
The Art of R Programming
A Tour of Statistical Software Design

by Norman Matloff

errata updated to print 14

Page Error Correction
Print

corrected

1 If not, see Appendix A.
for installation instructions.

If not, see Appendix A for installation instructions. Print 3

51

vud <- diff(d) vud <- diff(v)

Print 3

53

for (gen in c("M","F")) grps[[gen]] <- which(aba==gen) for (gen in c("M","F")) grps[[gen]] <- which(aba[,1]==gen)

Print 2

65,
66 newimg@grey <- (1-q) * img@grey + q * randomnoise newimg@grey[rows,cols] <- (1-q) * img@grey[rows,cols] + q * randomnoise

Print 4

67

> z <- c(5,12,13)

> x[z %% 2 == 1,]

 [,1] [,2]

> x[z %% 2 == 1,]

 [,1] [,2]

Print 3

68

[1,] 1 4

[2,] 3 6

[1,] 1 2

[2,] 3 4

Print 3

77 Recall that due to the symmetry of the matrix, we skip the early part of each row, as is
seen in the expression (i+1):(1x-1) in line 18. But that means that the call to
which.min() in that line will return the minimum’s index relative to the range (i+1):
(1x-1).

Recall that due to the symmetry of the matrix, we skip the early part of each row, as is
seen in the expression (i+1):(lx-1) in line 18. But that means that the call to
which.min() in that line will return the minimum’s index relative to the range (i+1):
(lx-1).

Print 3

93

> nwords <- length(ssnyt)

> barplot(freqs9)

> nwords <- length(ssnyt)

> freqs9 <- sapply(ssnyt[round(0.9*nwords):nwords],length)

> barplot(freqs9)

Print 2

Page Error Correction
Print

corrected

116

shang3 shang4

Print 2

128

fl.1 a bc

 5 2 1

 12 1 1

 13 1 0

fl.1 a bc

 5 2 0

 12 1 1

 13 2 1

Print 2

130

> ctt/5 > cttab/5

Print 2

131

> apply(ctt,1,sum) > apply(cttab,1,sum)

Print 2

133

f(argslist[[1],argslist[[2]],...) f(argslist[[1]],argslist[[2]],...)

Print 2

137 This says that z[1], 0.88114802, fell into bin 9, which was (0,0,0.1]; z[2], 0.28532689,
fell into bin 3; and so on.

This says that z[1], 0.88114802, fell into bin 9, which was (0.8,0.9]; z[2], 0.28532689,
fell into bin 3; and so on.

Print 2

148 Good software design, however, should be mean that you can glance through a
function’s code . . .

Good software design, however, should mean that you can glance through a function’s
code . . .

Print 3

151

> f(3,2)

[1] 1

> g <- function(h,a,b) h(a,b)

> g(f1,3,2)

[1] 5

> g(f2,3,2)

[1] 1

> f(3,2)

[1] 1

> g <- function(x) x^2

> body(g) <- quote(2*x+3)

> g

function (x)

2 * x + 3

> g(8)

[1] 19

Print 5

Page Error Correction
Print

corrected

151

> g <- function(h,a,b) h(a,b)

> body(g) <- quote(2*x + 3)

> g

function (x)

2 * x + 3

> g(3)

[1] 9

> g <- function(h,a,b) h(a,b)

> body(g) <- quote(2*x + 3)

> g

function (x)

2 * x + 3

> x <- 3

> g(3)

[1] 9

Print 2

155

> f(2)

[1] 88

> f(2)

[1] 112

Print 2

160

> oddsevens

function(v){

 odds <- which(v %% 2 == 1)

 evens <- which(v %% 2 == 1)

 list(o=odds,e=evens)

}

> oddsevens

function(v){

 odds <- which(v %% 2 == 1)

 evens <- which(v %% 2 == 0)

 list(o=odds,e=evens)

}

Print 2

163

makecorpdfs(c("MICROSOFT CORPORATION","ms","INTEL CORPORATION","intel","

SUN MICROSYSTEMS, INC.","sun","GOOGLE INC.","google")

makecorpdfs(c("MICROSOFT CORPORATION","ms","INTEL CORPORATION","intel","

SUN MICROSYSTEMS, INC.","sun","GOOGLE INC.","google"))

Print 2

164 . . . when we discuss appropriate use global variables in the next section. . . . when we discuss appropriate use of global variables in the next section. Print 3

176 3. Within f(), piece together the results of (b) to solve the original problem. 3. Within f(), piece together the results of (2) to solve the original problem. Print 3

178 . . . while the right subtree stores the elements that are larger than the value in this
mode.

. . . while the right subtree stores the elements that are larger than the value in this
node.

Print 3

Page Error Correction
Print

corrected

185

26 \end{Code}

27

28 Let's test it.

29

30 \begin{Code}

31 > b <- newbookvec(c(3,4,5,5,12,13))

32 > b

33 $vec

34 [1] 3 4 5 5 12 13

35

36 $wrts

37 [1] 0 0 0 0 0 0

38

39 attr(,"class")

40 [1] "bookvec"

41 > b[2]

42 [1] 4

43 > b[2] <- 88 # try writing

44 > b[2] # worked?

45 [1] 88

46 > b$wrts # write count incremented?

47 [1] 0 1 0 0 0 0

Let's test it.

> b <- newbookvec(c(3,4,5,5,12,13))

> b

$vec

[1] 3 4 5 5 12 13

$wrts

[1] 0 0 0 0 0 0

attr(,"class")

[1] "bookvec"

> b[2]

[1] 4

> b[2] <- 88 # try writing

> b[2] # worked?

[1] 88

> b$wrts # write count incremented?

[1] 0 1 0 0 0 0

Print 3

191 The expression notp[-i] computes the product of all the elements of notp, . . . The expression prod(notp[-i]) computes the product of all the elements of notp, . . . Print 3

194 For instance, to �nd our more about the chi-square function for quantiles, . . . For instance, to �nd out more about the chi-square function for quantiles, . . . Print 3

197

> a <- matrix(c(1,1,-1,1),nrow=2,ncol=2)

> b <- c(2,4)

> solve(a,b)

[1] 3 1

> solve(a)

 [,1] [,2]

[1,] 0.5 0.5

[2,] -0.5 0.5

> a <- matrix(c(1,-1,1,1),nrow=2)

> b <- c(2,4)

> solve(a,b)

[1] -1 3

> solve(a)

 [,1] [,2]

[1,] 0.5 -0.5

[2,] 0.5 0.5

Print 3

206 Recalling that R lists are often used to store several related variables in one basket, we
se up a list comdat.

Recalling that R lists are often used to store several related variables in one basket, we
set up a list comdat.

Print 3

228

> save(hz,"hzfile") > save(hz,file="hzfile")

Print 3

Page Error Correction
Print

corrected

264
On a Mac, call macintosh(). On a Mac, call quartz().

Print 3

276

g <- function(t) { return (t^2+1)^0.5 } # define g() g <- function(t) { return ((t^2+1)^0.5) } # define g()

Print 3

295

returns the minimum value of d[i,j], i != j, and the row/col attaining

that minimum, for square symmetric matrix d; no special policy on

ties;

motivated by distance matrices

returns the minimum value of d[i,j], i != j, and the row/col attaining

that minimum, for square symmetric matrix d; no special policy on

ties;

motivated by distance matrices

Print 3

345 As of this writing, GPU has not yet become common among R users. As of this writing, GPU programming has not yet become common among R users. Print 3

