The Art of R Programming

A Tour of Statistical Software Design

by Norman Matloff

errata updated to print 14

<table>
<thead>
<tr>
<th>Page</th>
<th>Error</th>
<th>Correction</th>
<th>Print corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If not, see Appendix A. for installation instructions.</td>
<td>If not, see Appendix A for installation instructions.</td>
<td>Print 3</td>
</tr>
<tr>
<td>51</td>
<td><code>vud <- diff(d)</code></td>
<td><code>vud <- diff(v)</code></td>
<td>Print 3</td>
</tr>
<tr>
<td>53</td>
<td><code>for (gen in c("M","F")) grps[[gen]] <- which(aba==gen)</code></td>
<td><code>for (gen in c("M","F")) grps[[gen]] <- which(aba[,1]==gen)</code></td>
<td>Print 2</td>
</tr>
<tr>
<td>65, 66</td>
<td><code>newimg@grey <- (1-q) * img@grey + q * randomnoise</code></td>
<td><code>newimg@grey[rows,cols] <- (1-q) * img@grey[rows,cols] + q * randomnoise</code></td>
<td>Print 4</td>
</tr>
<tr>
<td>67</td>
<td><code>x <- c(5,12,13)</code></td>
<td><code>x[2 %% 2 == 1,]</code></td>
<td>Print 3</td>
</tr>
<tr>
<td></td>
<td><code>x[2 %% 2 == 1,]</code></td>
<td><code>[1,] 1 2</code></td>
<td>Print 3</td>
</tr>
<tr>
<td></td>
<td><code>[,1] [,2]</code></td>
<td><code>[2,] 3 4</code></td>
<td>Print 3</td>
</tr>
<tr>
<td>77</td>
<td>Recall that due to the symmetry of the matrix, we skip the early part of each row, as is seen in the expression <code>((i+1):(1x-1))</code> in line 18. But that means that the call to <code>which.min()</code> in that line will return the minimum's index relative to the range <code>((i+1):(1x-1))</code>.</td>
<td>Recall that due to the symmetry of the matrix, we skip the early part of each row, as is seen in the expression <code>((i+1):(1x-1))</code> in line 18. But that means that the call to <code>which.min()</code> in that line will return the minimum's index relative to the range <code>((i+1):(1x-1))</code>.</td>
<td>Print 3</td>
</tr>
<tr>
<td>93</td>
<td><code>nwords <- length(ssnyt)</code></td>
<td><code>frequ9 <- sapply(ssnyt[round(0.9*nwords):nwords],length)</code></td>
<td>Print 2</td>
</tr>
<tr>
<td></td>
<td><code>barplot(frequ9)</code></td>
<td><code>barplot(frequ9)</code></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Error</td>
<td>Correction</td>
<td>Print corrected</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>116</td>
<td>shang3</td>
<td>shang4</td>
<td>Print 2</td>
</tr>
<tr>
<td>128</td>
<td>fl.1 a bc 5 2 1 12 1 1 13 1 0</td>
<td>fl.1 a bc 5 2 0 12 1 1 13 2 1</td>
<td>Print 2</td>
</tr>
<tr>
<td>130</td>
<td>> ctt/5</td>
<td>> ctab/5</td>
<td>Print 2</td>
</tr>
<tr>
<td>131</td>
<td>> apply(ctt,1,sum)</td>
<td>> apply(cttab,1,sum)</td>
<td>Print 2</td>
</tr>
<tr>
<td>133</td>
<td>f(argslist[[1]],argslist[[2]],...)</td>
<td>f(argslist[[1]],argslist[[2]],...)</td>
<td>Print 2</td>
</tr>
<tr>
<td>137</td>
<td>This says that z[1], 0.88114802, fell into bin 9, which was (0.8,0.9]; z[2], 0.28532689, fell into bin 3; and so on.</td>
<td>This says that z[1], 0.88114802, fell into bin 9, which was (0.8,0.9]; z[2], 0.28532689, fell into bin 3; and so on.</td>
<td>Print 2</td>
</tr>
<tr>
<td>148</td>
<td>Good software design, however, should be mean that you can glance through a function's code . . .</td>
<td>Good software design, however, should mean that you can glance through a function's code . . .</td>
<td>Print 3</td>
</tr>
<tr>
<td>151</td>
<td>> f(3,2) [1] 1 > g <- function(h,a,b) h(a,b) > g(f1,3,2) [1] 5 > g(f2,3,2) [1] 1</td>
<td>> f(3,2) [1] 1 > g <- function(x) x^2 > body(g) <- quote(2*x+3) > g function (x) 2 * x + 3 > g(0) [1] 19</td>
<td>Print 5</td>
</tr>
<tr>
<td>Page</td>
<td>Error</td>
<td>Correction</td>
<td>Print corrected</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 151 | ```
> g <- function(h,a,b) h(a,b)
> body(g) <- quote(2*x + 3)
> g
function (x)
2 * x + 3
> g(3)
[1] 9
``` | ```
> g <- function(h,a,b) h(a,b)
> body(g) <- quote(2*x + 3)
> g
function (x)
2 * x + 3
> x <- 3
> g(3)
[1] 9
``` | Print 2 |
| 155 | ```
> f(2)
[1] 88
``` | ```
> f(2)
[1] 112
``` | Print 2 |
| 160 | ```
> oddsevens
function(v){
 odds <- which(v %% 2 == 1)
 evens <- which(v %% 2 == 0)
 list(o=odds,e=evens)
}
``` | ```
> oddsevens
function(v){
  odds <- which(v %% 2 == 1)
  evens <- which(v %% 2 == 0)
  list(o=odds,e=evens)
}
``` | Print 2 |
| 163 | ```
makecorpdfs(c("MICROSOFT CORPORATION","ms","INTEL CORPORATION","intel","SUN MICROSYSTEMS, INC.","sun","GOOGLE INC.","google")
``` | ```
makecorpdfs(c("MICROSOFT CORPORATION","ms","INTEL CORPORATION","intel","SUN MICROSYSTEMS, INC.","sun","GOOGLE INC.","google"))
``` | Print 2 |
<p>| 164 | . . . when we discuss appropriate use global variables in the next section. | . . . when we discuss appropriate use of global variables in the next section. | Print 3 |
| 176 | 3. Within f(), piece together the results of (b) to solve the original problem. | 3. Within f(), piece together the results of (2) to solve the original problem. | Print 3 |
| 178 | . . . while the right subtree stores the elements that are larger than the value in this mode. | . . . while the right subtree stores the elements that are larger than the value in this node. | Print 3 |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Error</th>
<th>Correction</th>
<th>Print</th>
</tr>
</thead>
</table>
| 185 | 26 \end{Code}
27
28 Let's test it.
29
30 \begin{Code}
31 > b <- newbookvec(c(3,4,5,5,12,13))
32 > b
33 $vec
34 [1] 3 4 5 5 12 13
35
36 $wrts
37 [1] 0 0 0 0 0 0
38
39 attr(,"class")
40 [1] "bookvec"
41 > b[2]
42 [1] 4
43 > b[2] <- 88 # try writing
44 > b[2] # worked?
45 [1] 88
46 > b$wrts # write count incremented?
47 [1] 0 1 0 0 0 0 | Let's test it.
> b <- newbookvec(c(3,4,5,5,12,13))
> b
$vec
[1] 3 4 5 5 12 13
$wrts
[1] 0 0 0 0 0 0
attr(,"class")
[1] "bookvec"
> b[2]
[1] 4
> b[2] <- 88 # try writing
> b[2] # worked?
[1] 88
> b$wrts # write count incremented?
[1] 0 1 0 0 0 0 | Print 3 |
| 191 | The expression notp[-i] computes the product of all the elements of notp, . . . | The expression prod(notp[-i]) computes the product of all the elements of notp, . . . | Print 3 |
| 194 | For instance, to find our more about the chi-square function for quantiles, . . . | For instance, to find out more about the chi-square function for quantiles, . . . | Print 3 |
| 197 | > a <- matrix(c(1,1,-1,1),nrow=2,ncol=2)
> b <- c(2,4)
> solve(a,b)
[1] 3 1
> solve(a)
[,1] [,2]
[1,] 0.5 0.5
[2,] -0.5 0.5 | > a <- matrix(c(1,1,-1,1),nrow=2)
> b <- c(2,4)
> solve(a,b)
[1] 1 3
> solve(a)
[,1] [,2]
[1,] 0.5 -0.5
[2,] 0.5 0.5 | Print 3 |
<p>| 206 | Recalling that R lists are often used to store several related variables in one basket, we se up a list condat. | Recalling that R lists are often used to store several related variables in one basket, we set up a list condat. | Print 3 |
| 228 | > save(hz,"hzfile") | > save(hz, file="hzfile") | Print 3 |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Error</th>
<th>Correction</th>
<th>Print corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>On a Mac, call <code>macintosh()</code>.</td>
<td>On a Mac, call <code>quartz()</code></td>
<td>Print 3</td>
</tr>
<tr>
<td>276</td>
<td><code>g <- function(t) { return (t^2+1)^0.5 } # define g()</code></td>
<td><code>g <- function(t) { return ((t^2+1)^0.5) } # define g()</code></td>
<td>Print 3</td>
</tr>
<tr>
<td>295</td>
<td>returns the minimum value of <code>d[i,j]</code>, <code>i != j</code>, and the row/col attaining that minimum, for square symmetric matrix <code>d</code>; no special policy on ties; motivated by distance matrices</td>
<td># returns the minimum value of <code>d[i,j]</code>, <code>i != j</code>, and the row/col attaining that minimum, for square symmetric matrix <code>d</code>; no special policy on ties; motivated by distance matrices</td>
<td>Print 3</td>
</tr>
<tr>
<td>345</td>
<td>As of this writing, GPU has not yet become common among R users.</td>
<td>As of this writing, GPU programming has not yet become common among R users.</td>
<td>Print 3</td>
</tr>
</tbody>
</table>