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N E T W O R K  P R O T O C O L 

S T R U C T U R E S

The old adage “There is nothing new under the sun” 

holds true when it comes to the way protocols are 

structured. Binary and text protocols follow common 

patterns and structures and, once understood, can eas-

ily be applied to any new protocol. This chapter details 

some of these structures and formalizes the way I’ll 

represent them throughout the rest of this book.
In this chapter, I discuss many of the common types of protocol struc-

tures. Each is described in detail along with how it is represented in binary- 
or text-based protocols. By the end of the chapter, you should be able to 
easily identify these common types in any unknown protocol you analyze. 

Once you understand how protocols are structured, you’ll also see pat-
terns of exploitable behavior—ways of attacking the network protocol itself. 
Chapters 8 and 10 will provide more detail on finding network protocol 
issues, but for now we’ll just concern ourselves with structure.
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Binary Protocol Structures

Binary protocols work at the binary level; the smallest unit of data is a single 
binary digit. Dealing with single bits is difficult, so we’ll use 8-bit units called 
octets, commonly called bytes. The octet is the de facto unit of network proto-
cols. Although octets can be broken down into individual bits (for example, 
to represent a set of flags), we’ll treat all network data in 8-bit units, as shown 
in Figure 3-1.

Bit 7/MSB Bit 0/LSB

0 1 0 0 0 0 0 1 = 0x41/65

0x41

Bit Format:

Octet Format:

Figure 3-1: Binary data description formats

When showing individual bits, I’ll use the bit format, which shows bit 7, 
the most significant bit (MSB), on the left. Bit 0, or the least significant bit (LSB), 
is on the right. (Some architectures, such as PowerPC, define the bit num-
bering in the opposite direction.)

Numeric Data

Data values representing numbers are usually at the core of a binary proto-
col. These values can be integers or decimal values. Numbers can be used 
to represent the length of data, to identify tag values, or simply to represent 
a number. 

In binary, numeric values can be represented in a few different ways, 
and a protocol’s method of choice depends on the value it’s representing. 
The following sections describe some of the more common formats. 

Unsigned Integers

Unsigned integers are the most obvious representation of a binary num-
ber. Each bit has a specific value based on its position, and these values are 
added together to represent the integer. Table 3-1 shows the decimal and 
hexadecimal values for an 8-bit integer. 

Table 3-1: Decimal Bit Values

Bit Decimal value Hex value

0 1 0x01

1 2 0x02

2 4 0x04

3 8 0x08

4 16 0x10

5 32 0x20

6 64 0x40

7 128 0x80
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Signed Integers

Not all integer values are positive. In some scenarios, negative integers are 
required—for example, to represent the difference between two integers, 
you need to take into account that the difference could be negative—and 
only signed integers can hold negative values. While encoding an unsigned 
integer seems obvious, the CPU can only work with the same set of bits. 
Therefore, the CPU requires a way of interpreting the unsigned integer 
value as signed; the most common signed interpretation is two’s comple-
ment. The term two’s complement refers to the way in which the signed inte-
ger is represented within a native integer value in the CPU.  

Conversion between unsigned and signed values in two’s complement is 
done by taking the bitwise NOT of the integer and adding 1. For example, 
Figure 3-2 shows the 8-bit integer 123 converted to its two’s complement 
representation.

0 1 1 1 1 0 1 1 = 0x7B/123

= 0x84/-1241 0 0 0 0 1 0 0

NOT

+1

= 0x85/-1231 0 0 0 0 1 0 1=

MSB LSB

Figure 3-2: Two’s complement representation of 123

The two’s complement representation has one dangerous security con-
sequence. For example, an 8-bit signed integer has the range –128 to 127, so 
the magnitude of the minimum is larger than the maximum. If the mini-
mum value is negated, the result is itself; in other words, –(–128) is –128. 
This can cause calculations to be incorrect in parsed formats, leading to 
security vulnerabilities. We’ll go into more detail in Chapter 10. 

Variable-Length Integers

Efficient transfer of network data has historically been very important. Even 
though today’s high-speed networks might make efficiency concerns unnec-
essary, there are still advantages to reducing a protocol’s bandwidth. It can 
be beneficial to use variable-length integers when the most common integer 
values being represented are within a very limited range. This is in contrast 
to large integers that vary in size to extend their maximum range. 

For example, consider length fields: when sending blocks of data between 
0 and 127 bytes in size, you could use a 7-bit variable integer representation. 
Figure 3-3 shows a few different encodings for 32-bit words. At most, five 
octets are required to represent the entire range. But if your protocol tends 
to assign values between 0 and 127, it will only use one octet, which saves a 
considerable amount of space. 
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0x3F
0x3F as 7-bit

variable integer

0x80 0x00
0x80 as 7-bit

variable integer

Lowest Address

0x84 0x86
0x01020304 as 

7-bit variable integer
0x88 0x08

0xFF 0xFF
0xFFFFFFFF as 

7-bit variable integer
0xFF 0xFF 0x0F

Figure 3-3: Example 7-bit integer encoding

That said, if you parse more than five octets (or even 32 bits), the 
resulting integer from the parsing operation will depend on the parsing 
program. Some programs (including those developed in C) will simply 
drop any bits beyond a given range, whereas other development environ-
ments will generate an overflow error. If not handled correctly, this inte-
ger overflow might lead to vulnerabilities, such as buffer overflows, which 
could cause a smaller than expected memory buffer to be allocated, in 
turn resulting in memory corruption.

Floating-Point Data

Sometimes, integers aren’t enough to represent the range of decimal values 
needed for a protocol. For example, a protocol for a multiplayer computer 
game might require sending the coordinates of players or objects in the 
game’s virtual world. If this world is large, it would be easy to run up against 
the limited range of a 32- or even 64-bit fixed-point value. 

The format of floating-point integers used most often is the IEEE for-

mat specified in IEEE Standard for Floating-Point Arithmetic (IEEE 754). 
Although the standard specifies a number of different binary and even 
decimal formats for floating-point values, you’re likely to encounter only 
two: a single-precision binary representation, which is a 32-bit value; and 
a double-precision, 64-bit value. Each format specifies the position and bit 
size of the significand and exponent. A sign bit is also specified, indicating 
whether the value is positive or negative. Figure 3-4 shows the general lay-
out of an IEEE floating-point value, and Table 3-2 lists the common expo-
nent and significand sizes.



Network Protocol Structures   31

SignificandExponent

Sign

IEEE Floating-Point Format

MSB LSB

Figure 3-4: Floating-point representation

Table 3-2: Common Float Point Sizes and Ranges

Bit size Exponent bits Significand bits Value range

32 8 23 +/– 3.402823 × 1038

64 11 52 +/– 1.79769313486232 × 10308

Booleans

Because Booleans are very important to computers, it’s no surprise to see 
them reflected in a protocol. Each protocol determines how to represent 
whether a Boolean value is true or false, but there are some common 
conventions.

The basic way to represent a Boolean is with a single-bit value. A 0 bit 
means false and a 1 means true. This is certainly space efficient but not 
necessarily the simplest way to interface with an underlying application. It’s 
more common to use a single byte for a Boolean value because it’s far easier 
to manipulate. It’s also common to use zero to represent false and non-zero 
to represent true. 

Bit Flags

Bit flags are one way to represent specific Boolean states in a protocol. For 
example, in TCP a set of bit flags is used to determine the current state of a 
connection. When making a connection, the client sends a packet with the 
synchronize flag (SYN) set to indicate that the connections should synchro-
nize their timers. The server can then respond with an acknowledgment 
(ACK) flag to indicate it has received the client request as well as the SYN 
flag to establish the synchronization with the client. If this handshake used 
single enumerated values, this dual state would be impossible without a dis-
tinct SYN/ACK state.

Strings

Along with numeric data, strings are the value type you’ll most commonly 
encounter, whether they’re being used for passing authentication creden-
tials or resource paths. When inspecting a protocol designed to send only 
English characters, the text will probably be encoded using ASCII. The 
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original ASCII standard defined a 7-bit character set from 0 to 0x7F, which 
includes most of the characters needed to represent the English language 
(shown in Figure 3-5).

0 1 2 3 4 5 6 7 8 9 A B C D E F

NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

SP ! " # $ % & ' ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [ \ ] ^ _

` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~ DEL

0

1

2

3

4

5

6

7

Control
Character 
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Figure 3-5: 7-bit ASCII table

The ASCII standard was originally developed for text terminals (physi-
cal devices with a moving printing head). Control characters were used to 
send messages to the terminal to move the printing head or to synchronize 
serial communications between the computer and the terminal. The ASCII 
character set contains two types of characters: control and printable. Most of 
the control characters are relics of those devices and are virtually unused. 
But some still provide information on modern computers, such as CR and 
LF, which are used to end lines of text. 

The printable characters are the ones you can see. This set of char-
acters consists of many familiar symbols and alphanumeric characters; 
however, they won’t be of much use if you want to represent international 
characters, of which there are thousands. To address this problem, other 
ways of encoding (such as UTF-8) are becoming prevalent, as you’ll learn 
later in this chapter. 

Character Encoding

Life would be easy in the text-based protocol world if everyone used ASCII 
character encoding to represent textual data. Unfortunately, it’s unachiev-
able to represent even a fraction of the possible characters in all the world’s 
languages in a 7-bit number.
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Three strategies are commonly employed to counter this limitation: 
code pages, multibyte character sets, and Unicode. A protocol will either 
require that you use one of these three ways to represent text, or it will offer 
an option that an application can select. 

Code Pages

The simplest way to extend the ASCII character set is by recognizing that if 
all your data is stored in octets, 128 unused values (from 128 to 255) can be 
repurposed for storing extra characters.  Although 256 values are not enough 
to store all the characters in every available language, you have many differ-
ent ways to use the unused range. Which characters are mapped to which 
values is typically codified in specifications called code pages or character 

encodings. 

Multibyte Character Sets

In languages such as Chinese, Japanese, and Korean (collectively referred 
to as CJK), you simply can’t come close to representing the entire written 
language with 256 characters, even if you use all available space. The solu-
tion is to use multibyte character sets combined with ASCII to encode these 
languages. Common encodings are Shift-JIS for Japanese and GB2312 for 
simplified Chinese. 

Multibyte character sets allow you to use two or more octets in sequence to 
encode a desired character, although you’ll rarely see them in use. In fact, 
if you’re not working with CJK, you probably won’t see them at all. (For the 
sake of brevity, I won’t discuss multibyte character sets any further; plenty of 
online resources will aid you in decoding them if required.)

Unicode

The Unicode standard, first standardized in 1991, aims to represent all 
languages within a unified character set. You might think of Unicode as 
another multibyte character set. But rather than focusing on a specific 
language, such as Shift-JIS does with Japanese, it tries to encode all written 
languages, including some archaic and constructed ones, into a single uni-
versal character set.

Character Mapping and Character Encoding

Unicode defines two related concepts: character mapping and character encod-

ing. Character mappings include mappings between a numeric value and a 
character, as well as many other rules and regulations on how characters 
are used or combined. Character encodings define the way these numeric 
values are encoded in the underlying file or network protocol. For analysis 
purposes, it’s far more important to know how these numeric values are 
encoded. 
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Each character in Unicode is assigned a code point that represents 
a unique character. Code points are commonly written in the format 
U+ABCD, where ABCD is the code point’s hexadecimal value. For the sake 
of compatibility, the first 128 code points match what is specified in ASCII, 
and the second 128 code points are taken from ISO/IEC 8859-1. The result-
ing value is encoded using a specific scheme, sometimes referred to as 
Universal Character Set (UCS) or Unicode Transformation Format (UTF) encod-
ings. (Subtle differences exist between UCS and UTF formats, but for the 
sake of identification and manipulation, these differences are unimport-
ant.) Figure 3-6 shows a simple example of some different Unicode formats. 

Code Points: Hello = U+0048 - U+0065 - U+006C - U+006C - U+006F

UCS-2/UTF-16 Little Endian

UCS-2/UTF-16 Big Endian

UCS-4/UTF-32 Little Endian

UTF-8

0x48 0x00 0x65 0x00 0x6C 0x00 0x6C 0x00 0x6F 0x00

0x48 0x00 0x65 0x00 0x6C 0x00 0x6C 0x00 0x6F0x00

0x48 0x00 0x00 0x00 0x65 0x00 0x00 0x00 0x6C 0x00 0x00 0x00

0x6C 0x00 0x00 0x00 0x6F 0x00 0x00 0x00

0x48 0x65 0x6C 0x6C 0x6F

Figure 3-6: The string “Hello” in different Unicode encodings

Three common Unicode encodings in use are UTF-16, UTF-32, 
and UTF-8. 

UCS-2/UTF-16 

UCS-2/UTF-16 is the native format on modern Microsoft Windows plat-
forms, as well as the Java and .NET virtual machines when they are run-
ning code. It encodes code points in sequences of 16-bit integers and 
has little and big endian variants.

UCS-4/UTF-32 

UCS-4/UTF-32 is a common format used in Unix applications because 
it’s the default wide-character format in many C/C++ compilers. It 
encodes code points in sequences of 32-bit integers and has different 
endian variants.
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UTF-8

UTF-8 is probably the most common format on Unix. It is also the 
default input and output format for varying platforms and technolo-
gies, such as XML. Rather than having a fixed integer size for code 
points, it encodes them using a simple variable length value. Table 3-3 
shows how code points are encoded in UTF-8.

Table 3-3: Encoding Rules for Unicode Code Points in UTF-8

Bits of 
code 
point

First 
code 
point (U+)

Last 
code 
point (U+)

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

0-7 0000 007F 0xxxxxxx

8-11 0080 07FF 110xxxxx 10xxxxxx

12-16 0800 FFFF 1110xxxx 10xxxxxx 10xxxxxx

17-21 10000 1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

22-26 200000 3FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

26-31 4000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

UTF-8 has many advantages. For one, its encoding definition ensures 
that the ASCII character set, code points U+0000 through U+007F, are 
encoded using single bytes. This scheme makes this format not only ASCII 
compatible but also space efficient. In addition, UTF-8 is compatible with 
C/C++ programs that rely on NUL-terminated strings. 

For all of its benefits, UTF-8 does come at a cost, because languages 
like Chinese and Japanese consume more space than they do in UTF-16. 
Figure 3-7 shows such a disadvantageous encoding of Chinese characters. 
But notice that the UTF-8 in this example is still more space efficient than 
the UTF-32 for the same characters. 

Code Points:  = U+5154 - U+5B50

0x54 0x51 0x50 0x5B

UCS-2/UTF-16 Little Endian

0x51 0x54 0x5B 0x50

UCS-2/UTF-16 Big Endian

UCS-4/UTF-32 Little Endian

0x54 0x51 0x00 0x00 0x50 0x5B 0x00 0x00

UTF-8

0xE5 0x85 0x94 0xE5 0xAD 0x90

Figure 3-7: The string " " in different Unicode encodings
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N O T E  Incorrect or naive character encoding can be a source of subtle security issues, rang-

ing from bypassing filtering mechanisms (say in a requested resource path) to causing 

buffer overflows. We’ll investigate some of the vulnerabilities associated with character 

encoding in Chapter 10. 

Variable Binary Length Data

If the protocol developer knows in advance exactly what data must be 
transmitted, they can ensure that all values within the protocol are of a 
fixed length. In reality this is quite rare, although even simple authentica-
tion credentials would benefit from the ability to specify variable username 
and password string lengths. Protocols use several strategies to produce 
variable-length data values: I discuss the most common—terminated data, 
length-prefixed data, implicit-length data, and padded data—in the follow-
ing sections.

Terminated Data

You saw an example of variable-length data when variable-length integers 
were discussed earlier in this chapter. The variable-length integer value was 
terminated when the octet’s MSB was 0. We can extend the concept of ter-
minating values further to elements like strings or data arrays. 

A terminated data value has a terminal symbol defined that tells the 
data parser that the end of the data value has been reached. The terminal 
symbol is used because it’s unlikely to be present in typical data, ensuring 
that the value isn’t terminated prematurely. With string data, the terminat-
ing value can be a NUL value (represented by 0) or one of the other control 
characters in the ASCII set. 

If the terminal symbol chosen occurs during normal data transfer, you 
need to use a mechanism to escape these symbols. With strings, it’s common 
to see the terminating character either prefixed with a backslash (\) or 
repeated twice to prevent it from being identified as the terminal symbol. 
This approach is especially useful when a protocol doesn’t know ahead of 
time how long a value is—for example, if it’s generated dynamically. Figure 
3-8 shows an example of a string terminated by a NUL value. 

'H'

0x48
'e'

0x65
'l'

0x6C
'l'

0x6C
'o'

0x6F
NUL
0x00

Valid String Data

Terminating
Character 

Figure 3-8: "Hello" as a NUL-terminated string
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Bounded data is often terminated by a symbol that matches the first 
character in the variable-length sequence. For example, when using string 
data, you might find a quoted string sandwiched between quotation marks. 
The initial double quote tells the parser to look for the matching charac-
ter to end the data. Figure 3-9 shows a string bounded by a pair of double 
quotes. 

'H'

0x48
'e'

0x65
'l'

0x6C
'l'

0x6C
'o'

0x6F
'"'

0x22
'"'

0x22

Valid String Data

Starting
Quote

Ending
Quote

Figure 3-9: "Hello" as a double-quoted bounded string

Length-Prefixed Data

If a data value is known in advance, it’s possible to insert its length into the 
protocol directly. The protocol’s parser can read this value and then read 
the appropriate number of units (say characters or octets) to extract the 
original value. This is a very common way to specify variable-length data.

The actual size of the length prefix is usually not that important, 
although it should be reasonably representative of the types of data being 
transmitted. Most protocols won’t need to specify the full range of a 32-bit 
integer; however, you’ll often see that size used as a length field, if only 
because it fits well with most processor architectures and platforms. For 
example, Figure 3-10 shows a string with an 8-bit length prefix.

'H'

0x48
'e'

0x65
'l'

0x6C
'l'

0x6C
'o'

0x6F
0x05

Number of
Characters

5 Characters

Figure 3-10: "Hello" as a length-prefixed string

Implicit-Length Data

Sometimes the length of the data value is implicit in the values around it. 
For example, think of a protocol that is sending data back to a client using 
a connection-oriented protocol such as TCP. Rather than specifying the 
size of the data up front, the server could close the TCP connection, thus 
implicitly signifying the end of the data. This is how data is returned in an 
HTTP version 1.0 response. 
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Another example would be a higher-level protocol or structure that 
has already specified the length of a set of values. The parser might extract 
that higher-level structure first and then read the values contained within 
it. The protocol could use the fact that this structure has a finite length 
associated with it to implicitly calculate the length of a value in a similar 
fashion to close the connection (without closing it, of course). For example, 
Figure 3-11 shows a trivial example where a 7-bit variable integer and string 
are contained within a single block. (Of course, in practice, this can be con-
siderably more complex.)

'H'

0x48
'e'

0x65
'l'

0x6C
'l'

0x6C
'o'

0x6F
0x07

Total
Size

String Data

7 Octets of
Data

0x80 0x00

0x80 as 7-bit
variable integer

Figure 3-11: "Hello" as an implicit-length string

Padded Data

Padded data is used when there is a maximum upper bound on the length 
of a value, such as a 32-octet limit. For the sake of simplicity, rather than 
prefixing the value with a length or having an explicit terminating value, 
the protocol could instead send the entire fixed-length string but termi-
nate the value by padding the unused data with a known value. Figure 3-12 
shows an example.

'H'

0x48
'e'

0x65
'l'

0x6C
'l'

0x6C
'o'

0x6F
'$'

0x24
'$'

0x24
'$'

0x24
'$'

0x24
'$'

0x24
'$'

0x24

Valid String Data Padding Data

Figure 3-12: "Hello" as a '$' padded string

Dates and Times

It can be very important for a protocol to get the correct date and time. 
Both can be used as metadata, such as file modification timestamps 
in a network file protocol, as well as to determine the expiration of 
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authentication credentials. Failure to correctly implement the timestamp 
might cause serious security issues. The method of date and time represen-
tation depends on usage requirements, the platform the applications are 
running on, and the protocol’s space requirements. I discuss two common 
representations, POSIX/Unix Time and Windows FILETIME, in the follow-
ing sections.

POSIX/Unix Time

Currently, POSIX/Unix time is stored as a 32-bit signed integer value rep-
resenting the number of seconds that have elapsed since the Unix epoch, 
which is usually specified as 00:00:00 (UTC), 1 January 1970. Although this 
isn’t a high-definition timer, it’s sufficient for most scenarios. As a 32-bit inte-
ger, this value is limited to 03:14:07 (UTC) 19 January 2038, at which point 
the representation will overflow. Some modern operating systems now use 
a 64-bit representation to address this problem. 

Windows FILETIME

The Windows FILETIME is the date and time format used by Microsoft 
Windows for its filesystem timestamps. As the only format on Windows with 
simple binary representation, it also appears in a few different protocols. 

The FILETIME format is a 64-bit unsigned integer. One unit of the 
integer represents a 100 ns interval. The epoch of the format is 00:00:00 
(UTC), 1 January 1601. This gives the FILETIME format a larger range 
than the POSIX/Unix time format. 

Binary Endian 

The endianness of data is a very important part of interpreting binary pro-
tocols correctly. It comes into play whenever a multi-octet value, such as a 
32-bit word, is transferred. The endian is an artifact of how computers store 
data in memory. 

Because octets are transmitted sequentially on the network, it’s possible 
to send the most significant octet of a value as the first part of the transmis-
sion, as well as the reverse—send the least significant octet first. The order 
in which octets are sent determines the endian of the data. Failure to cor-
rectly handle the endian format can lead to subtle bugs in the parsing of 
protocols.

Modern platforms use two main endian formats: big and little. Big 

endian stores the most significant byte at the lowest address, whereas 
little endian stores the least significant byte in that location. Figure 3-13 
shows how the 32-bit integer 0x01020304 is stored in both forms.

The endian of a value is commonly referred to as either network order or 
host order. Because the Internet RFCs invariably use big endian as the pre-
ferred type for all network protocols they specify (unless there are legacy 
reasons for doing otherwise), big endian is referred as network order. But 
your computer could be either big or little endian. Processor architectures 
such as x86 use little endian; others such as SPARC use big endian. 
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0x01 0x02
0x01020304 

as 32-bit 
big endian word

0x03 0x04

0x04 0x03
0x01020304 

as 32-bit 
little endian word

0x02 0x01

Lowest Address Highest Address

Figure 3-13: Big and little endian word representation

N O T E  Some processor architectures, including SPARC, ARM, and MIPS, may have onboard 

logic that specifies the endianness at runtime, usually by toggling a processor control 

flag. When developing network software, make no assumptions about the endianness 

of the platform you might be running on. The networking API used to build an appli-

cation will typically contain convenience functions for converting to and from these 

orders. Other platforms, such as PDP-11, use a middle endian format where 16-bit 

words are swapped; however, you’re unlikely to ever encounter one in everyday life, so 

don’t dwell on it. 

Tag, Length, Value Pattern

It’s easy to imagine how one might send unimportant data using simple pro-
tocols, but sending more complex and important data takes some explain-
ing. For example, a protocol that can send different types of structures must 
have a way to represent the bounds of a structure and its type. 

One way to represent data is with a Tag, Length, Value (TLV) pattern. The 
Tag value represents the type of data being sent by the protocol, which is 
commonly a numeric value (usually an enumerated list of possible values). 
But the Tag can be anything that provides the data structures with a unique 
pattern. The Length and Value are variable-length values. The order in 
which the values appear isn’t important; in fact, the Tag might be part 
of the Value. Figure 3-14 show a couple of ways these values could be 
arranged. 

The Tag value sent can be used to determine how to further process 
the data. For example, given two types of Tags, one that indicates the 
authentication credentials to the application and another that represents 
a message being transmitted to the parser, we must be able to distinguish 
between the two types of data. One big advantage to this pattern is that it 
allows us to extend a protocol without breaking applications that have not 
been updated to support the updated protocol. Because each structure is 
sent with an associated Tag and Length, a protocol parser could ignore the 
structures that it doesn’t understand. 
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0x00 0x03 0x12 0x34 0x560x08

Tag Outside 
Value

3-Octet Value

16-bit
Length

0x00 0x04 0x12 0x34 0x560x08

4-Octet Value

16-bit
Length

Tag Inside
Value

Figure 3-14: Possible TLV arrangements

Multiplexing and Fragmentation

Often in computer communication, multiple tasks must happen at once. 
For example, consider the Microsoft Remote Desktop Protocol (RDP): a user 
could be moving the mouse cursor, typing on the keyboard, and transfer-
ring files to a remote computer while changes in the display and audio are 
being transmitted back to the user (see Figure 3-15).

Remote Desktop Server

Remote Desktop
Client

User Interface Updates

Keyboard and Mouse Updates

Sound

Shared Files

Figure 3-15: Data needs for Remote Desktop Protocol

This complex data transfer would not result in a very rich experience 
if display updates had to wait for a 10-minute audio file to finish before 
updating the display. Of course, a workaround would be opening multiple 
connections to the remote computer, but those would use more resources. 
Instead, many protocols use multiplexing, which allows multiple connections 
to share the same underlying network connection.

Multiplexing (shown in Figure 3-16) defines an internal channel mecha-
nism that allows a single connection to host multiple types of traffic by 
fragmenting large transmissions into smaller chunks. Multiplexing then 
combines these chunks into a single connection. When analyzing a proto-
col, you may need to demultiplex these channels to get the original data 
back out. 
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Remote Desktop Server

Remote Desktop Client
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Figure 3-16: Multiplexed RDP data

Unfortunately, some network protocols restrict the type of data that 
can be transmitted and how large each packet of data can be—a problem 
commonly encountered when layering protocols. For example, Ethernet 
defines the maximum size of traffic frames as 1500 octets, and running IP 
on top of that causes problems because the maximum size of IP packets 
can be 65536 bytes. Fragmentation is designed to solve this problem: it 
uses a mechanism that allows the network stack to convert large packets 
into smaller fragments when the application or OS knows that the entire 
packet cannot be handled by the next layer.

Network Address Information

The representation of network address information in a protocol usually 
follows a fairly standard format. Because we’re almost certainly dealing 
with TCP or UDP protocols, the most common binary representation is the 
IP address as either a 4- or 16-octet value (for IPv4 or IPv6) along with a 
2-octet port. By convention, these values are typically stored as big endian 
integer values. 

You might also see hostnames sent instead of raw addresses. Because 
hostnames are just strings, they follow the patterns used for sending vari-
able-length strings, which was discussed earlier in “Variable Binary Length 
Data” on page 36. Figure 3-17 shows how some of these formats might 
appear. 
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0x7F 0x00 0x00 0x01 0x00 0x50

IPv4 Address
127.0.0.1 TCP Port 80

'a' '.' 'c' 'o' 'm'

Hostname
a.com

0x00 0x00 0x50

TCP Port 80

Terminating
Character

0x00 0x00 0x01 0x00 0x50

IPv6 Address
(128 bits)

::1 TCP Port 80

0x00 0x00 0x00 ...

Figure 3-17: Network information in binary

Structured Binary Formats

Although custom network protocols have a habit of reinventing the wheel, 
sometimes it makes more sense to repurpose existing designs when describ-
ing a new protocol. For example, one common format encountered in binary 
protocols is Abstract Syntax Notation 1 (ASN.1). ASN.1 is the basis for protocols 
such as the Simple Network Management Protocol (SNMP), and it is the 
encoding mechanism for all manner of cryptographic values, such as X.509 
certificates.

ASN.1 is standardized by the ISO, IEC, and ITU in the X.680 series. It 
defines an abstract syntax to represent structured data. Data is represented 
in the protocol depending on the encoding rules, and numerous encodings 
exist. But you’re most likely to encounter the Distinguished Encoding Rules 

(DER), which is designed to represent ASN.1 structures in a way that can-
not be misinterpreted—a useful property for cryptographic protocols. The 
DER representation is a good example of a TLV protocol. 
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Rather than going into great detail about ASN.1 (which would take up 
a fair amount of this book), I give you Listing 3-1, which shows the ASN.1 
for X.509 certificates.

Certificate  ::=  SEQUENCE  {
     version         [0]  EXPLICIT Version DEFAULT v1,
     serialNumber         CertificateSerialNumber,
     signature            AlgorithmIdentifier,
     issuer               Name,
     validity             Validity,
     subject              Name,
     subjectPublicKeyInfo SubjectPublicKeyInfo,
     issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,
     subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,
     extensions      [3]  EXPLICIT Extensions OPTIONAL
}

Listing 3-1: X.509 ASN.1 representation

This abstract definition of an X.509 certificate can be represented in 
any of ASN.1’s encoding formats. Listing 3-2 shows a snippet of the DER 
encoded form dumped as text using the OpenSSL utility.

$ openssl asn1parse -in example.cer
    0:d=0  hl=4 l= 539 cons: SEQUENCE
    4:d=1  hl=4 l= 388 cons: SEQUENCE
    8:d=2  hl=2 l=   3 cons: cont [ 0 ]
   10:d=3  hl=2 l=   1 prim: INTEGER         :02
   13:d=2  hl=2 l=  16 prim: INTEGER         :19BB8E9E2F7D60BE48BFE6840B50F7C3
   31:d=2  hl=2 l=  13 cons: SEQUENCE
   33:d=3  hl=2 l=   9 prim: OBJECT          :sha1WithRSAEncryption
   44:d=3  hl=2 l=   0 prim: NULL
   46:d=2  hl=2 l=  17 cons: SEQUENCE
   48:d=3  hl=2 l=  15 cons: SET
   50:d=4  hl=2 l=  13 cons: SEQUENCE
   52:d=5  hl=2 l=   3 prim: OBJECT           :commonName
   57:d=5  hl=2 l=   6 prim: PRINTABLESTRING  :democa

Listing 3-2: Small sample of X.509 certificate

Text Protocol Structures

Text protocols are a good choice when the main purpose is to transfer text, 
which is why mail transfer protocols, instant messaging, and news aggrega-
tion protocols are usually text based. Text protocols must have structures 
similar to binary protocols. The reason is that, although their main content 
differs, both share the goal of transferring data from one place to another.

The following section details some common text protocol structures 
that you’ll likely encounter in the real world. 
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Numeric Data

Over the millennia, science and written languages have invented ways to 
represent numeric values in textual format. Of course, computer protocols 
don’t need to be human readable, but why go out of your way just to prevent 
a protocol from being readable (unless your goal is deliberate obfuscation).

Integers

It’s easy to represent integer values using the current character set’s repre-
sentation of the characters 0 through 9 (or A through F if hexadecimal). 
In this simple representation, size limitations are of no concern, and if a 
number needs to be larger than a binary word size, you can add digits. Of 
course, you’d better hope that the protocol parser can handle the extra 
digit or security issues will inevitably occur. 

To make a signed number, you add the minus (–) character to the front 
of the number; the plus (+) symbol for positive numbers is implied. 

Decimal Numbers

Decimal numbers are usually defined using human-readable forms. For 
example, you might write a number as 1.234, using the dot character to sep-
arate the integer and fractional components of the number; however, you’ll 
still need to consider the requirement of parsing a value afterward. 

Binary representations, such as floating point, can’t represent all deci-
mal values precisely with finite precision (just as decimals can’t represent 
numbers like 1/3). This fact can make some values difficult to represent in 
text format and can cause security issues, especially when values are com-
pared to one another.

Text Booleans

Booleans are easy to represent in text protocols. Usually, they’re repre-
sented using the words true or false. But just to be difficult, some protocols 
might require that words be capitalized exactly to be valid. And sometimes 
integer values will be used instead of words, such as 0 for false and 1 for 
true, but not very often. 

Dates and Times

At a simple level, it’s easy to encode dates and times: just represent them as 
they would be written in a human-readable language. As long as all applica-
tions agree on the representation, that should suffice. 

Unfortunately, not everyone can agree on a standard format, so typi-
cally many competing date representations are in use. This can be a partic-
ularly acute issue in applications such as mail clients, which need to process 
all manner of international date formats. 
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Variable-Length Data

All but the most trivial protocols must have a way to separate important text 
fields so they can be easily interpreted. When a text field is separated out of 
the original protocol, it’s commonly referred to as a token. Some protocols 
specify a fixed length for tokens, but it’s far more common to require some 
type of variable-length data. 

Delimited Text

Separating tokens by delimiting characters is a very common way to sepa-
rate tokens and fields that’s simple to understand and easy to construct and 
parse. Any character can be used as the delimiter (depending on the type 
of data being transferred), but whitespace is encountered most in human-
readable formats. That said, the delimiter doesn’t have to be whitespace. 
For example, the Financial Information Exchange (FIX) protocol delimits 
tokens using the ASCII Start of Header (SOH) character with a value of 1. 

Terminated Text

Protocols that specify a way to separate individual tokens must also have a 
way to define an End of Command condition. If a protocol is broken into 
separate lines, the lines must be terminated in some way. Most well-known, 
text-based Internet protocols are line oriented, such as HTTP and IRC; lines 
typically delimit entire structures, such as the end of a command. 

What constitutes the end-of-line character? That depends on whom 
you ask. OS developers usually define the end-of-line character as either 
the ASCII Line Feed (LF), which has the value 10; the Carriage Return (CR) 
with the value 13; or the combination CR LF. Protocols such as HTTP and 
Simple Mail Transfer Protocol (SMTP) specify CR LF as the official end-of-
line combination. However, so many incorrect implementations occur that 
most parsers will also accept a bare LF as the end-of-line indication. 

Structured Text Formats

As with structured formats such ASN.1, there is normally no reason to 
reinvent the wheel when you want to represent structured data in a text 
protocol. You might think of structured text formats as delimited text on 
steroids, and as such, rules must be in place for how values are represented 
and hierarchies constructed. With this in mind, I’ll describe three formats 
in common use within real-world text protocols. 

Multipurpose Internet Mail Extensions

Originally developed for sending multipart email messages, Multipurpose 

Internet Mail Extensions (MIME) found its way into a number of protocols, 
such as HTTP. The specification in RFCs 2045, 2046 and 2047, along with 
numerous other related RFCs, defines a way of encoding multiple discrete 
attachments in a single MIME-encoded message.
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MIME messages separate the body parts by defining a common separa-
tor line prefixed with two dashes (--). The message is terminated by follow-
ing this separator with the same two dashes. Listing 3-3 shows an example 
of a text message combined with a binary version of the same message.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=MSG_2934894829

This is a message with multiple parts in MIME format.
--MSG_2934894829
Content-Type: text/plain

Hello World!
--MSG_2934894829
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+Cjxib2R5PgpIZWxsbyBXb3JsZCEKPC9ib2R5Pgo8L2h0bWw+Cg==
--MSG_2934894829--

Listing 3-3: Simple MIME message

One of the most common uses of MIME is for Content-Type values, 
which are usually referred to as MIME types. A MIME type is widely used 
when serving HTTP content and in operating systems to map an applica-
tion to a particular content type. Each type consists of the form of the data 
it represents, such as text or application, in the format of the data. In this 
case, plain is unencoded text and octet-stream is a series of bytes. 

JavaScript Object Notation

JavaScript Object Notation (JSON) was designed as a simple representation for 
a structure based on the object format provided by the JavaScript program-
ming language. It was originally used to transfer data between a web page 
in a browser and a backend service, such as in Asynchronous JavaScript and 
XML (AJAX). Currently, it’s commonly used for web service data transfer 
and all manner of other protocols. 

The JSON format is simple: a JSON object is enclosed using the braces 
({}) ASCII characters. Within these braces are zero or more member entries, 
each consisting of a key and a value. For example, Listing 3-4 shows a simple 
JSON object consisting of an integer index value, "Hello world!" as a string, 
and an array of strings. 

{
    "index" : 0,
    "str" : "Hello World!",
    "arr" : [ "A", "B" ] 
}

Listing 3-4: Simple JSON object
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The JSON format was designed for JavaScript processing, and it can be 
parsed using the "eval" function. Unfortunately, using this function comes 
with a significant security risk; namely, it’s possible to insert arbitrary script 
code during object creation. Although most modern applications use a pars-
ing library that doesn’t need a connection to JavaScript, it’s worth ensuring 
that arbitrary JavaScript code is not executed in the context of the applica-
tion. The reason is that it could lead to potential security issues, such as cross-

site scripting (XSS), a vulnerability where attacker-controlled JavaScript can be 
executed in the context of another web page, allowing the attacker to access 
the page’s secure resources. 

Extensible Markup Language

Extensible Markup Language (XML) is a markup language for describing 
a structured document format. Developed by the W3C, it’s derived from 
Standard Generalized Markup Language (SGML). It has many similarities 
to HTML, but it aims to be stricter in its definition in order to simplify 
parsers and create fewer security issues.1 

At a basic level, XML consists of elements, attributes, and text. Elements 
are the main structural values. They have a name and can contain child 
elements or text content. Only one root element is allowed in a single docu-
ment. Attributes are additional name-value pairs that can be assigned to an 
element. They take the form of name="Value". Text content is just that, text. 
Text is a child of an element or the value component of an attribute. 

Listing 3-5 shows a very simple XML document with elements, attri-
butes, and text values. 

<value index="0">    <str>Hello World!</str>
    <arr><value>A</value><value>B</value></arr>
</value>

Listing 3-5: Simple XML document

All XML data is text; no type information is provided for in the XML 
specification, so the parser must know what the values represent. Certain 
specifications, such as XML Schema, aim to remedy this type information 
deficiency but they are not required in order to process XML content. The 
XML specification defines a list of well-formed criteria that can be used to 
determine whether an XML document meets a minimal level of structure. 

XML is used in many different places to define the way informa-
tion is transmitted in a protocol, such as in Rich Site Summary (RSS). It 
can also be part of a protocol, as in Extensible Messaging and Presence 
Protocol (XMPP).

1. Just ask those who have tried to parse HTML for errant script code how difficult that task 
can be without a strict format.
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Encoding Binary Data

In the early history of computer communication, 8-bit bytes were not 
the norm. Because most communication was text based and focused on 
English-speaking countries, it made economic sense to send only 7 bits per 
byte as required by the ASCII standard. This allowed other bits to provide 
control for serial link protocols or to improve performance. This history 
is reflected heavily in some early network protocols, such as the SMTP or 
Network News Transfer Protocol (NNTP), which assume 7-bit communica-
tion channels. 

But a 7-bit limitation presents a problem if you want to send that amus-
ing picture to your friend via email or you want to write your mail in a non-
English character set. To overcome this limitation, developers devised a 
number of ways to encode binary data as text, each with varying degrees of 
efficiency or complexity. 

As it turns out, the ability to convert binary content into text still has its 
advantages. For example, if you wanted to send binary data in a structured 
text format, such as JSON or XML, you might need to ensure that delimit-
ers were appropriately escaped. Instead, you can choose an existing encod-
ing format, such as Base64, to send the binary data and it will be easily 
understood on both sides. 

Let’s look at some of the more common binary-to-text encoding schemes 
you’re likely to encounter when inspecting a text protocol. 

Hex Encoding

One of the most naive encoding techniques for binary data is hex encoding. 
In hex encoding, each octet is split into two 4-bit values that are converted to 
two text characters denoting the hexadecimal representation. The result is a 
simple representation of the binary in text form, as shown in Figure 3-18.

0 0 0 0 0 1 1 0

0x06 0xE3 0x58

1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

'0' '6' 'E' '3' '5' '8'

Figure 3-18: Example hex encoding of binary data

Although simple, hex encoding is not space efficient because all binary 
data automatically becomes 100 percent larger than it was originally. But 
one advantage is that encoding and decoding operations are fast and 
simple and little can go wrong, which is definitely beneficial from a security 
perspective. 
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HTTP specifies a similar encoding for URLs and some text protocols 
called percent encoding. Rather than all data being encoded, only nonprint-
able data is converted to hex, and values are signified by prefixing the value 
with a % character. If percent encoding was used to encode the value in 
Figure 3-18, you would get %06%E3%58. 

Base64

To counter the obvious inefficiencies in hex encoding, we can use Base64, 
an encoding scheme originally developed as part of the MIME specifica-
tions. The 64 in the name refers to the number of characters used to 
encode the data. Think of Base64 as a number base, just as Base2 is binary 
and Base16 is hexadecimal. (Following that logic, hex encoding could be 
called Base16.)

The input binary is separated into individual six-bit values, enough to 
represent 0 through 63. This value is then used to look up a corresponding 
character in an encoding table, as shown in Figure 3-19. 

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

Lower 4 bits

U
p
p
er

 2
 b

its

A B C D E F G H I J K L M N O P

Q R S T U V W X Y Z a b c d e f

g h i j k l m n o p q r s t u v

w x y z 0 1 2 3 4 5 6 7 8 9 + /

Figure 3-19: Base64 encoding table

But there’s a problem with this approach: when 8 bits are divided by 6, 
2 bits remain. To counter this problem, the input is taken in units of three 
octets, because dividing 24 bits by 6 bits produces 4 values. Thus, Base64 
encodes 3 bytes into 4, representing an increase of only 33 percent, which is 
significantly better than the increase produced by hex encoding. Figure 3-20 
shows an example of encoding a three-octet sequence into Base64.

But yet another issue is apparent with this strategy. What if you have 
only one or two octets to encode? Would that not cause the encoding to 
fail? Base64 gets around this issue by defining a placeholder character, 
the equal sign (=). If in the encoding process, no valid bits are available 
to use, the encoder will encode that value as the placeholder. Figure 3-21 
shows an example of only one octet being encoded. Note that it generates 
two placeholder characters. If two octets were encoded, Base64 would 
generate only one. 
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0 0 0 0 0 1 1 0

0x06 0xE3 0x58

1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

0x01 0x2E 0x0D 0x18

'B' 'u' 'N' 'Y'

Base64 Mapping Table

Figure 3-20: Base64 encoding 3 bytes as 4 characters

0 0 0 0 0 1 1 0

0x06

0 0 0 0 X X X X

0x01 0x20 ?

'B' 'g' '=' '='

X X X X X X X X

?

'='

Base64 Mapping Table

Figure 3-21: Base64 encoding 1 byte as 3 characters

To convert Base64 data back into binary, you simply follow the steps 
in reverse. But what happens when a non-Base64 character is encountered 
during the decoding? Well that’s up to the application to decide. We can 
only hope that it makes a secure decision. 
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Final Words

In this chapter, I defined many ways to represent data values in binary 
and text protocols and discussed how to represent numeric data, such as 
integers, in binary. Understanding how octets are transmitted in a pro-
tocol is crucial to successfully decoding values. At the same time, it’s also 
important to identify the many ways that variable-length data values can 
be represented because they are perhaps the most important structure you 
will encounter within a network protocol. As you analyze more network pro-
tocols, you’ll see the same structures used repeatedly. Being able to quickly 
identify the structures is key to easily processing unknown protocols. 

In Chapter 4, we’ll look at a few real-world protocols and dissect them 
to see how they match up with the descriptions presented in this chapter.


