; they can also substitute
new text in place of those patterns. The sub() method for Pattern objects
accepts two arguments. The first is a string that should replace any matches.
The second is the string of the regular expression. The sub() method returns
a string with the substitutions applied.

For example, enter the following into the interactive shell to replace
secret agents’ names with CENSORED:

>>> import re
>>> agent_pattern = re​.compile(r'Agent \w+')
>>> agent_pattern.sub('CENSORED', 'Agent Alice contacted Agent Bob.')
'CENSORED contacted CENSORED.'

Sometimes you may need to use the matched text itself as part of the
substitution. In the first argument to sub(), you can include \1, \2, \3, and so
on, to mean “Enter the text of group 1, 2, 3, and so on, in the substitution.”
This syntax is called a back reference.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

204 Chapter 9

For example, say you want to censor the names of the secret agents by
showing just the first letters of their names. To do this, you could use the
regex Agent (\w)\w* and pass r'\1****' as the first argument to sub():

>>> import re
>>> agent_pattern = re​.compile(r'Agent (\w)\w*')
>>> agent_pattern.sub(r'\1****', 'Agent Alice contacted Agent Bob.')
'A**** contacted B****.'

The \1 in the regular expression string is replaced by whatever text was
matched by group 1—that is, the (\w) group of the regular expression.

Managing Complex Regexes with Verbose Mode
Regular expressions are fine if the text pattern you need to match is simple.
But matching complicated text patterns might require long, convoluted reg-
ular expressions. You can mitigate this complexity by telling the re​.compile()
function to ignore whitespace and comments inside the regular expression
string. Enable this “verbose mode” by passing the variable re.VERBOSE as the
second argument to re​.compile().

Now, instead of a hard-to-read regular expression like this

pattern = re​.compile(r'((\d{3}|\(\d{3}\))​?(\s|​-|\​.)​?\d{3}(\s|-
|\.)\d{4}(\s*(ext|x|ext\.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines and use comments
to label its components, like this:

pattern = re​.compile(r'''(
 (\d{3}|\(\d{3}\))? # Area code
 (\s|-|\.)? # Separator
 \d{3} # First three digits
 (\s|-|\.) # Separator
 \d{4} # Last four digits
 (\s*(ext|x|ext\.)\s*\d{2,5})? # Extension
)''', re.VERBOSE)

Note how the previous example uses the triple-quote syntax (''') to
create a multiline string so that you can spread the regular expression defi-
nition over many lines, making it much more legible.

The comment rules inside the regular expression string are the same as
for regular Python code: the # symbol and everything after it until the end
of the line are ignored. Also, the extra spaces inside the multiline string
for the regular expression are not considered part of the text pattern to be
matched. This lets you organize the regular expression so that it’s easier
to read.

While verbose mode makes your regex strings more readable, I advise
you to instead use the Humre module, covered later in this chapter, to
improve the readability of your regular expressions.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 205

Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE
What if you want to use re.VERBOSE to write comments in your regular
expression, but also want to use re.IGNORECASE to ignore capitalization?
Unfortunately, the re​.compile() function takes only a single value as its sec-
ond argument.

You can get around this limitation by combining the re.IGNORECASE,
re.DOTALL, and re.VERBOSE variables using the pipe character (|), which in this
context is known as the bitwise or operator. For example, if you want a regu-
lar expression that is case-insensitive and includes newlines to match the
dot character, you would form your re​.compile() call like this:

>>> some_regex = re​.compile('foo', re.IGNORECASE | re.DOTALL)

Including all three options in the second argument looks like this:

>>> some_regex = re​.compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)

This syntax is a little old-fashioned and originates from early versions
of Python. The details of the bitwise operators are beyond the scope of this
book, but check out the resources at https://nostarch.com/automate-boring-stuff​
-python-3rd-edition for more information. You can also pass other options
for the second argument; they’re uncommon, but you can read more about
them in the resources too.

Project 3: Extract Contact Information from Large Documents
Say you’ve been given the boring task of finding every phone number and
email address in a long web page or document. If you manually scroll
through the page, you might end up searching for a long time. But if you
had a program that could search the text in your clipboard for phone num-
bers and email addresses, you could simply press ctrl-A to select all the
text, press ctrl-C to copy it to the clipboard, and then run your program.
It could replace the text on the clipboard with just the phone numbers and
email addresses it finds.

Whenever you’re tackling a new project, it can be tempting to dive right
into writing code. But more often than not, it’s best to take a step back and
consider the bigger picture. I recommend first drawing up a high-level plan
for what your program needs to do. Don’t think about the actual code yet;
you can worry about that later. Right now, stick to broad strokes.

For example, your phone number and email address extractor will need
to do the following:

•	 Get the text from the clipboard.

•	 Find all phone numbers and email addresses in the text.

•	 Paste them onto the clipboard.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

206 Chapter 9

Now you can start thinking about how this might work in code. The
code will need to do the following:

•	 Use the pyperclip module to copy and paste strings.

•	 Create two regexes, one for matching phone numbers and one for
matching email addresses.

•	 Find all matches (not just the first match) of both regexes.

•	 Neatly format the matched strings into a single string to paste.

•	 Display some kind of message if no matches were found in the text.

This list is like a road map for the project. As you write the code, you
can focus on each of these steps separately, and each step should seem fairly
manageable. They’re also expressed in terms of things you already know
how to do in Python.

Step 1: Create a Regex for Phone Numbers
First, you have to create a regular expression to search for phone numbers.
Create a new file, enter the following, and save it as phoneAndEmail.py:

import pyperclip, re

phone_re = re​.compile(r'''(
 (\d{3}|\(\d{3}\))? # Area code
 (\s|-|\.)? # Separator
 (\d{3}) # First three digits
 (\s|-|\.) # Separator
 (\d{4}) # Last four digits
 (\s*(ext|x|ext\.)\s*(\d{2,5}))? # Extension
)''', re.VERBOSE)

TODO: Create email regex.

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The TODO comments are just a skeleton for the program. They’ll be
replaced as you write the actual code.

The phone number begins with an optional area code, so we follow the
area code group with a question mark. Since the area code can be just three
digits (that is, \d{3}) or three digits within parentheses (that is, \(\d{3}\)),
you should have a pipe joining those parts. You can add the regex comment
Area code to this part of the multiline string to help you remember what
(\d{3}|\(\d{3}\))? is supposed to match.

The phone number separator character can be an optional space (\s),
hyphen (-), or period (.), so we should also join these parts using pipes.
The next few parts of the regular expression are straightforward: three dig-
its, followed by another separator, followed by four digits. The last part is an

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 207

optional extension made up of any number of spaces followed by ext, x, or
ext., followed by two to five digits.

N O T E 	 It’s easy to get mixed up when writing regular expressions that contain groups with
parentheses () and escaped parentheses \(\). Remember to double-check that you’re
using the correct syntax if you get a “missing), unterminated subpattern” error message.

Step 2: Create a Regex for Email Addresses
You will also need a regular expression that can match email addresses.
Make your program look like the following:

import pyperclip, re

phone_re = re​.compile(r'''(
--snip--

Create email regex.
email_re = re​.compile(r'''(
 1 [a-zA-Z0-9._%+-]+ # Username
 2 @ # @ symbol
 3 [a-zA-Z0-9.-]+ # Domain name
 (\.[a-zA-Z]{2,4}) # Dot-something
)''', re.VERBOSE)

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The username part of the email address 1 consists of one or more
characters that can be any of the following: lowercase and uppercase letters,
numbers, a dot, an underscore, a percent sign, a plus sign, or a hyphen. You
can put all of these into a character class: [a-zA-Z0-9._%+-].

The domain and username are separated by an @ symbol 2. The domain
name 3 has a slightly less permissive character class, with only letters, num-
bers, periods, and hyphens: [a-zA-Z0-9.-]. Last is the “dot-com” part (techni-
cally known as the top-level domain), which can really be dot-anything.

The format for email addresses has a lot of weird rules. This regular
expression won’t match every possible valid email address, but it will match
almost any typical email address you’ll encounter.

Step 3: Find All Matches in the Clipboard Text
Now that you’ve specified the regular expressions for phone numbers and
email addresses, you can let Python’s re module do the hard work of finding
all the matches on the clipboard. The pyperclip.paste() function will get a
string value of the text on the clipboard, and the findall() regex method
will return a list of tuples.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

208 Chapter 9

Make your program look like the following:

import pyperclip, re

phone_re = re​.compile(r'''(
--snip--

Find matches in clipboard text.
text = str(pyperclip.paste())

1 matches = []
2 for groups in phone_re.findall(text):
 phone_num = '-'.join([groups[1], groups[3], groups[5]])
 if groups[6] != '':
 phone_num += ' x' + groups[6]
 matches.append(phone_num)
3 for groups in email_re.findall(text):
 matches.append(groups)

TODO: Copy results to the clipboard.

There is one tuple for each match, and each tuple contains strings for
each group in the regular expression. Remember that group 0 matches the
entire regular expression, so the group at index 0 of the tuple is the one you
are interested in.

As you can see at 1, you’ll store the matches in a list variable named
matches. It starts off as an empty list and a couple of for loops. For the email
addresses, you append group 0 of each match 3. For the matched phone
numbers, you don’t want to just append group 0. While the program detects
phone numbers in several formats, you want the phone number appended
to be in a single, standard format. The phone_num variable contains a string
built from groups 1, 3, 5, and 6 of the matched text 2. (These groups are
the area code, first three digits, last four digits, and extension.)

Step 4: Join the Matches into a String
Now that you have the email addresses and phone numbers as a list of
strings in matches, you want to put them on the clipboard. The pyperclip​
.copy() function takes only a single string value, not a list of strings, so you
must call the join() method on matches.

Make your program look like the following:

import pyperclip, re

phone_re = re​.compile(r'''(
--snip--
for groups in email_re.findall(text):
 matches.append(groups[0])

Copy results to the clipboard.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 209

if len(matches) > 0:
 pyperclip​.copy('\n'​.join(matches))
 print('Copied to clipboard:')
 print('\n'.join(matches))
else:
 print('No phone numbers or email addresses found.')

To make it easier to see that the program is working, we also print any
matches you find to the terminal window. If no phone numbers or email
addresses were found, the program tells the user this.

To test your program, open your web browser to the No Starch Press
contact page at https://nostarch​.com​/contactus​ press ctrl-A to select all the
text on the page, and press ctrl-C to copy it to the clipboard. When you
run this program, the output should look something like this:

Copied to clipboard:
800-555-7240
415-555-9900
415-555-9950
info@nostarch​.com
media@nostarch​.com
academic@nostarch​.com
info@nostarch​.com

You can modify this script to search for mailing addresses, social media
handles, and many other types of text patterns.

Ideas for Similar Programs
Identifying patterns of text (and possibly substituting them with the sub()
method) has many different potential applications. For example, you could
do the following:

•	 Find website URLs that begin with http:// or https://.

•	 Clean up dates in different date formats (such as 3/14/2030, 03-14-2030,
and 2030/3/14) by replacing them with dates in a single, standard format.

•	 Remove sensitive information such as Social Security numbers or credit
card numbers.

•	 Find common typos, such as multiple spaces between words, acciden-
tally accidentally repeated words, or multiple exclamation marks at the
ends of sentences. Those are annoying!!

Humre: A Module for Human-Readable Regexes
Code is read far more often than it’s written, so it’s important for your code
to be readable. But the punctuation-dense syntax of regular expressions can
be hard for even experienced programmers to read. To solve this, the third-
party Humre Python module takes the good ideas of verbose mode even fur-
ther by using human-readable, plain-English names to create readable regex
code. You can install Humre by following the instructions in Appendix A.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

210 Chapter 9

Let’s go back to the r'\d{3}-\d{3}-\d{4}' phone number example from
the beginning of this chapter. The functions and constants in Humre can
produce the same regex string with plain English:

>>> from humre import *
>>> phone_regex = exactly(3, DIGIT) + '-' + exactly(3, DIGIT) + '-' + exactly(4, DIGIT)
>>> phone_regex
'\\d{3}-\\d{3}-\\d{4}'

Humre’s constants (like DIGIT) contain strings, and Humre’s func-
tions (like exactly()) return strings. Humre doesn’t replace the re module.
Rather, it produces regex strings that can be passed to re​.compile():

>>> import re
>>> pattern = re​.compile(phone​_regex)
>>> pattern.search('My number is 415-555-4242')
<re.Match object; span=(13, 25), match='415-555-4242'>

Humre has constants and functions for each feature of regular expres-
sion syntax. You can then concatenate the constants and returned strings
like any other string. For example, here are Humre’s constants for the short-
hand character classes:

•	 DIGIT and NONDIGIT represent r'\d' and r'\D', respectively.

•	 WORD and NONWORD represent r'\w' and r'\W', respectively.

•	 WHITESPACE and NONWHITESPACE represent r'\s' and r'\S', respectively.

A common source of regex bugs is forgetting which characters need to be
escaped. You can use Humre’s constants instead of typing the escaped char-
acter yourself. For example, say you want to match a single-digit floating-point
number with one digit after the decimal point, like '0.9' or '4.5'. However, if
you use the regex string r'\d.\d', you might not realize that the dot matches a
period (as in '4.5') but also matches any other character (as in '4A5').

Instead, use Humre’s PERIOD constant, which contains the string r'\.'.
The expression DIGIT + PERIOD + DIGIT evaluates to r'\d\.\d' and makes it
much more obvious what the regex intends to match.

The following Humre constants exist for escaped characters:

PERIOD
DOLLAR_SIGN
QUESTION_MARK
HASHTAG
AMPERSAND

OPEN_PAREN
CLOSE_PAREN
ASTERISK
PLUS
MINUS

OPEN_BRACKET
CLOSE_BRACKET
OPEN_BRACE
CLOSE_BRACE
BACKSLASH

PIPE
CARET
TILDE

There are also constants for NEWLINE, TAB, QUOTE, and DOUBLE_QUOTE. Back
references from r'\1' to r'\99' are represented as BACK_1 to BACK_99.

However, you’ll make the largest readability gains by using Humre’s
functions. Table 9-2 shows these functions and their equivalent regular
expression syntax.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 211

Table 9-2: Humre Functions

Humre function Regex string

group('A') r'(A)'

optional('A') r'A?'

either('A', 'B', 'C') r'A|B|C'

exactly(3, 'A') 'A{3}'

between(3, 5, 'A') 'A{3,5}'

at_least(3, 'A') 'A{3,}'

at_most(3, 'A') 'A{,3}'

chars('A-Z') '[A-Z]'

nonchars('A-Z') '[^A-Z]'

zero_or_more('A') 'A*'

zero_or_more_lazy('A') 'A*?'

one_or_more('A') 'A+'

one_or_more_lazy('A') 'A+?'

starts_with('A') '^A'

ends_with('A') 'A$'

starts_and_ends_with('A') '^A$'

named_group('name', 'A') '(?P<name>A)'

Humre also has several convenience functions that combine common
pairs of function calls. For example, instead of using optional(group('A')) to
create '(A)?', you can simply call optional_group('A'). Table 9-3 has the full
list of Humre convenience functions.

Table 9-3: Humre Convenience Functions

Convenience function Function equivalent Regex string

optional_group('A') optional(group('A')) '(A)?'

group_either('A') group(either('A', 'B', 'C')) '(A|B|C)'

exactly_group(3, 'A') exactly(3, group('A')) '(A){3}'

between_group(3, 5, 'A') between(3, 5, group('A')) '(A){3,5}'

at_least_group (3, 'A') at_least(3, group('A')) '(A){3,}'

at_most_group (3, 'A') at_most(3, group('A')) '(A){,3}'

zero_or_more_group('A') zero_or_more(group('A')) '(A)*'

zero_or_more_lazy_group('A') zero_or_more_lazy(group('A')) '(A)*?'

one_or_more_group('A') one_or_more(group('A')) '(A)+'

one_or_more_lazy_group('A') one_or_more_lazy(group('A')) '(A)+?'

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

212 Chapter 9

All of Humre’s functions except either() and group_either() allow you
to pass multiple strings to automatically join them. This means that calling
group(DIGIT, PERIOD, DIGIT) produces the same regex string as group(DIGIT +
PERIOD + DIGIT). They both return the regex string r'(\d\.\d)'.

Finally, Humre has constants for common regex patterns:

ANY_SINGLE ​  ​The . pattern that matches any single character (except
newlines)

ANYTHING_LAZY ​  ​The lazy .*? zero or more pattern

ANYTHING_GREEDY ​  ​The greedy .* zero or more pattern

SOMETHING_LAZY ​  ​The lazy .+? one or more pattern

SOMETHING_GREEDY ​  ​The greedy .+ one or more pattern

The readability of regex written with Humre becomes more obvious
when you consider large, complicated regular expressions. Let’s rewrite the
phone number regex from the previous phone number extractor project
using Humre:

import re
from humre import *
phone_regex = group(
 optional_group(either(exactly(3, DIGIT), # Area code
 OPEN_PAREN + exactly(3, DIGIT) + CLOSE_PAREN)),
 optional(group_either(WHITESPACE, '-', PERIOD)), # Separator
 group(exactly(3, DIGIT)), # First three digits
 group_either(WHITESPACE, '-', PERIOD), # Separator
 group(exactly(4, DIGIT)), # Last four digits
 optional_group(# Extension
 zero_or_more(WHITESPACE),
 group_either('ext', 'x', r'ext\.'),
 zero_or_more(WHITESPACE),
 group(between(2, 5, DIGIT))
)
)

pattern = re​.compile(phone​_regex)
match = pattern.search('My number is 415-555-1212.')
print(match.group())

When you run this program, the output is this:

415-555-1212

This code is much more verbose than even the verbose mode regex.
It helps to import Humre using the from humre import * syntax so that you
don’t need to put humre. before every function and constant. But the length
of the code doesn’t matter as much as the readability.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 213

You can switch your existing regular expressions to Humre code by call-
ing the humre.parse() function, which returns a string of Python source code:

>>> import humre
>>> humre.parse(r'\d{3}-\d{3}-\d{4}')
"exactly(3, DIGIT) + '-' + exactly(3, DIGIT) + '-' + exactly(4, DIGIT)"

When combined with a modern editor such as PyCharm or Visual
Studio Code, Humre offers several further advantages:

•	 You can indent your code to make it obvious which parts of the regex
contain which other parts.

•	 Your editor’s parentheses matching works.

•	 Your editor’s syntax highlighting works.

•	 Your editor’s linter and type hints tool picks up typos.

•	 Your editor’s autocomplete fills in the function and constant names.

•	 Humre handles raw strings and escaping for you.

•	 You can put Python comments alongside your Humre code.

•	 Typos cause more helpful error messages.

Many experienced programmers will object to using anything other
than the standard, complicated, unreadable regular expression syntax.
As programmer Peter Bhat Harkins once said, “One of the most irritating
things programmers do regularly is feel so good about learning a hard thing
that they don’t look for ways to make it easy, or even oppose things that
would do so.”

However, if a co-worker objects to your use of Humre, you can simply
print the underlying regex string that your Humre code generates and put
it back into your source code. For example, the contents of the phone_regex
variable in the phone number extractor project are as follows:

r'((\d{3}|\(\d{3}\))?(\s|-|\.)?(\d{3})(\s|-|\.)(\d{4})(\s*(ext|x|ext\.)\s*(\d{2,5}))?)'

Your co-worker is welcome to use this regular expression string if they
feel it is more appropriate.

Summary
While a computer can search for text quickly, it must be told precisely what
to look for. Regular expressions allow you to specify the pattern of charac-
ters you are looking for, rather than the exact text itself. In fact, some word
processing and spreadsheet applications provide find-and-replace features
that allow you to search using regular expressions. The punctuation-heavy
syntax of regular expressions is composed of qualifiers that detail what to
match and quantifiers that detail how many to match.

The re module that comes with Python lets you compile a regex string
into a Pattern object. These objects have several methods: search(), to find

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

214 Chapter 9

a single match; findall(), to find all matching instances; and sub(), to do a
find-and-replace substitution of text.

You can find out more in the official Python documentation at https://
docs​.python​.org​/3​/library​/re​.html. Another useful resource is the tutorial
website https://www​.regular​-expressions​.info. The Humre page on the Python
Package Index is https://pypi​.org​/project​/Humre​/.

Practice Questions
	 1.	What is the function that returns Regex objects?

	 2.	Why are raw strings often used when creating Regex objects?

	 3.	What does the search() method return?

	 4.	How do you get the actual strings that match the pattern from a Match
object?

	 5.	In the regex created from r'(\d\d\d)-(\d\d\d-\d\d\d\d)', what does
group 0 cover? Group 1? Group 2?

	 6.	Parentheses and periods have specific meanings in regular expression
syntax. How would you specify that you want a regex to match actual
parentheses and period characters?

	 7.	The findall() method returns a list of strings or a list of tuples of
strings. What makes it return one or the other?

	 8.	What does the | character signify in regular expressions?

	 9.	What two things does the ? character signify in regular expressions?

	10.	What is the difference between the + and * characters in regular
expressions?

	11.	What is the difference between {3} and {3,5} in regular expressions?

	12.	What do the \d, \w, and \s shorthand character classes signify in regular
expressions?

	13.	What do the \D, \W, and \S shorthand character classes signify in regular
expressions?

	14.	What is the difference between the .* and .*? regular expressions?

	15.	What is the character class syntax to match all numbers and lowercase
letters?

	16.	How do you make a regular expression case-insensitive?

	17.	What does the . character normally match? What does it match if
re.DOTALL is passed as the second argument to re​.compile()?

	18.	If num_re = re​.compile(r'\d+'), what will num_re.sub('X', '12 drummers,
11 pipers, five rings, 3 hens') return?

	19.	What does passing re.VERBOSE as the second argument to re​.compile()
allow you to do?

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

Text Pattern Matching with Regular Expressions 215

Practice Programs
For practice, write programs to do the following tasks.

Strong Password Detection
Write a function that uses regular expressions to make sure the password
string it is passed is strong. A strong password has several rules: it must be
at least eight characters long, contain both uppercase and lowercase char-
acters, and have at least one digit. Hint: It’s easier to test the string against
multiple regex patterns than to try to come up with a single regex that can
validate all the rules.

Regex Version of the strip() Method
Write a function that takes a string and does the same thing as the strip()
string method. If no other arguments are passed other than the string to
strip, then the function should remove whitespace characters from the
beginning and end of the string. Otherwise, the function should remove
the characters specified in the second argument to the function.

Automate the Boring Stuff with Python, 3rd ed (Sample Chapter) © 2/4/25 by Al Sweigart

