
—-1
—0
—+1

Many Arduino users rely on the 74HC595 shift
register for their projects, as it’s popular and

easy to use. However, the 74HC595 can handle
only a relatively low amount of current, especially

when all pins are active: while you can draw 20 mA of cur-
rent from one output continuously, the entire IC is rated
for a draw of only 70 mA through the VCC or GND pin.

If you need 20 mA per output to drive, for instance, eight separate
LEDs, you could use only three of the eight pins under recommended oper-
ating conditions. While it may be possible to exceed the manufacturer’s
direction, good electronic designs should consider safety and reliability. A
shift register designed to handle higher currents is a better choice.

This chapter shows you how to control higher-powered devices with
your Arduino with the TPIC6B595 shift register IC. You’ll learn to:

• Experiment with a binary number display

• Use multiple TPIC6B595s to control more than eight high-powered outputs

• Use bright Piranha-style LEDs that are more powerful than regular LEDs

8
C O N T R O L L I N G H I G H - P O W E R

S H I F T R E G I S T E R S

335-118553_samp.indd 1335-118553_samp.indd 1 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
2 Chapter 8

You’ll also build a PC-controlled eight-relay board and control giant
seven-segment numeric displays.

Introducing the TPIC6B595
The TPIC6B595 is controlled in the same way as the 74HC595 but offers up
to 150 mA per output and a 500 mA IC total current draw—just over 60 mA
per pin when all pins are used. It can also switch voltages up to 50 V DC.
This allows for control of eight higher-current items such as powerful LEDs,
relay coils, or mechanical switchgear.

The TPIC6B595 is a latching shift register, meaning that as long as power
is connected, it will maintain the output status. For example, if you upload
a new sketch, the outputs are not affected. If you’ve powered your circuit
from a power supply and not the Arduino, you can reset the Arduino with-
out altering the outputs.

Figure 8-1 shows a TPIC6B595 in a dual in-line package (DIP), through-
hole format in a solderless breadboard.

Figure 8-1: A TPIC6B595 shift register

Figure 8-2 shows the TPIC6B595’s schematic symbol.

TPIC6B595N

VC
C

2

4
5
6
7
14
15
16
17
18

9
12
3

13
8

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7
SEROUT

G
N

D
G

N
D

G
N

D

10 11 19

G
RCK
SERIN
SRCK
SRCLR

Figure 8-2: The schematic symbol for the TPIC6B595

335-118553_samp.indd 2335-118553_samp.indd 2 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 3

The eight output pins in the schematic are labeled DRAINx, since the
TPIC6B595 has low-side outputs. Like the 2N7000 N-MOSFETs used in
previous chapters, each of these outputs controls current entering the pin
(as opposed to the 74HC595’s high-side outputs, for example, where cur-
rents flow out from the eight control pins). This means the devices to be
controlled are connected between the power supply and the control pins on
the TPIC6B595, which switches the currents’ ability to flow from the device
to GND.

Consider the schematic in Figure 8-3. Current flows from the 5 V
source, through the resistor and LED, and into the TPIC6B595’s output
pin. When that pin is activated, the current continues to GND, completing
the circuit.

TPIC6B595N

5V

VC
C

2

4
5
6
7
14
15
16
17
18

9
12

3
13

8

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7
SEROUT

G
N

D
G

N
D

G
N

D

10 11 19

G
RCK
SERIN
SRCK
SRCLR

Figure 8-3: An example of LED control with TPIC6B595

Given the TPIC6B595’s method of controlling current, the voltage
of the devices it controls can be up to 50 V, while the shift register is still
operating on 5 V. Conveniently, that means you can control 12 V devices or
higher without worrying about level conversion back to the Arduino.

Let’s put the TPIC6B595 to the test with a simple project that demon-
strates shift register operation.

Project #25: Creating a TPIC6B595 Binary Number Display
This project demonstrates the use of TPIC6B595 outputs while refreshing
your knowledge of binary numbers and how they relate to shift register out-
put control. You’ll need the following parts:

• Arduino Uno or compatible board and USB cable

• Solderless breadboard

• Various jumper wires

• TPIC6B595 shift register IC

• 0.1 µF capacitor

• Eight LEDs

• Eight 1 kΩ resistors

335-118553_samp.indd 3335-118553_samp.indd 3 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
4 Chapter 8

Assemble the circuit as shown in Figure 8-4.

LEDs D1–D8
5V

5VGND
D8

D10
D9
5V

G
N

D

R1–R8: 1K0

TPIC6B595N

VC
C

2

4
5
6
7
14
15
16
17
18

9
12
3

13
8

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7
SEROUT

G
N

D
G

N
D

G
N

D

10 11 19

G
RCK
SERIN
SRCK
SRCLR

Figure 8-4: The schematic for Project #25

Enter and upload the Project #25 sketch. After a moment, open the
Serial Monitor in the IDE and enter a number between 0 and 255, inclu-
sive; then press ctrl-enter. The Arduino should respond by displaying
the number in binary using the LEDs, as well as in the Serial Monitor, as
shown in Figure 8-5. LED 1 will be the least significant bit of the number,
which represents 1, and LED 8 will be the most significant bit, which repre-
sents 255.

Figure 8-5: Example output from Project #25

Let’s see how this works:

// Project #25 - TPIC6B595 binary number display

1 #define latch 8 // Latch RCK pin
#define clock 9 // Clock SRCK pin
#define data 10 // Data SERIN pin

void displayBinary(int displayNumber)
{
 digitalWrite(latch, LOW);
 shiftOut(data, clock, MSBFIRST, displayNumber);
 digitalWrite(latch, HIGH);
}

335-118553_samp.indd 4335-118553_samp.indd 4 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 5

void setup()
{
 2 Serial.begin(9600);
 pinMode(latch, OUTPUT);
 pinMode(clock, OUTPUT);
 pinMode(data, OUTPUT);
}

void loop()
{
 long number = 0;
 long entry = 0;
 3 Serial.flush();
 while (Serial.available() == 0) {}
 4 while (Serial.available() > 0)
 {
 number = number * 10;
 entry = Serial.read() - '0';
 number = number + entry;
 delay(5);
 }
 displayBinary(number);
 Serial.print("You entered: ");
 Serial.print(number);
 Serial.print(", which is ");
 Serial.print(number, BIN);
 Serial.println(" in binary.");
}

The sketch begins by defining the Arduino digital pins used for con-
necting to the shift register’s latch, clock, and data pins, respectively 1.
The custom displayBinary() function accepts an integer and sends it to the
shift register for output control, using the same method as the 74HC595
shift register mentioned earlier. To send the bits representing the number
to the shift register in binary and to activate the pins in the shift register to
control the LEDs that will match the number to be displayed in binary, the
function uses MSBFIRST (most significant bit first).

You can turn shift register outputs on and off with the 8 bits of the
number sent to the shift register, as each bit matches an output and a status
(1 for HIGH, 0 for LOW). You can also change MSBFIRST to LSBFIRST, standing
for least significant bit first, to see the number “reversed” in binary.

The sketch initializes the Serial Monitor and digital output pins 2
and then flushes the serial input and waits for the user to enter a num-
ber into the Serial Monitor 3. It then combines the digits of the number
entered in the Serial Monitor to make the final number to display 4. The
custom displayBinary() function sends that number to the shift register
and the Serial Monitor.

You’ll put this framework for shift register control to use in the next
project.

335-118553_samp.indd 5335-118553_samp.indd 5 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
6 Chapter 8

Project #26: Building a PC-Controlled Relay Board
In this project, you’ll build a relay control board with eight single-pole,
double-throw (SPDT) relays that you control via a PC or another device
with an Arduino-compatible UART. In the future, you might use the tech-
nique introduced in this project to control low-voltage lighting or electric
door locks, turn speakers on and off, and more.

Each relay in this project is capable of controlling up to 30 V DC at 2 A
of current, if you’re using the project PCB. If you’re using the solderless
breadboard, the relays should be used to switch only up to 100 mA or so.

While it’s possible to build this project using a solderless breadboard,
this requires soldering jumper wires to the relay pins for remotely wiring
the relays back to the circuit, as shown in Figure 8-6, as the relay pins don’t
sit in the breadboard very well. I strongly recommend you use the PCB
instead.

Figure 8-6: A relay with remote wiring for breadboard use

You’ll need the following parts for this project:

• Arduino Uno or compatible board and USB cable

• Assorted jumper wires

• 12 V power supply or wall wart with DC plug

• TPIC6B595 shift register

• Twenty-pin IC socket

• 0.1 µF capacitor

• Eight LEDs

• Eight 1 kΩ resistors

• Eight 1N4001 power diodes

• Eight SRD-12VDC-SL-C SPDT relays

• Solderless breadboard or Project #26 PCB

If you’re using the PCB, you will also need the following:

• Ten three-way 5.08 mm terminal blocks

• Twenty-pin IC socket

• PCB mount DC socket

Assemble the circuit as shown in Figure 8-7.

335-118553_samp.indd 6335-118553_samp.indd 6 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 7

K1
SRD–12VDC–SL–C

D4
1N4001

J1
Screw_Terminal

D
RA

IN
0

12
V

D2
LED

R1
1K0

1
2
3

K2
SRD–12VDC–SL–C

K3
SRD–12VDC–SL–C

K7
SRD–12VDC–SL–C

K8
SRD–12VDC–SL–C

K4
SRD–12VDC–SL–C

K5
SRD–12VDC–SL–C

K6
SRD–12VDC–SL–C

D5
1N4001

J2
Screw_Terminal

D
RA

IN
1

12
V

D2
LED

R2
1K0

1
2
3

D6
1N4001

J3
Screw_Terminal

D
RA

IN
2

12
V

D3
LED

R3
1K0

1
2
3

D15
1N4001

J7
Screw_Terminal

D
RA

IN
6

12
V

D13
LED

R7
1K0

1
2
3

D16
1N4001

J8
Screw_Terminal

D
RA

IN
7

12
V

D14
LED

R8
1K0

1
2
3

D10
1N4001

J4
Screw_Terminal

D
RA

IN
3

12
V

D7
LED

R4
1K0

1
2
3

D11
1N4001

J5
Screw_Terminal

D
RA

IN
4

12
V

D8
LED

R5
1K0

1
2
3

D12
1N4001

J6
Screw_Terminal

D
RA

IN
5

12
V

D9
LED

R6
1K0

1
2
3

J11
Screw_Terminal

J10
Screw_Terminal

J9
DC_Socket ArduinoVin

ArduinoVin
Arduino5V
GND

12V
GND

D10
D9
D8

3
2
1

3
2
1

1
2
3

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7
SEROUT

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7

G
RCK
SERIN
SRCK
SRCLR

GND
D8

D10
D9

C1
0U1

Arduino5V

Arduino5V
U1

TPIC6B595N

GND

4
5
6
7
14
15
16
17
18

9
12

3
13

8

10 11 19
VC

C
2

G
N

D
G

N
D

G
N

D

Figure 8-7: The schematic for Project #26

335-118553_samp.indd 7335-118553_samp.indd 7 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
8 Chapter 8

If you’re using the PCB, the layout is simple, as shown in Figure 8-8.

Figure 8-8: The PCB for Project #26

Start by inserting the resistors; then insert the diodes, the LEDs, the IC
and DC sockets, and the terminal blocks; and end with the relays. Be sure
to insert the shift register correctly—pin 1 is marked on the PCB. Connect
to the Arduino via the two terminal blocks next to the shift register, as
shown in the schematic and Figure 8-9. The Arduino is powered by the
relay board’s 12 V supply and returns 5 V to the board to power the shift
register.

Figure 8-9: The completed hardware for Project #26

Once you’ve set up the hardware, enter and upload the Project #26
sketch, which controls the relays with various commands. Entering the
numbers 0 through 7 using the Serial Monitor or terminal software turns
on relays 0 through 7, respectively; entering 8 through F turns off relays 0
to 7; G turns all relays on; and H turns all relays off. Enter ? to check which
relays are on and off based on the commands being entered. The result is
returned as a binary number matching the relay order. If the user enters an
unrecognized character, the Arduino returns a list of valid commands.

335-118553_samp.indd 8335-118553_samp.indd 8 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 9

For example, Figure 8-10 shows the output for the commands G, then Q
(which caused the incorrect command message to display), then H, and then
0, 3, 5, 7, and ?.

Figure 8-10: An example of operations in the Serial Monitor

If you’re sharing the relay board and Arduino with others, they don’t
need to run the Arduino IDE for control but can use any terminal software
on their PC, Mac, or other computer that supports USB serial. For example,
the same operation is possible with Roger Meier’s CoolTerm application,
available from http://freeware.the-meiers.org, as shown in Figure 8-11.

Figure 8-11: Controlling the relays using the CoolTerm application

The control Arduino expects only single characters from the host
computer (or other UART), so you can write software for your computer in
many environments to control the relays. Search your preferred environ-
ment’s resources for “plaintext serial over USB” or similar to learn more.

Let’s see how this works:

335-118553_samp.indd 9335-118553_samp.indd 9 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
10 Chapter 8

// Project #26 - PC-controlled relay board

#define latch 8 // Latch RCK pin
#define clock 9 // Clock SRCK pin
#define data 10 // Data SERIN pin

int relayStatus;

void showStatus()
{
 Serial.print("Relay status 7 to 0 is: ");
 Serial.println(relayStatus,BIN);
}

void waveHello()
{
 int d = 250;
 Serial.println("Hello!");
 allOff();
 for (int a=0; a<8; a++)
 {
 relayOn(a);
 delay(d);
 relayOff(a);
 }
 for (int a=6; a>=0; a--)
 {
 relayOn(a);
 delay(d);
 relayOff(a);
 }
}

void relayOn(int a)
{
 relayStatus = relayStatus|(1<<a);
 sendStatus(relayStatus);
 Serial.print("Relay "); Serial.print(a); Serial.println(" On");
}

void relayOff(int a)
{
 relayStatus = relayStatus^(1<<a);
 sendStatus(relayStatus);
 Serial.print("Relay "); Serial.print(a); Serial.println(" Off");
}

void allOn()
{
 relayStatus = 255;
 sendStatus(relayStatus);
 Serial.println("All relays turned on");
}

335-118553_samp.indd 10335-118553_samp.indd 10 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 11

void allOff()
{
 relayStatus = 0;
 sendStatus(relayStatus);
 Serial.println("All relays turned off");
}

void sendStatus(int a)
{
 digitalWrite(latch, LOW);
 shiftOut(data, clock, MSBFIRST, a);
 digitalWrite(latch, HIGH);
}

void setup()
{
 Serial.begin(9600);
 pinMode(latch, OUTPUT);
 pinMode(clock, OUTPUT);
 pinMode(data, OUTPUT);
}

void loop()
{
 char a = 0;
 Serial.flush();
 while (Serial.available() == 0) {}
 while (Serial.available() > 0) 1
 {
 a = Serial.read();
 }
 switch (a) 2
 {
 case '0' : relayOn(0); break;
 case '1' : relayOn(1); break;
 case '2' : relayOn(2); break;
 case '3' : relayOn(3); break;
 case '4' : relayOn(4); break;
 case '5' : relayOn(5); break;
 case '6' : relayOn(6); break;
 case '7' : relayOn(7); break;
 case '8' : relayOff(0); break;
 case '9' : relayOff(1); break;
 case 'A' : relayOff(2); break;
 case 'B' : relayOff(3); break;
 case 'C' : relayOff(4); break;
 case 'D' : relayOff(5); break;
 case 'E' : relayOff(6); break;
 case 'F' : relayOff(7); break;
 case 'G' : allOn(); break;
 case 'H' : allOff(); break;
 case 'Z' : waveHello(); break; 3
 case '?' : showStatus(); break;

335-118553_samp.indd 11335-118553_samp.indd 11 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
12 Chapter 8

 default : Serial.print("Incorrect command - 0 1 2 3 4 5 6 7 turns 0~7 on, "); 4
 Serial.println("8 9 A B C D E F turns 0~7 off, G - all on, H - all off");
 }
}

The sketch first declares the integer relayStatus, which holds the status
of the relays. Think of this number in binary, with the least significant bit
representing relay 0: if this bit is 1, the relay is on, and if it is 0, the relay
is off. The custom showStatus() function sends the value of relayStatus in
binary back to the serial interface, so the receiver can see which relays are
on or off in their terminal, Serial Monitor, or other software. All the func-
tions that control a relay also send feedback via serial to the user, describing
the completed action.

The relayOn(int a) function turns on relays, using the bitwise arithme-
tic operator OR (|) to activate the desired relay without interrupting other
relays. The function receives the value a and performs a bitwise OR with
the relayStatus variable; then it updates the relays using the new value of
relayStatus. For example, if relays 0, 1, 2, and 3 are on, the value of relay-
Status in binary is currently B00001111. If the user then enters 5 in the
Serial Monitor (or terminal software) to turn on relay 5, the program would
switch bit 5 to 1, as follows:

B00001111 | // Current value of relayStatus
B00100000 = // Perform OR with 1 << 5 — received by the function in a
B00101111 // New value of relayStatus

The sendStatus() function changes the relays accordingly by updating the
shift register outputs.

The relayOff(int a) function turns relays off, using the bitwise arithme-
tic operator XOR (̂) to deactivate the desired relay without interrupting
other relays. For example, if relays 0, 1, 2, 3, and 5 are on, the value of relay-
Status in binary is currently B00101111. If you enter A in the Serial Monitor
or terminal software to turn off relay 3, the program should switch bit 3 to
0, as follows:

B00101111 ^ // Current value of relayStatus
B00001000 = // Perform XOR with 1 << 3
B00100111 // New value of relayStatus

Again, the sendStatus()function changes the relays accordingly by updating
the shift register outputs. Two additional functions, allOn() and allOff(),
turn all relays on and off, respectively, by sending 255 (binary B11111111)
and 0 (binary B0000000) to the shift register.

General operation is simple. The Arduino awaits a single character
from the serial line 1. Once a character has arrived, it is matched to a com-
mand 2; the user can activate the simple waveHello() function 3 by pressing
Z to turn the relays on and off one at a time, for testing and amusement,

335-118553_samp.indd 12335-118553_samp.indd 12 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 13

finally if the character isn’t a command, the program sends a quick refer-
ence to serial 4 so the user can learn the command set.

For a challenge, you can modify the sketch so the relay status is saved
to the internal EEPROM when changed and the system sets the relays from
the EEPROM data after a reset.

Now that you know how to control eight higher-current devices with
a single TPIC6B595, I’ll show you how to use two or more TPIC6B595s at
once.

Using Multiple TPIC6B595s
You can easily use two or more TPIC6B595 shift registers at once to con-
trol 16 or more devices, in the same way you would with the 74HC595,
but with the ability to handle higher currents. Start by connecting each
TPIC6B595’s clock lines together, then connecting their latch lines
together, then connecting the serial out from the first shift register to the
serial in on the second shift register, and finally repeating as required. For
example, Figure 8-12 shows the schematic to double the number of LEDs
controlled by Project #25.

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7
SEROUT

DRAIN0
DRAIN1
DRAIN2
DRAIN3
DRAIN4
DRAIN5
DRAIN6
DRAIN7
SEROUT

G
RCK
SERIN
SRCK
SRCLR

GND
D8

D10
D9

0U1

5V

5VTPIC6B595N #1

G
N

D

4
5
6
7
14
15
16
17
18

9
12
3

13
8

10 11 19
VC

C
2

G
N

D
G

N
D

G
N

D

G
RCK
SERIN
SRCK
SRCLR

10 11 19
2

G
N

D
G

N
D

G
N

D
VC

C9
12
3

13
8

GND
D8

D9
5V

4
5
6
7
14
15
16
17
18

LEDs D1–D8 R1–R8: 1K0

TPIC6B595N #2
LEDs D9–D16 R9–R16: 1K0

5V5V

5V

0U1

G
N

D

Figure 8-12: The schematic for controlling 16 LEDs with shift registers

Next, send out 2 bytes of data while the latch is low, instead of 1 byte.
You’ll need to send the byte for the last shift register in the chain first. For
example, to send out 2 bytes to the shift registers in Figure 8-12, you would
use the following function:

void sendData(int a, int b)
{
digitalWrite(latch, LOW);
shiftOut(data, clock, MSBFIRST, b); // For TPIC #2
shiftOut(data, clock, MSBFIRST, a); // For TPIC #1
digitalWrite(latch, HIGH);
}

335-118553_samp.indd 13335-118553_samp.indd 13 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
14 Chapter 8

To add one or more additional shift registers, just add more parameters
and shiftOut() functions, one each for each extra register. You’ll use mul-
tiple TPIC6B595s in the following project, along with a new type of LED,
described in the next section.

Using Piranha-Style LEDs
There’s an incredible range of LEDs available on the market, from tiny
surface-mount LEDs to those large enough to serve as part of an automo-
tive headlight. One example in between these two is the compact yet very
bright Piranha-style LED; its through-hole packaging makes it easy to use.
Figure 8-13 shows a pair of Piranha LEDs.

Figure 8-13: Two Piranha LEDs

Each LED has four legs, two anodes, and two cathodes. The two anode
pins are electrically connected to each other, as are the two cathode pins.
The anode side has the corner cut off at the bottom left, as well as a larger
metallic surface compared to the cathode side. Figure 8-14 shows the sche-
matic symbol for Piranha LEDs.

Figure 8-14: The
schematic symbol
for Piranha-style LEDs

When used alone, these LEDs operate safely at 20 mA of current at
around 2 to 2.2 V DC. For the next project, you’ll use them in groups of
four each, organized in series (rather than parallel to each other). In this
configuration, each group of four LEDs will require 9 V DC power and a
47 Ω resistor to maintain the required current and a high brightness.

335-118553_samp.indd 14335-118553_samp.indd 14 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 15

To calculate the required resistor to use with LEDs in series, you use
formula R = (Vs − Vf) / If , where Vs is the power supply voltage, Vf is the
forward voltage (recommended operating voltage) of the LEDs, and If is the
recommended operating current for the LEDs. For the following project,
you’d use 8 V at 20 mA as the LED forward voltage and operating current,
with a 9 V supply. This gives you R = (9 V − 8 V) / .02 A, which results in
50 Ω. We don’t have a 50 Ω resistor, so 47 Ω is the nearest choice.

Project #27: Creating a Giant Seven-Segment LED Display
Multiple TPIC6B595s work well to drive large numbers of LEDs. In this
project, you’ll build one or more seven-segment LED displays to create
large numerical displays you can use for various purposes. For instance, you
might use them to indicate various data generated with an Arduino project,
such as temperature, an event count, or time.

To construct a single-digit display, you’ll need the following parts. For
a larger display, multiply all parts other than the Arduino by the number of
digits you’d like to create. This project shows you how to use four digits at
once, so multiply by four if you’d like to follow the example exactly. For this
project, use the PCB rather than a breadboard.

• An Arduino Uno or compatible board and USB cable

• Assorted jumper wires

• A 9 V power supply or wall wart with DC plug

• A TPIC6B595 shift register

• A 20-pin IC socket

• A 0.1 µF capacitor

• Thirty-two 5 mm Piranha-style LEDs

• Eight 47 Ω resistors

• Four 3-contact 5.08 mm terminal blocks

• A PCB mount DC socket

• The Project #27 PCB

Figure 8-15 shows the project’s schematic.

335-118553_samp.indd 15335-118553_samp.indd 15 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—

D
4

Pi
ra

nh
a

R1 47
R

9V

R2 47
R

R3 47
R

R4 47
R

R5 47
R

R6 47
R

R7 47
R

R8 47
R

D
2

Pi
ra

nh
a

D
3

Pi
ra

nh
a

D
1

Pi
ra

nh
a

D
8

Pi
ra

nh
a

D
6

Pi
ra

nh
a

D
7

Pi
ra

nh
a

D
5

Pi
ra

nh
a

D
12

Pi
ra

nh
a

D
10

Pi
ra

nh
a

D
11

Pi
ra

nh
a

D
9

Pi
ra

nh
a

D
16

Pi
ra

nh
a

D
14

Pi
ra

nh
a

D
15

Pi
ra

nh
a

D
13

Pi
ra

nh
a

D
20

Pi
ra

nh
a

D
18

Pi
ra

nh
a

D
19

Pi
ra

nh
a

D
17

Pi
ra

nh
a

D
24

Pi
ra

nh
a

D
22

Pi
ra

nh
a

D
23

Pi
ra

nh
a

D
21

Pi
ra

nh
a

D
28

Pi
ra

nh
a

D
26

Pi
ra

nh
a

D
27

Pi
ra

nh
a

D
25

Pi
ra

nh
a

D
32

Pi
ra

nh
a

D
30

Pi
ra

nh
a

D
31

Pi
ra

nh
a

D
29

Pi
ra

nh
a

9V 9V 9V 9V 9V 9V 9V
D

RA
IN

7

D
RA

IN
6

D
RA

IN
5

D
RA

IN
4

D
RA

IN
3

D
RA

IN
2

D
RA

IN
1

D
RA

IN
0

J5
D

C
_S

oc
ke

t

9V G
N

D

1 3 21 2 3 1 2 3

9V 5V
SE

RO
U

T

C
LO

C
K

LA
TC

H
G

N
D

J3
Sc

re
w

_T
er

m
in

al
_0

1x
03

J2 Sc
re

w
_T

er
m

in
al

_0
1x

03

J4 Sc
re

w
_T

er
m

in
al

_0
1x

03

J1
Sc

re
w

_T
er

m
in

al
_0

1x
03

3 2 1 3 2 1

C
LO

C
K

LA
TC

H
G

N
D

9V 5V SE
RI

N

D
RA

IN
0

D
RA

IN
1

D
RA

IN
2

D
RA

IN
3

D
RA

IN
4

D
RA

IN
5

D
RA

IN
6

D
RA

IN
7

SE
RO

U
T

D
RA

IN
0

D
RA

IN
1

D
RA

IN
2

D
RA

IN
3

D
RA

IN
4

D
RA

IN
5

D
RA

IN
6

D
RA

IN
7

G RC
K

SE
RI

N
SR

C
K

SR
C

LR

C
1

0U
1

5V
C

LO
C

K
SE

RI
N

LA
TC

H
G

N
D

5V

U
1

TP
IC

6B
59

5N

GND

4 5 6 7 14 15 16 17 18

9 12 3 13 8

10
11
19VCC2

GND
GND
GND

SE
RO

U
T

Fi
gu

re
 8

-1
5:

 T
he

 s
ch

em
at

ic
 fo

r P
ro

je
ct

 #
27

335-118553_samp.indd 16335-118553_samp.indd 16 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 17

As you can see, the TPIC6B595 has “low-side” outputs. When an output
is activated, the current starts from the power supply, goes through the
items to be controlled, and then passes through the shift register DRAIN
pins and out via GND.

Building a Single-Digit Display
Figure 8-16 shows the simple PCB layout.

Figure 8-16: The unpopulated PCB for one digit

Always start by connecting the lowest-profile components: the resis-
tors, the IC socket, the LEDs, and, finally, the DC socket and terminal
blocks. Don’t be tempted to insert all the LEDs at once and then turn the
PCB over, as some of the LEDs may come loose or fall out. Instead, solder
them in one at a time. Orient all the LEDs with the anodes on the left
and cathodes on the right (the left side of the PCB is the one with the DC
socket). Once completed, your board should resemble the example shown
in Figure 8-17.

Figure 8-17: The completed PCB for one digit

335-118553_samp.indd 17335-118553_samp.indd 17 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
18 Chapter 8

Once you’ve set up the hardware, enter and upload the Project #27a
sketch that follows, which demonstrates one digit (you can choose to build
three more digits in the section “Building a Four Digit Display”). After
uploading the sketch, you’ll need to connect your Arduino and power sup-
ply to the PCB. With the PCB facing upward and the DC socket on your left,
make the connections as described in Table 8-1.

Table 8-1 PCB to Arduino Connections

PCB left side Arduino

Clock D9

Latch D8

GND GND

9 V Vin

5 V 5 V

Serial In D10

Finally, connect a 9 V DC power supply to the DC socket on the PCB.
The Arduino is powered by the 9 V supply via the Vin pin and feeds back
5 V to the display board to power the shift register. After a moment, the dis-
play should count from zero to nine; then again with a decimal point beside
each numeral, as shown in Figure 8-18; and finally repeat.

Figure 8-18: Example display board output

Because of the incredible brightness of the LEDs, I set the supply voltage
to 7 V DC before taking the photo in Figure 8-18 for a clearer picture. Your
display should be much brighter when operating at its designated 9 V DC.

335-118553_samp.indd 18335-118553_samp.indd 18 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 19

Each segment of the digit consists of 28 Piranha LEDs, plus 4 more for
the decimal point, driven by an output on the TPIC6B595. Therefore, you
could consider the digit to be made up of seven LEDs, plus one more for
the decimal point. These are controlled via the TPIC6B595’s outputs in the
same method as the relay board described in Project #26.

Let’s see how this works:

// Project #27a - Single giant 7-segment LED displays

1 #define latch 8 // Latch RCK pin
#define clock 9 // Clock SRCK pin
#define data 10 // Data SERIN pin

int digits[] = {B00111111, // 0
 2 B00000110, // 1
 B01011011, // 2
 B01001111, // 3
 B01100110, // 4
 B01101101, // 5
 B01111101, // 6
 B00000111, // 7
 B01111111, // 8
 B01100111}; // 9

void sendNumber(int a, boolean point)
{
 if (point == false)
 {
 digitalWrite(latch, LOW);
 shiftOut(data, clock, MSBFIRST, digits[a]);
 digitalWrite(latch, HIGH);
 } else if (point==true)
 {
 digitalWrite(latch, LOW);
 3 shiftOut(data, clock, MSBFIRST, digits[a]|B10000000);
 digitalWrite(latch, HIGH);
 }
}

void setup()
{
 pinMode(latch, OUTPUT);
 pinMode(clock, OUTPUT);
 pinMode(data, OUTPUT);
}

void loop()
{
 4 for (int a = 0; a<10; a++)
 {
 sendNumber(a,false);
 delay(1000);
 }

335-118553_samp.indd 19335-118553_samp.indd 19 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
20 Chapter 8

 5 for (int a = 0; a<10; a++)
 {
 sendNumber(a,true);
 delay(1000);
 }
}

The sketch first defines the Arduino digital pins used for connecting to
the shift register’s latch, clock, and data pins 1. For the array of 8 bytes at
2, each byte represents the eight outputs that are used to control the seg-
ments on the display. For example, the number 1 is represented in binary
as B00000110, as you want to turn on the second and third segments of the
display to display 1.

The custom sendNumber() function sends the requisite data to display
each digit to the shift register, which then sets the appropriate outputs.
This function accepts the digit to display and accepts true or false as the
second parameter, which is used to turn the decimal point on or off. If
the decimal point is required, the sketch uses the OR function | 3 (as in
Project #7 in Chapter 2) to turn on the most significant bit of the shift reg-
ister (bit 7), which controls DRAIN7.

The void setup() function sets the required digital output pins. Finally,
the sketch demonstrates the display by counting from zero to nine and back
again 4 and then again with the decimal point turned on 5.

You now have a large, impressive numerical LED display that can be
seen from quite a distance. If the LEDs are too bright for your liking, you
can increase the value of resistors, perhaps to 180 or 270 Ω. Be sure to use
0.25 W (1/4 W) resistor types.

Building a Four-Digit Display
You can build and use multiple display boards for larger numerical projects.
In this example, you’ll use four boards to display numbers of up to four dig-
its. You might use this to display data or as a large, bright clock.

Construct a second, third, and fourth board just as you did in the
previous section, with one difference: these new boards won’t need
the DC socket, as the first display board will act as your power source.
Once the extra boards are assembled, connect them by bridging the
terminal blocks on each side to each other. The matching labels on
the rear of the display boards, as shown in Figure 8-19, will help you
do so.

Next, enter and upload the Project #27b demonstration sketch.
Once the upload completes, connect the Arduino to the leftmost
display board and connect the 9 V power supply. After a moment the
display boards should show random four-digit numbers, with random
placement of the decimal point, as shown in Figure 8-20.

Figure 8-19: The rears
of two display boards

335-118553_samp.indd 20335-118553_samp.indd 20 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

—-1
—0
—+1

Controlling High-Power Shift Registers 21

Figure 8-20: The four display boards operating at 7 V DC

Let’s see how this works:

// Project #27b - Four giant 7-segment LED displays

#define latch 8 // Latch RCK pin 1
#define clock 9 // Clock SRCK pin
#define data 10 // Data SERIN pin

int digits[] = { B00111111, // 0 2
 B00000110, // 1
 B01011011, // 2
 B01001111, // 3
 B01100110, // 4
 B01101101, // 5
 B01111101, // 6
 B00000111, // 7
 B01111111, // 8
 B01100111 }; // 9

void sendNumbers(int numbers[], int dp)
{
 digitalWrite(latch, LOW);
 for (int i = 0; i < 4; i++)
 {
 int dig_idx = numbers[i]; 3
 if (dp == i) {
 // Display the digit
 shiftOut(data, clock, MSBFIRST, digits[dig_idx] | B10000000); 4
 } else {
 shiftOut(data, clock, MSBFIRST, digits[dig_idx]);
 }
 }
 digitalWrite(latch, HIGH);
}

void setup()
{
 randomSeed(analogRead(0)); 5
 pinMode(latch, OUTPUT);
 pinMode(clock, OUTPUT);
 pinMode(data, OUTPUT);
}

335-118553_samp.indd 21335-118553_samp.indd 21 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

-1—
0—

+1—
22 Chapter 8

void loop()
{
 int numbers[4] = { random(0, 10), random(0, 10), random(0, 10), random(0, 10) }; 6
 sendNumbers(numbers, random(0, 3)); 7
 delay(1000);
}

The sketch for four boards has a few differences from that of Project
#27a to make using multiple displays easier. Once again, it defines the
Arduino digital pins used for connecting to the shift register’s latch, clock,
and data pins 1 and defines the array of 8 bytes 2 that represents the
eight outputs used to control the segments on the display.

The void sendNumbers() function accepts two parameters: an array of
four numbers (one for each display board), and an integer that represents
on which boards to display the decimal point. The sketch checks for this
at 3. If the parameter is 1, the required bit for the decimal point display is
included in the byte sent to the shift register 4.

As you’re displaying random numbers, the generator is seeded with the
analog input data 5, and then the array for numbers to be displayed is also
filled with random numbers 6 and sent to the display boards 7. Finally,
the sketch includes a delay before displaying more random numbers.

You can display all sorts of numerical data with these boards. You might
also add your own characters by adding more elements to the digit arrays.
For example, a degree symbol for temperature would be as follows:

B01100011 // Binary representation of °

For a challenge, pair up four display boards with an Arduino and a
real-time clock module to make a large, bright clock. You might add a ther-
mometer as well. I hope you enjoy using these display boards as much as I
enjoyed designing them.

Moving On
In this chapter, you learned how to control currents and voltages using
the TPIC6B595 shift register, a more capable alternative to the popular
74HC595. You can now control items that draw more current than an
Arduino’s digital I/O pin can safely handle. You also learned how to use
bright Piranha-style LEDs for excellent indicators.

In the next chapter, you’ll use MP3 player modules to create digital
music players and sound boards for various purposes.

335-118553_samp.indd 22335-118553_samp.indd 22 08/05/23 6:11 PM08/05/23 6:11 PM

Arduino for Arduinians (Sample Chapter) © 05/08/23 by John Boxall

