
11
COMPUTER SCIENCE ALGORITHMS

While everything we’ve looked at so far
can be called a “randomized algorithm,” in

computer science, the phrase refers to two
broad categories of algorithms—the subject of

this chapter.
A randomized algorithm employs randomness as part of its operation.

The algorithm succeeds in accomplishing its goal, either by producing the
correct answer quickly, but sometimes not, or by running rapidly with some
probability of returning a false or non-optimal result.

We’ll begin by defining the two broad categories of randomized algo-
rithms with examples. Next, we’ll learn about estimating the number of an-
imals in a population. Following that, we’ll learn how to demonstrate that a
number is a prime to any desired level of certainty while avoiding the brute
force approach of searching for all possible divisors. We’ll end with random-
ized Quicksort, the textbook example of a randomized algorithm.

Las Vegas and Monte Carlo
Las Vegas and Monte Carlo are locations famously associated with gambling,
that is, with games of chance dependent on randomness and probability.
However, when computer scientists refer to Las Vegas or Monte Carlo, they
are (usually) referring to the two main types of randomized algorithms.

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

A Las Vegas algorithm always returns a correct result for its input in a ran-
dom amount of time. In other words, how long the algorithm takes to exe-
cute isn’t deterministic, but the output is correct.

On the other hand, a Monte Carlo algorithm offers no assurance that
its output is correct, but the run time is deterministic. There is a nonzero
probability that the output isn’t correct, but for a practical Monte Carlo al-
gorithm, this probability is small. Most algorithms we’ve encountered, in-
cluding swarm intelligence and evolutionary algorithms, are Monte Carlo
algorithms. Las Vegas algorithms can be transformed into Monte Carlo algo-
rithms by allowing them to exit before locating the correct output.

The first example we’ll investigate is a sorting algorithm that is, at our
discretion, a Las Vegas or Monte Carlo algorithm. The second is a Monte
Carlo algorithm for verifying matrix multiplication.

Permutation Sort
A permutation is a possible arrangement of a set of items. If there are n items
in the set, there are n! = n(n – 1)(n – 2) . . . 1 possible permutations. For
example, if the set consists of three things, say A = {1, 2, 3}, then there are
six possible permutations:

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}

Notice that one permutation sorts the items from smallest to largest. There-
fore, if given a vector of unsorted numbers, we might use a sort algorithm
that generates permutations until finding the one that sorts the items. While
we can implement this deterministically, we can also use random permu-
tations with the hope that we might stumble across the correct ordering
before testing too many candidate permutations. The permutation sort algo-
rithm (also known as bogosort or stupid sort) implements this idea.

Run the file permutation_sort.py with no arguments:

permutation_sort <items> <limit> [<kind> | <kind> <seed>]

<items> - number of items in the list

<limit> - number of passes maximum (0=Las Vegas else Monte Carlo)

<kind> - randomness source

<seed> - seed value

The code generates a random vector of integers in [0, 99] and sorts it
by trying up to limit random permutations. To score each permutation, the
code returns the fraction of pairs of elements that are out of order, where
a > b for a at index i and b at index i + 1. If the array is sorted, the score is
zero.

If limit is zero, the algorithm runs until it finds the correct permutation,
which depends on the number of possible permutations. As the number
of permutations increases (n!), the run time rapidly increases if we insist on
trying until we succeed. In other words, a limit of 0 turns permutation_sort.py
into a Las Vegas algorithm.

298 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

For example, to run permutation_sort.py as a Las Vegas algorithm, use:

> python3 permutation_sort.py 6 0 minstd 42

sorted: 0 25 44 57 65 96 (268 iterations)

The code found the proper order of elements after testing 268 of the pos-
sible 6! = 720 permutations. Changing the randomness source from minstd

to pcg64 sorts in 59 iterations while mt19937 uses 20. We set the limit to 0 to
make the code run until success, but the number of permutations tested was
often far less than the maximum.

If we switch to Monte Carlo:

> python3 permutation_sort.py 6 100 minstd 42

partially: 0 57 25 44 65 96 (score = 0.16667, 100 iterations)

we get a partially sorted array with a score > 0. Because of the fixed random-
ness source and seed, we know we need 268 iterations to sort the array:

> python3 permutation_sort.py 6 268 minstd 42

sorted: 0 25 44 57 65 96 (268 iterations)

Listing 11-1 shows the main loop in permutation_sort.py.

v = np.array([int(rng.random()*100) for i in range(N)], dtype="uint8")

k = 0

score = Score(v)

while (score != 0) and (k < limit):

k += 1

i = np.argsort(rng.random(len(v)))

s = Score(v[i])

if (s < score):

score = s

v = v[i]

Listing 11-1: The main loop for permutation sort main

We create the vector (v), along with an initial score. The main loop, while,
runs until the score is zero or the limit is exceeded. If Las Vegas, we set limit
to a huge number to play the odds that we’ll find the true ordering long be-
fore that many trials.

The body of the while loop creates a random ordering of v and calculates
the score. Whenever it finds a lower score, the code reorders v to return at
least a partially ordered vector should the limit be reached; however, this is
not strictly necessary.

The remainder of the file displays the results or calculates the score
(Listing 11-2).

def Score(arg):

n = 0

for i in range(len(arg)-1):

if (arg[i] > arg[i+1]):

Computer Science Algorithms 299

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

n += 1

return n / len(arg)

Listing 11-2: Scoring a permutation

Let’s plot the mean number of permutations tested as a function of the
number of items to sort, permutation_sort_plot.py, which plots the mean and
standard error for ten calls to permutation_sort.py for n in [2, 10]. The result
is Figure 11-1.

2 3 4 5 6 7 8 9 10
items

0

1

2

3

4

m
ea

n
pe

rm
ut
at
io
ns
 (n

=1
0)

1e6

Figure 11-1: The mean number of permutations tested as a function
of the number of items (the y-axis is in millions)

Figure 11-1 illustrates combinatorial explosion, which is the rapid growth
in a problem’s runtime or resource use as a function of the size of its input.
Permutation sort works decently when sorting lists of up to nine items; any
more and the complexity explodes.

We also see this effect in permutation_sort_plot.py’s output:

2: 0.127855 +/- 0.002026

3: 0.128128 +/- 0.001737

4: 0.129859 +/- 0.002469

5: 0.131369 +/- 0.002483

6: 0.136637 +/- 0.003704

7: 0.172775 +/- 0.008236

8: 0.534369 +/- 0.081601

9: 1.987567 +/- 0.488691

10: 44.133984 +/- 10.929158

The output shows, as a function of n, the mean (± SE) time in seconds
to sort a vector of that size. After seven elements, runtimes quickly increase.

Combinatorial explosion is the bane of many otherwise useful algo-
rithms, often reaching a point where many lifetimes of the universe are in-
sufficient to find the correct output.

300 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

Permutation sort is tied closely to the factorial, which is why we’re get-
ting these results:

2! = 2 5! = 120 8! = 40,320
3! = 6 6! = 720 9! = 362,880
4! = 24 7! = 5,040 10! = 3,628,800

The factorial grows at a tremendous rate. If we want to sort 20 items, we
have:

20! = 2,432,902,008,176,640,000

permutations to check. At 1 millisecond per permutation, we’d need over 77
million years of computing time to check them all. This doesn’t mean per-
mutation sort couldn’t, by pure chance, sort 20 items in less than a second,
but the probability is exceedingly low. This is the paradox of randomized
algorithms.

Matrix Multiplication
I have three matrices, A, B, and C. We’ll use bold, uppercase letters to repre-
sent matrices. Does AB = C? How can we know?

Introducing Matrix Multiplication
First, let’s ensure we’re on the same page regarding matrix multiplication. A
matrix is a 2D array of numbers, so the matrices here might be:

A =
[
1 2
3 4

]
, B =

[
1 0
2 3

]
, C =

[
5 6
11 12

]
These are 2 × 2 matrices with two rows and two columns. If the number
of rows equals the number of columns, we’re working with square matrices.
However, the number of rows and columns need not match; for example,
we might have a matrix of 3 × 5 or 1,000 × 13. The latter case is typical in
machine learning, where rows represent observations and columns repre-
sent features associated with those observations. An n × 1 matrix is a column
vector, while a 1 × nmatrix is a row vector.

Asking whether AB = C implies that we know how to find AB. In NumPy,
to multiply two 2D arrays, we multiply each corresponding element (Listing
11-3).

>>> A = np.array([[1,2],[3,4]])

>>> B = np.array([[1,0],[2,3]])

>>> A*B

array([[1, 0],

[6, 12]])

Listing 11-3: Multiplying element-wise in NumPy

Unfortunately, multiplying matrices is more involved. We begin by checking
that the number of columns of the first matrix equals the number of rows of

Computer Science Algorithms 301

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

the second. If not, then we can’t multiply the matrices. Therefore, to multi-
ply an n × mmatrix by a u × vmatrix requires m = u. If this is true, we can
multiply to produce an n × v result. The square matrices in this section auto-
matically satisfy this requirement.

The matrix multiplication process requires multiplying each column
of the second matrix by the rows of the first matrix, where the elements of
the column multiply the corresponding elements of the row. We then sum
these products to produce a single output value. For example, in symbols,
multiplying two 2 × 2 matrices returns a new 2 × 2 matrix:[

a00 a01
a10 a11

] [
b00 b01
b10 b11

]
=
[
a00b00 + a01b10 a00b01 + a01b11
a10b00 + a11b10 a10b01 + a11b11

]
We’re indexing matrices from 0, as we would NumPy arrays. However, many
math books index from 1 so that the first element of the first row of matrix
A is denoted a11, not a00.

Mathematically, if A is an n × mmatrix and B is an m × pmatrix, then
the elements of C = AB, an n × pmatrix, are:

cij =
m–1∑
k=0

aikbkj, i = 0, 1, 2, . . . ,n – 1; j = 0, 1, 2, . . . , p – 1 (11.1)

Remember that matrix multiplication does not commute; in general, AB /= BA.
The sum over k in Equation 11.1 illustrates why: the single index accesses by
row for A and by column for B so that swapping the order of A and Bmeans
different elements of the matrices are mixed.

The sum in Equation 11.1 uses index variable k with two more implied
sums over all values of i and j to fill in the output matrix, C. These obser-
vations point toward an implementation: matrix multiplication becomes a
triple loop indexing elements of 2D arrays.

Listing 11-4 translates the loops of Equation 11.1 into code.

def mmult(A,B):

n,m = A.shape

p = B.shape[1]

C = np.zeros((n,p), dtype=A.dtype)

for i in range(n):

for j in range(p):

for k in range(m):

C[i,j] += A[i,k]*B[k,j]

return C

Listing 11-4: Naive matrix multiplication

We’ll use this implementation even though NumPy supports matrix
multiplication natively in several ways, for example, via the @ operator. To
understand why, we’ll learn how computer scientists measure algorithm per-
formance.

302 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

Introducing Big O Notation
Computer scientists characterize the resource use of an algorithm by com-
paring the algorithm’s performance as input size increases to a similar func-
tion that captures how the algorithm’s resource use changes as the input
grows. Here, resource refers to either memory or time. For example, an
O(n) algorithm linearly increases the memory used as the size of the input,
n, increases. A linear function can be written as y = mx + b for input x, but in
big O notation, we ignore multiplicative and constant factors so that y = x is
functionally the same as x gets very large.

The matrix multiplication code in Listing 11-4 contains a triply nested
loop. If the input matrices are square (n × n), then I = J = K = n. Each loop
runs n times, making the innermost loop run n times for every increment
of the next outer loop, which must run n times to increment the outermost
loop. Therefore, the total number of operations required to multiply two
n × nmatrices scales as n3. The time needed to create the output matrix,
C, and evaluate the first two lines of the function doesn’t alter the essential
character of the function—namely, that it takes n3 passes through the three
loops.

A computer scientist would therefore write that Listing 11-4 is an O(n3)
algorithm and an “n cubed” implementation. In general, we want algorithms
that scale as O(n) or better. As n increases, the work required by the algo-
rithm scales linearly or, better still, sublinearly like O(log n) or O(n log n). In
other words, a plot of the work as a function of n is a straight line. Ideally,
we want O(1) algorithms that run in constant time regardless of the size of
their input, but that isn’t always possible. An algorithm that runs in O(n2) is
often tolerable, but O(n3) is suitable only for small values of n.

Note that O(n), O(n2), and O(n3) are all powers of n. Such algorithms
are known as polynomial time algorithms. We never want algorithms that run
in superpolynomial time, with a run time (or resource use) such that no poly-
nomial tracks it. For example, an algorithm running in O(2n) time is an expo-
nential time algorithm, and its resource use grows dramatically with the size
of the input at a rate no polynomial can match. Worse still is the permuta-
tion sort we experimented with previously; it’s an O(n!) algorithm that runs
in factorial time. To see how factorial time is worse than exponential time,
make a plot comparing 2n and n! for n = [1, 8].

Matrix multiplication as in Listing 11-4 is O(n3). Our goal is to quickly
check whether AB = C when given three matrices. We first multiply A and B
and then check whether each element of the result matches the correspond-
ing element in C. The multiplication is O(n3) and the check runs in O(n2)
time because we have to examine each element. As the cube grows much
faster than the square, the overall naive algorithm runs in essentially O(n3)
time. Let’s see if we can do better.

Introducing Freivalds’ Algorithm
In 1977, Latvian computer scientist Rūsiņš Freivalds invented a randomized
algorithm that correctly answers the question of whether AB = C with high
probability, yet runs in O(n2) time.

Computer Science Algorithms 303

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

For the following, we’ll assume that A, B, and C are n × nmatrices. The
algorithm works for non-square matrices, but this restriction makes things
easier to follow.

The algorithm itself is straightforward:

1. Pick a random n-element vector, r = {0, 1}n, that is, a random vector
of 0s and 1s.

2. Calculate D = A(Br) – Cr. (Note: the parentheses matter.)

3. If all elements of D are zero, claim “yes,” AB = C; otherwise, claim
“no.”

At first glance, Freivalds’ algorithm doesn’t look like it will help. How-
ever, recall how matrix multiplication works. The expression Br is multiply-
ing an n × nmatrix by a n × 1 vector, which returns an n × 1 vector. The
next multiplication by A returns another n × 1 vector. Likewise, Cr is also
an n × 1 vector. At no point is a full n × nmatrix multiplication happening.
As n grows, the savings in the number of calculations grows all the faster.
Freivalds’ algorithm runs in O(n2) time—a considerable improvement over
the O(n3) runtime of the naive algorithm.

Multiplying B by r is equivalent to selecting a random subset of B’s columns
and adding the value of those columns across the rows. For example:

1 3 4 0
2 4 3 1
0 0 1 2
2 2 1 0

1
0
1
0

 =

1 + 4
2 + 3
0 + 1
2 + 1

 =

5
5
1
3

The algorithm is betting that examining random elements of the three

matrices will, if they are equal, result in D being a vector of all zeros more
often than D being all zeros by chance. An analysis of the probabilities in-
volved, which we won’t cover, demonstrates that the probability of D being
all zeros given AB /= C is less than or equal to 1/2.

If the probability of one calculation involving a randomly selected r re-
turning the wrong answer is at most 1/2, then two random vectors (if we run
the algorithm twice) have a probability of returning the wrong answer of at
most (1/2)(1/2) = 1/4. Here the wrong answer is an output of “yes” when in
fact AB /= C.

Each application of the algorithm is independent of any previous ap-
plication. For independent events, like the flip of a fair coin, probabilities
multiply, so k runs of Freivalds’ algorithm implies that the probability of a
false “yes” result is 1/2k or less. In other words, we can be as confident of
the result as we like by running the algorithm multiple times.

The algorithm always returns “yes” when AB = C, meaning it is one-
sided—an error in the output happens only if AB /= C. In a two-sided error, the
algorithm could be wrong in either case, with some probability.

304 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

Testing Freivalds’ Algorithm
Let’s give the algorithm a try using freivalds.py, which generates 1,000 ran-
dom triplets of n × nmatrices, with n given on the command line. In all
cases, AB /= C, so we report failures as a fraction of 1,000.

Run freivalds.py like so:

freivalds <N> <mode> <reps> [<kind> | <kind> <seed>]

<N> - matrix size (always square)

<mode> - 0=Freivalds', 1=naive

<reps> - reps of Freivalds' (ignored for others)

<kind> - randomness source

<seed> - seed

The first argument is the dimensionality of the matrices. The second de-
cides whether to use the naive algorithm that calculates AB – C or Freivalds’.
The third is the number of times to repeat the test with random r vectors.
We’ll use this option shortly to track the error rate. As usual, the other ar-
guments enable any randomness source and a seed to repeat the same se-
quence of random matrices.

For example:

> python3 freivalds.py 3 0 1 mt19937 19937

0.08598161 0.132

tells us that testing 1,000 3 × 3 matrices using Freivalds’ algorithm once
each took some 0.09 seconds and failed 13.2 percent of the 1,000 tests.

To use the naive algorithm, change the 0 to 1 on the command line:

> python3 freivalds.py 3 1 1 mt19937 19937

0.05456829 0.000

As expected, there are no failures because the complete calculation al-
ways catches when AB /= C. While the naive algorithm seems to run faster
than Freivalds’, this is an illusion; as n increases, the two diverge.

Failing 13 percent of the time when checking 3 × 3 matrices isn’t too
inspiring. Let’s repeat the test, but check twice instead of once:

> python3 freivalds.py 3 0 2 mt19937 19937

0.14664984 0.016

Now we fail only 1.6 percent of the tests at the expense of nearly doubling
the running time. Let’s try four tests instead of two:

> python3 freivalds.py 3 0 4 mt19937 19937

0.26030445 0.000

With four tests, Freivalds’ algorithm is 1,000 out of 1,000.
Freivalds’ algorithm is probabilistic. The likelihood of error decreases

quickly as matrix size increases. To see this effect, alter the matrix size while

Computer Science Algorithms 305

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

fixing the repetitions at 1. By the time n = 11, the error is generally below
0.1 percent.

It makes sense that the error rate goes down with matrix size. The prob-
ability that a random selection of values sum by accident to two equal values
(A(Br) and Cr) should decrease as the number of values summed increases.

Let’s explore running time as a function of n. Run freivalds_plots.py to
produce the graphs in Figure 11-2.

5 10 15 20 25 30 35 40

Matrix size

0

10

20

30

40

50

M
ea
n
ev
a
lu
a
ti
o
n
ti
m
e
(s
)

Freivalds

Näıve

5 10 15 20 25 30 35 40

Matrix size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea
n
ev
a
lu
a
ti
o
n
ti
m
e
(s
)

Figure 11-2: Comparing Freivalds’ running time to the naive algorithm as a func-
tion of matrix size (left), and plotting Freivalds’ running time alone to show the O(n2)
complexity—note the y-axis range (right)

On the left of Figure 11-2, we see the growth in running time between
Freivalds’ and the naive algorithm as the size of the matrices increases. The
naive algorithm, O(n3), grows substantially faster than Freivalds’ O(n2),
shown by itself on the right.

The combination of performance gain and decreasing likelihood of er-
ror as n increases makes Freivalds’ algorithm particularly nice. Yes, it’s prob-
abilistic, but in the places where it’s most desirable (large n), it’s also most
likely to be correct.

Before examining freivalds.py, I have a confession. We can do matrix
multiplication better than O(n3), especially for matrices with n > 100. Volker
Strassen’s 1969 matrix multiplication algorithm has a runtime of about
O(nlog2 7) ≈ O(n2.807), which is slightly better than the naive algorithm.
NumPy, based on the BLAS library, makes use of Strassen’s algorithm, which
is why we didn’t use NumPy in this section. However, O(n2) is better than
O(n2.807), so Freivalds’ algorithm is still useful, even with Strassen matrix
multiplication.

GALACTIC ALGORITHMS

There are matrix multiplication algorithms with even better asymptotic behavior
than Strassen’s algorithm. The current best have complexity O(n2.373) or so.
However, these algorithms are, in practice, completely useless. The seeming
contradiction has to do with Big O notation, which shows the overall behavior
but ignores multiplicative factors and constants. This means that an algorithm

306 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

running in 10n3 time is the same as one running in 10000n3 + 10000 time. Both
scale as O(n3), but in practice, the first is more likely to be helpful.

Matrix multiplication algorithms that beat Strassen’s algorithm in overall
complexity, like the Coppersmith-Winograd algorithm, have constants so large
that the algorithm becomes practical only once n is some number far larger
than anything computers can currently handle, if ever.

Such algorithms have been christened galactic algorithms by Kenneth W.
Regan. We cannot effectively use galactic algorithms in practice even if they
are “the best” in terms of asymptotic behavior. While these algorithms are of
theoretical importance, they won’t show up in our toolkits any time soon.

Exploring the Code
Listing 11-5 contains the code implementing Freivalds’ algorithm. The mmult

function is in Listing 11-4. The array_equal function asks whether the abso-
lute maximum of the difference between A(Br) and Cr is below eps, and re-
turns True if so.

def array_equal(a,b, eps=1e-7):

return np.abs(a-b).max() <= eps

k = 0

m = 1000

s = time.time()

for i in range(m):

A = 100*rng.random(N*N).reshape((N,N))

B = 100*rng.random(N*N).reshape((N,N))

C = A@B + 0.1*rng.random(N*N).reshape((N,N))

if (mode == 0):

t = True

for j in range(reps):

r = (2*rng.random(N)).astype("uint8").reshape((N,1))

t &= array_equal(mmult(A,mmult(B,r)), mmult(C,r))

else:

t = array_equal(mmult(A,B), C)

k += 1 if t else 0

print("%0.8f %0.3f" % (time.time()-s, k/m))

Listing 11-5: Freivalds’ algorithm

The outer for loop executes 1,000 trials using a randomly selected set of
matrices each time. C is such that it never equals AB, so every call to array_equal

should return False.
The body of the outer for loop either multiplies A and B directly (mode==1),

or uses Freivalds’ algorithm by generating a random binary vector, r. Note
that r is reshaped to be a n × 1 column vector, as required for matrix multi-
plication.

The inner for loop applies Freivalds’ repeatedly (reps) each time, AND-
ing the result with t. The AND operation means that after reps tests with

Computer Science Algorithms 307

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

different r vectors each time, so the only way t is still true is if all tests give a
wrong result. Each test should see array_equal return False because AB /= C
by design. Once t becomes False, it remains False for all remaining tests,
so even one correct output from array_equal causes t to have the expected
value.

If t is still True after the inner loop, then the trial failed and we incre-
ment k. After all trials, we print the total run time and the fraction of the
1,000 trials that failed.

Freivalds’ algorithm is a Monte Carlo algorithm because it might, with a
probability we can minimize, produce a false output and claim AB = C when
it isn’t true.

Let’s turn to a different type of question for the next section: to get
an estimate of the number of things in a collection, is it necessary to count
them individually?

Counting Animals
Ecologists often want to know how many animals of a particular species live
in an area, though counting each one is often impossible. Enter mark and
recapture, a strategy for estimating population size from a small sample.

In mark and recapture, the ecologist first goes into the field and cap-
tures n specimens, which they then mark and release. A short while later,
they revisit the field and capture animals again until they get at least one
that is marked. If they capture K animals to get k that are marked, they now
have everything necessary to estimate the full population size, N. They do
this by using ratios.

Initially, the ecologist marked n of the N animals, meaning the fraction
of the total population marked is n/N. The recapture phase netted kmarked
animals out of K. Assuming no births, deaths, or migrations, the two ratios
should be approximately equal, so solving for N gives:

NL ≈
nK
k

This equation results in the Lincoln-Petersen population estimate, hence NL.
A slightly less biased estimate of the population (or so it’s claimed) comes

from the Chapman population estimate:

NC ≈
(n + 1)(K + 1)

k + 1
– 1

Finally, we have a Bayesian approach to mark and recapture:

NB ≈
(n – 1)(K – 1)

k – 2

This approach requires at least three marked animals in the recapture group
to avoid dividing by zero.

Let’s compare these three different estimates for the same population
size with mark_recapture.py:

308 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

> python3 mark_recapture.py

mark_recapture <pop> <mark> <reps> [<kind> | <kind> <seed>]

<pop> - population size (e.g. 1000)

<mark> - number to mark (< pop)

<reps> - number of repetitions

<kind> - randomness source

<seed> - seed

The code simulates marking and recapturing by randomly marking a
specified number of animals before recapturing a fraction of the popula-
tion to count how many are marked. Let’s run the code a few times to get a
feel for the output. We’ll fix the true population size at 1,000 and initially
mark 100, or 10 percent. Setting the repetitions to 1 takes a single sampling,
which is similar to what an ecologist might do in practice. We get:

> python3 mark_recapture.py 1000 100 1 mt19937 11

Lincoln-Petersen population estimate = 1250

Chapman population estimate = 1132

Bayesian population estimate = 1633

> python3 mark_recapture.py 1000 100 1 mt19937 12

Lincoln-Petersen population estimate = 666

Chapman population estimate = 636

Bayesian population estimate = 753

> python3 mark_recapture.py 1000 100 1 mt19937 13

Lincoln-Petersen population estimate = 833

Chapman population estimate = 783

Bayesian population estimate = 980

The estimates vary widely from run to run, as we might expect from a
randomized algorithm. While the Lincoln-Petersen and Chapman estimates
are generally low, the Bayesian estimates are closer to or even exceed the
population size.

Using a single repetition is akin to attempting to generalize from a single
collected data point, so let’s increase the repetitions:

> python3 mark_recapture.py 1000 100 25 mt19937 11

Lincoln-Petersen population estimate = 1028.4713 +/- 78.4623

Chapman population estimate = 940.0367 +/- 61.6982

Bayesian population estimate = 1345.2015 +/- 166.3078

> python3 mark_recapture.py 1000 100 25 mt19937 12

Lincoln-Petersen population estimate = 1052.0985 +/- 61.3198

Chapman population estimate = 963.4317 +/- 49.9620

Bayesian population estimate = 1345.9986 +/- 108.4192

> python3 mark_recapture.py 1000 100 25 mt19937 13

Computer Science Algorithms 309

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

Lincoln-Petersen population estimate = 1112.8340 +/- 80.5759

Chapman population estimate = 1009.5146 +/- 63.3742

Bayesian population estimate = 1485.2546 +/- 169.0492

The output now reflects the mean and standard error for 25 repeti-
tions, providing a better idea of how the estimates behave. The Lincoln-
Petersen and Chapman results are closer to the actual population size, while
the Bayesian estimate is consistently too high. The standard errors are illus-
trative as well, with the Bayesian standard error being larger than the others,
indicating more trial-to-trial variation.

Try experimenting with different combinations of population size and
number of animals initially marked.

Figure 11-3 presents three somewhat crowded graphs.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Marked fraction

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

De
vi
at
io
n

100
1000
2000
5000
7000
8500
10000

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Marked fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
vi
at
io
n

100
1000
2000
5000
7000
8500
10000

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Marked fraction

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

De
vi
at
io
n

100
1000
2000
5000
7000
8500
10000

Figure 11-3: The three mark and recapture estimators as a function of the true population
size and the fraction of that size initially marked. The plots show the signed deviation
from the true population size: Lincoln-Peterson (top left), Chapman (top right), and
Bayesian (bottom).

In the top-left graph in Figure 11-3, each of the seven plotted lines rep-
resents a different true population size from 100 to 10,000. The x-axis indi-
cates the fraction of the true population marked by the ecologist on their
first trip to the field. The value plotted is the median signed difference be-
tween the Lincoln-Petersen estimate for that combination of population size
and fraction initially marked and the true population size. If the curve is
above zero, the estimate is too low; below zero, and it’s too high. In other
words, the graph shows Ntrue – Nest so that underestimating is a positive dif-
ference and overestimating is negative. The remaining two graphs show the

310 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

same information for the Chapman (top-right) and Bayesian (bottom) esti-
mators.

For populations above 1,000, the Lincoln-Petersen estimator is generally
useful when initially marking more than 10 percent of the population, which
may not be feasible in practice. However, for small populations, the estima-
tor requires some 20 percent of the population to be marked to achieve reli-
ability. One might use a simulation to generate a correction function for the
Lincoln-Petersen estimator based on the suspected population size and the
number of animals initially marked.

The Chapman estimator consistently underestimates the true popula-
tion size to the point where one questions its utility compared to the Lincoln-
Petersen estimate. However, the underestimate is relatively consistent for
populations above 1,000, so again, a fudge factor might be derived from a
simulation.

The Bayesian estimator’s performance is quite different. It consistently
overestimates the actual population, converging to the true population value
only when the population becomes large and the percent initially marked
is also significant (at least 15 percent). In practice, these conditions are un-
likely to be met.

Figure 11-3 is the output of mark_recapture_range.py, which can be under-
stood by examining the relevant parts of mark_recapture.py in Listing 11-6.

lincoln = []

chapman = []

bayes = []

for j in range(nreps):

pop = np.zeros(npop, dtype="uint8")

idx = np.argsort(rng.random(npop))[:nmark]

pop[idx] = 1

K = nmark

while (True):

idx = np.argsort(rng.random(npop))[:K]

k = pop[idx].sum()

if (k > 2):

break

K += 5

lincoln.append(nmark*K/k)

chapman.append((nmark+1)*(K+1)/(k+1) - 1)

bayes.append((nmark-1)*(K-1)/(k-2))

Listing 11-6: Simulating mark and recapture estimates

The outer for loop over nreps handles the trials. For each trial, we create
a population (pop) vector where npop is the population size from the com-
mand line. The vector is initially zero as we haven’t marked any animals yet.

Computer Science Algorithms 311

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

The next two lines represent the ecologist’s first field trip. The argsort

trick, coupled with keeping only the first nmark elements of the sort order,
sets idx to the indices of pop that the ecologist has initially captured and marked
(pop[idx]=1).

The second code paragraph represents the recapture phase in which the
ecologist returns to the field and captures as many animals as were initially
marked (K). We represent the captured animals by the K indices in idx as as-
signed in the inner while loop.

Marks are binary, so the sum of the selected elements of pop is the num-
ber of marked animals, k. If k is 3 or greater, break out of the while loop.
Otherwise, increase K by five and try again. The final code paragraph cal-
culates the three estimates of the true population size for this trial.

When the outer for loop exits, we have three vectors of estimates for
the given population size and number initially marked. The remainder of
mark_recapture.py displays the results. Given the simulation results, my money’s
on the Lincoln-Petersen estimator.

Let’s move on from counting to the mathematically important task of
primality testing.

Testing Primality
Prime numbers—integers evenly divisible by only themselves and one—are
greatly beloved by number theorists. Primes have fascinated humanity since
antiquity, and significant computing power is currently devoted to locating
Mersenne primes of the form 2p – 1, where p is a prime number.

The largest known primes are Mersenne primes. As of this writing, the
largest known Mersenne prime, discovered in 2018, is:

M82589933 = 282,589,933 – 1

M82589933 is a 24,862,048 digit number. Mersenne primes are sometimes
denoted by their number and not their exponent. Therefore,M82589933, the
51st Mersenne prime, might be given asM51.

NO T E To contribute in locating Mersenne primes, visit http://www.mersenne.org and sign
up for the Great Internet Prime Search.

How do we know if n is a prime number? The definition gives us a natu-
ral starting point for a primality testing algorithm: if the only numbers that
evenly divide n (resulting in no remainder) are 1 and n, then n is a prime.

Let’s turn this definition into an algorithm. The brute force approach
is to test every number that could be a factor of n. In practice, this means
testing every integer up to

√
n because any factor of n larger than

√
n will

necessarily be multiplied by some number less than
√
n, and will be caught

before reaching
√
n.

When contemplating nearly 25 million digit numbers, the amount of
work involved increases dramatically. And if n is prime, must we test every
integer up to

√
n?

312 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

http://www.mersenne.org

TheMiller-Rabin test is a fast, randomized algorithm to decide whether
a positive integer, n, is prime. However, to understand the Miller-Rabin test,
we need to know a bit about modular arithmetic.

Modular Arithmetic
We’re used to the set of integers, denoted Z from the German for number.
Integers are unbounded and extend infinitely in both directions from zero.
If we restrict the range to the set {0, 1, 2, 3}, we can define arithmetic opera-
tions over this set by wrapping around as needed. Adding works as expected
if the sum is less than 4: 1 + 1 = 2 and 2 + 1 = 3. However, if the sum exceeds
4, we wrap around. For example, 2+3 = 1 because 2+3 = 5, and we subtract 4
from 5 to get 1. Another way to view these operations is to apply the modulo
operator after each addition to return the remainder after dividing by 4. For
example, 5 mod 4 = 1.

Pierre Fermat, a 17th-century French mathematician, realized that if n is
a prime number, then:

an–1 ≡ 1 (mod n), 0 < a < n

where ≡means:
an–1 mod n = 1 mod n = 1

Great! We have a primality test: pick an integer 0 < a < n, raise it to
the n – 1 power, divide by n, and see if the remainder is 1. If it is, then n is a
prime number, so the algorithm works and identifies n as a prime. However,
some composite numbers also pass the test for many values of a, meaning
this alone isn’t sufficient to prove n is a prime. If this test fails, then n is defi-
nitely not a prime.

The Miller-Rabin test combines Fermat’s test with another fact: if n is
prime, the following is likely also true:

a2
rd ≡ –1 (mod n), 0 ≤ r < s and 0 < a < n

for some r in [0, s) where n = 2sd + 1 and d is odd. It’s likely true because
there are sometimes a values satisfying the congruence even if n is compos-
ite. We’ll discuss these nonwitness numbers shortly.

The first condition, Fermat’s test, is straightforward enough, but let’s un-
pack this second condition. We need to express n as 2sd + 1 or, equivalently,
as n–1 = 2sd. For suitable choices of s and d, 2sd is another way of writing the
exponent in the Fermat condition.

All of the math in ≡ –1 (mod n) is modulo n, meaning the numbers
are in the set {0, 1, 2, . . . ,n – 1}, usually denoted as Zn. We view a negative
number as counting backward, so –1 ≡ n – 1.

The second condition checks to see if x2 ≡ –1 (mod n) for some x. The
Miller-Rabin test uses a sequence of such values of x, looking for one that,
when squared modulo n, gives –1 (that is, n – 1). The sequence begins with
r = 0 and d as the exponent. The next check uses the square, which is the

Computer Science Algorithms 313

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

same as r = 1:
(a2

0d)2 = a2(2
0d) = a2

0+1d = a2
1d

This is all modulo n. The next squaring returns r = 2, and so on.
If any of the sequence of such expressions is equivalent to n – 1, then n

has a reasonably high probability of being a prime number. Otherwise, n is
definitely not prime, and a is a witness to this fact.

The Miller-Rabin Test
Let’s put Miller-Rabin into code, as in Listing 11-7.

def MillerRabin(n, rounds=5):

if (n==2):

return True

if (n%2 == 0):

return False

s = 0

d = n-1

while (d%2 == 0):

s += 1

d //= 2

for k in range(rounds):

a = int(rng.random()) # [1,n-1]

x = pow(a,d,n)

if (x==1) or (x == n-1):

continue

b = False

for j in range(s-1):

x = pow(x,2,n)

if (x == n-1):

b = True

break

if (b):

continue

return False

return True

Listing 11-7: Miller-Rabin in code

The function MillerRabin accepts n and rounds with a default value of 5.
The first code paragraph captures trivial cases. As half of all numbers are
even, testing directly for 2 and evenness saves time.

The second code paragraph locates s and d so that n = 2sd + 1. It’s always
possible to find an s and d decomposition for any n (positive integer).

For now, we’ll focus on the body of the outer for loop in the third para-
graph, which implements a pass through the Miller-Rabin test for a ran-
domly selected a and initial x value, ad (mod n).

314 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

The built-in Python function, pow, computes exponents and accepts an
optional third argument so that pow(a,d,n) efficiently implements ad (mod n).

The following if checks for 1 or –1. If that’s the case, the Fermat test has
passed, so this pass through the outer for loop is over.

Otherwise, the inner for loop initiates the sequence of successive squar-
ings of x = ad while looking for one equivalent to –1. If such a squaring is
found, the inner loop breaks and the outer loop cycles; otherwise, n is com-
posite and MillerRabin returns False.

When all rounds (the loop over k) are complete, and every test supports
the notion that n is a prime, MillerRabin returns True.

The outer for loop applies the Miller-Rabin test repeated for randomly
selected a values. Since an a value demonstrating n to be a composite num-
ber is a witness number, an a value that leads to a claim of prime when n is
not prime is a nonwitness number. It is never the case that all possible a val-
ues for a given n are nonwitness numbers, so repeated applications of the
outer loop body minimize the probability that a nonprime input will return
True.

You’ll find MillerRabin in the file miller_rabin.py. It expects a number to
test, the number of rounds (a values to try), and the randomness source:

> python3 miller_rabin.py

miller_rabin <n> <rounds> [<kind> | <kind> <seed>]

<n> - number to test

<rounds> - number of rounds

<kind> - randomness source

<seed> - seed

For example:

> python3 miller_rabin.py 73939133 1

73939133 is probably prime

> python3 miller_rabin.py 73939134 1

73939134 is composite

The output must be correct for these cases as 73,939,133 is a prime, and
the closest two primes can be to each other is 2 away:

> python3 miller_rabin.py 8675309 1

8675309 is probably prime

> python3 miller_rabin.py 8675311 1

8675311 is probably prime

8,675,309 and 8,675,311 are twin primes, so the test is correct.
Miller-Rabin always labels a prime a prime. Let’s explore when Miller-

Rabin fails.

Computer Science Algorithms 315

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

Nonwitness Numbers
As mentioned, a witness number, a, testifies to the fact that n isn’t prime.
Also, there are composite numbers for which the Miller-Rabin test fails if it
selects a nonwitness number as a.

We’ll force the Miller-Rabin algorithm to fail, probabilistically, using a
composite number with a known set of nonwitness numbers to see if we can
detect the expected number of failures.

Our target is n = 65. As a multiple of 5, 65 is composite. There are 64
potential witness numbers, from 1 through 64. Of these potential witness
numbers, it’s known that 8, 18, 47, 57, and 64 are nonwitness numbers. If
the Miller-Rabin test runs for one round and selects a nonwitness number
for a, it fails and claims that 65 is prime.

Because there are five nonwitness numbers out of 64 possible, the Miller-
Rabin test for a single round should fail about 5/64 = 7.8 percent of the
time. I checked this by running miller_rabin.py 1,000 times and counting
the number of times the output indicated a prime, which it did precisely 78
times, implying a failure rate of 78/1000 = 7.8 percent.

At worst, the Miller-Rabin single-round failure probability for arbitrary
n is 1/4. Since each round is independent of the previous, running the test
for k rounds means the worst possible failure probability is (1/4)k = 4–k.
However, for most n values, the actual failure probability is far less than this.

Let’s stick with 65. Knowing that its single-round failure rate is about 7.8
percent, running two rounds should fail (5/64)2 ≈ 0.61 percent of the time.
Running miller_rabin.py 20,000 times produced 131 failures, giving a failure
rate of 131/20000 = 0.655 percent. Three rounds puts the failure rate at
about 0.05 percent. We can achieve any desired precision by setting k high
enough.

Miller-Rabin Performance
Let’s compare Miller-Rabin’s runtime performance to the brute force ap-
proach implemented in brute_primes.py. The code in prime_tests.py runs both
Miller-Rabin and the brute force algorithm for the largest 1, 2, 3, . . . , 15-digit
prime numbers. Recall, the brute force algorithm runs the longest when the
input is a prime.

The largest single-digit prime is 7, while the largest 15-digit prime is
999,999,999,999,989. Figure 11-4 plots the mean of five runs of miller_rabin.py
and brute_primes.py for each prime to show how the runtime changed as the
inputs grew.

316 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of digits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e

(s
)

Miller-Rabin
brute force

Figure 11-4: Comparing Miller-Rabin to the brute force primality test

The runtime complexity of the brute force algorithm is O(
√
n) while

that of Miller-Rabin is O(log3 n). The brute force algorithm quickly becomes
unmanageable, even though it’s sublinear, because

√
n = n1/2 and 1/2 < 1.

Miller-Rabin is a Monte Carlo algorithm because it claims n is prime
when there’s a nonzero probability that it isn’t. If n truly is a prime, Miller-
Rabin always correctly labels it, but it also calls some composite numbers
prime regardless of the number of rounds. Therefore, Miller-Rabin’s false
positive rate is nonzero, but its false negative rate is identically zero. In prac-
tice, however, increasing the number of rounds can make the false positive
rate as low as desired.

We have one more randomized algorithm to contemplate.

Working with Quicksort
Quicksort was developed by British computer scientist Tony Hoare in 1959
and is probably still the most widely used sorting algorithm. It’s NumPy’s
default, for example.

If you take an undergraduate course in algorithms, you’ll almost as-
suredly run across Quicksort, as it’s easy to implement and understand, even
if it’s recursive. While most courses focus on characterizing its runtime com-
plexity, we’ll discuss the algorithm at a high level instead, and then run ex-
periments on two versions: the standard nonrandom version and a random-
ized version.

Quicksort is a recursive, divide-and-conquer algorithm, meaning it calls
itself on smaller and smaller versions of the problem until it encounters a
base condition, at which point the implementation pieces everything back
together to produce a sorted output.

The algorithm is as follows:

1. If the input array is empty or has only one element, return it.

Computer Science Algorithms 317

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

2. Pick a pivot element, either the first in the array or at random.

3. Separate the array into three subsets: those elements less than the
pivot, those equal to the pivot, and those greater than the pivot.

4. Return the concatenation of Quicksort called on the lower elements,
the elements matching the pivot, and Quicksort called on the higher
elements.

Step 1 is the base condition. If the array is empty or contains a single el-
ement, it’s sorted. Step 2 picks a pivot value, an array element we use in Step
3 to split the array into three parts: those less than, equal to, and greater
than the pivot. Step 2 is where randomness comes into play. Nonrandom
Quicksort always picks a specific element of the array, as it’s already assumed
to be in random order. Randomized Quicksort, however, selects its pivot el-
ement at random. We’ll experiment with the subtle difference between non-
random and random Quicksort.

Step 4 is the recursive part. The array is sorted if we merge the sorted
lower partition with the same partition followed by the sorted higher parti-
tion. We sort the lower and higher partitions by using the sorting routine,
that is, by calling Quicksort again. Each call on a portion of the array will,
we assume, work with a smaller number of elements until we have single ele-
ments, the base condition of Step 1.

Naive sorting methods, like bubble sort or gnome sort, run in O(n2)
time where n is the number of elements to sort. As we’ve learned, O(n2) al-
gorithms are acceptable for small n values, but quickly become unmanage-
able as n grows. Quicksort’s average runtime complexity is O(n log n), which
grows at a much slower rate. This is why Quicksort is still widely used over
50 years after its introduction.

While Quicksort’s average complexity is O(n log n), if the array passed to
Quicksort is already mostly or completely sorted, the complexity becomes
O(n2), which is no better than bubble sort. This happens if the array is in
order or reverse order. Let’s find out whether randomized Quicksort can
help us here.

Running Quicksort in Python
The file Quicksort.py implements Quicksort twice. The first implementation
uses a random pivot (QuicksortRandom), and the second implementation al-
ways uses the first element of the array as the pivot (Quicksort). The func-
tions are in Listing 11-8.

def QuicksortRandom(arr):

if (len(arr) < 2):

return arr

pivot = arr[np.random.randint(0, len(arr))]

low = arr[np.where(arr < pivot)]

same = arr[np.where(arr == pivot)]

high = arr[np.where(arr > pivot)]

return np.hstack((QuicksortRandom(low), same, QuicksortRandom(high)))

318 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

def Quicksort (arr):

if (len(arr) < 2):

return arr

pivot = arr[0]

low = arr[np.where(arr < pivot)]

same = arr[np.where(arr == pivot)]

high = arr[np.where(arr > pivot)]

return np.hstack((Quicksort(low), same, Quicksort(high)))

Listing 11-8: Randomized and nonrandom Quicksort

For this example, we use NumPy instead of our RE class because it’s al-
ready loaded, which minimizes the overhead when calling QuicksortRandom.
The implementations differ only in how they assign pivot.

Both implementations follow the Quicksort algorithm step-by-step.
First, we check for the base condition where arr is already sorted. We then
split into low, same, and high based on the selected pivot. Finally, NumPy’s
hstack function concatenates the vectors returned by the recursive calls to
Quicksort.

A high-performance implementation wouldn’t call where three times, as
each makes a full pass over arr, but we’re interested only in relative perfor-
mance differences as the input size changes.

Experimenting with Quicksort
The file quicksort_tests.py generates two graphs. The first, on the left in Fig-
ure 11-5, compares randomized Quicksort and nonrandom Quicksort as
the input array size increases. In all cases, the input arrays are in random or-
der. In other words, the left side of Figure 11-5 represents the average case
runtime. The points plotted are the mean over five runs. The dashed line
represents y = n log n.

0 5000 10000 15000 20000 25000 30000
N

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al
ed

 ru
nt
im

e

QuicksortRandom
Quicksort

2500 5000 7500 10000 12500 15000 17500 20000
N

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al
ed

 ru
nt
im

e

QuicksortRandom
Quicksort

Figure 11-5: Randomized and nonrandom Quicksort on random inputs (left), and
the same algorithms on pathological inputs (right)

The rightmost graph in Figure 11-5 shows the runtime for the case with
already sorted input. This situation forces deterministic Quicksort into be-
coming an O(n2) algorithm, which is why it tracks the curved plot, y = n2.

Computer Science Algorithms 319

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

Randomized Quicksort, on the other hand, is unaffected by the order of the
input and runs as before.

Correctly interpreting Figure 11-5 requires an explanation. Asymptotic
runtime performance of algorithms ignores multiplicative factors and con-
stants as they don’t alter the overall form of the function as n increases. The
randomized Quicksort function takes slightly longer to run than the nonran-
dom Quicksort because of the extra step of selecting a random index into
the array. Therefore, plotting both runtimes together would make it some-
what difficult to see that the overall functional form is the same between
QuicksortRandom and Quicksort. Moreover, plotting y = n log n follows an en-
tirely different scale in terms of y-axis values, but again, the form of the func-
tion is the same. Therefore, to plot all three together, Figure 11-5 divides
each y value by the maximum y value to map the output to [0, 1] regardless
of the actual range. This clarifies that randomized Quicksort and nonran-
dom Quicksort are scaling in the same way and are following O(n log n)—all
curves lie essentially on top of each other.

Now reconsider the right side of Figure 11-5 showing the case where
the input array is already sorted. Again, the dashed line shows y = n log n,
and randomized Quicksort still follows that form. However, nonrandom
Quicksort, which selects the first element of the array as its pivot, does not.
Instead, it follows the dotted line, y = n2, meaning the pathological input
case alters nonrandom Quicksort, turning it into an O(n2) algorithm.

Randomized Quicksort is a Las Vegas algorithm because it always re-
turns the proper output—a sorted array. While the randomness involved
doesn’t make the implementation easier, it protects against a pathological
case that’s more frequent in practice than we might initially suspect. There-
fore, I recommend always using randomized Quicksort.

To understand why nonrandom Quicksort behaves so poorly with sorted
input, consider what happens during a pass when the pivot is the smallest
value in the array; for example, when picking the first element as the pivot
and the input array is already sorted. When this happens, the low vector
is empty and, ignoring duplicates of the pivot, all the remaining values in
the array end up in the high vector. This happens every time the function
recurses, turning the recursion into a list of function calls n deep. Add the
O(n) pass through the array on each recursive call (implicit in our implemen-
tation via where), and we arrive at an O(n2) algorithm, which is no better than
a bubble sort.

Selecting a random pivot at each level ensures that this situation won’t
happen in the long run, as it would amount to a string of n rolls of an n-
sided fair die each landing on 1—an increasingly unlikely event as n grows.

Exercises
Consider the following possibilities to further explore randomized algo-
rithms:

• Write a Las Vegas algorithm to locate positive integers, a, b, and c,
that satisfy a2 + b2 = c2. Your code will be a Las Vegas algorithm

320 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

because there are an infinite number of solutions, namely, all the
Pythagorean triples.

• Can you write a successful Las Vegas program to find positive inte-
gers a, b, and c such that an + bn = cn for some n > 2? If not, how
about a Monte Carlo algorithm? What might your stopping criteria
be? I recommend searching for “Fermat’s last theorem.”

• Extend the permutation sort runtime plot for n = 11, 12, or even 13.
How long do you have to wait?

• Make a plot of the mean number of trials of Freivalds’ algorithm to
get a failure case as a function of n, the size of the square matrices.

• The file test_mmult.py generates output suitable for curves.py from
Chapter 4. Use that output and curves.py to generate fits. Is the fit
exponent what you expect for the naive algorithm? What about
NumPy, knowing that it uses Strassen’s algorithm?

• I have a bag full of marbles. I want to estimate how many are in the
bag. Therefore, I pick one randomly, mark it, and put it back in the
bag. I then pick another marble randomly, mark it, and put it back
in the bag. I repeat this process, counting the number of marbles
selected, until I pick a marble I’ve already marked. If the number of
marbles picked and marked is k, then the number of marbles in the
bag is approximately:

N ≈
⌊
2k2

π

⌉
where the combination of floor (⌊) on the left and ceiling (⌉) on the
right means “round to the nearest integer.” I encountered this al-
gorithm via a brief description of the process, but the description
had no derivation for the formula and no references. Nonetheless,
it sort of works. After experimenting some, I realized that the esti-
mate is better if the formula is tweaked slightly to become:

N ≈
⌊
0.8

(
2k2

π

)⌉
Implement this algorithm and explore how well it works on average.
Then examine count.py, which runs the algorithm for many itera-
tions, averages the results, and produces plots. For example:

> python3 count.py 1_000_000_000 40 pcg64 6502

N = 1023827699, iterations 41414, total 1656576

estimates slightly more than 1 billion marbles in the bag. The cor-
rect number is exactly 1 billion. It uses 40 iterations of the algo-
rithm for a total of 1.7 million marbles marked. Figure 11-6 is the
resulting plot, count_plot.png, which shows each of the 40 estimates,
the true value (solid line), and overall estimate (dashed):

Computer Science Algorithms 321

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

0 5 10 15 20 25 30 35 40
Repetition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Es
tim

at
e

1e9

Figure 11-6: 40 estimates of marbles

Please contact me if you know a reference for this algorithm or how
to derive the estimate formula.

• Can you think of a “fudge factor” for the Lincoln-Petersen popu-
lation estimate for the case where the population is believed to be
small?

• How does the runtime performance of nonrandom Quicksort vary
as the array becomes more disordered? In other words, fix the array
size (n) but change the degree of disorder in the array. For exam-
ple, begin with a sorted array, then swap two elements, then three,
and so on. Is the transition from O(n2) to O(n log n) linear with the
number of elements swapped? Or does it seem more rapid?

Summary
In this chapter, we explored randomized algorithms, differentiating between
Las Vegas and Monte Carlo. The former always produce correct output,
eventually, while the latter may produce incorrect output. We considered
permutation sort and Freivalds’ algorithm for testing matrix multiplication.
We learned that we can turn permutation sort from a Las Vegas algorithm
into a Monte Carlo algorithm by imposing a limit on the number of candi-
date permutations considered. In general, we can transform Las Vegas algo-
rithms into Monte Carlo algorithms, but not vice versa.

We then discussed the mark and recapture algorithm that ecologists
use to estimate animal populations. We estimate the number of animals in
a population by marking a known number and then recapturing animals
and looking at the number marked. With sufficient numbers, the ratio of
marked animals to animals recaptured should match the ratio of animals
originally marked to the population size. We explored three estimators asso-
ciated with this process and saw how they behave.

322 Chapter 11

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

The Miller-Rabin algorithm quickly decides whether a positive integer
is a prime. However, as a randomized algorithm, there’s a certain probabil-
ity that it’ll falsely claim a composite number is prime. We learned how to
decrease the likelihood of a false positive by repeated applications.

We concluded the chapter by comparing nonrandom and randomized
Quicksort implementations. Randomized Quicksort adds little to the run-
time while protecting against pathological inputs that are already (or mostly)
sorted.

In our final chapter, we’ll consider randomness as it relates to sampling
from probability distributions.

Computer Science Algorithms 323

The Art of Randomness (Sample Chapter) © 06/29/23 by Ron Kneusel

