

� � � � � � � � � 	

a blinking pattern on three LEDs. Your mission, should you choose

to accept it, is to build and program a stoplight for a busy hallway in

your house (see Figure 2-1).

MATERIALS TO GATHER
The materials in this project are all pretty simple. All of the electronic

parts are standard in the SparkFun Inventor’s Kit, except for the ones

marked with an asterisk (*). If you’re using your own kit or piecing

together parts yourself, see the following parts list. Figure 2-2 shows

all of the parts used in this project.

Electronic Parts

One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021),

or any other Arduino-compatible board

One USB Mini-B cable (CAB-11301 or your board’s USB cable;

not shown)

One solderless breadboard (PRT-12002)

One red LED, one yellow LED, and one green LED (COM-12062)

Three 330 Ω resistors (COM-08377, or COM-11507 for a pack of 20)

Male-to-male jumper wires (PRT-11026)

Male-to-female jumper wires (PRT-09140*)

(Optional) One 4 AA battery holder (PRT-09835*; not shown)

FIGURE 2-1:

The completed

Stoplight project

�
 � � � � � � � 	

Other Materials and Tools

If you want to build an enclosure like the one in Figure 2-1 or follow

the suggestions in “Going Further” on page 64, you’ll also need the

following supplies, shown in Figures 2-3 and 2-4:

Pencil

Craft knife

Metal ruler

Pliers

Wire stripper

Glue (hot glue gun or craft glue)

(Optional) Drill and a 3/16-inch drill bit

(Optional) Soldering iron

(Optional) Solder

(Optional) Helping hands (not shown)

Cardboard (about 12 inches square) or a cardboard box

Two ping-pong balls

Enclosure template (see Figure 2-15 on page 55)

FIGURE 2-2:

Components for the

Stoplight

NOTE

Good, clean cardboard will

be worth its weight in gold

in these projects. We sug-

gest picking up cardboard

sheets from a craft or art

supply store.

� � � � � � � � � 	

NEW COMPONENT: THE RESISTOR
Although you used an LED on its own in Project 1, in most cases

it’s best to use a resistor to protect the LED from too much cur-

rent. Resistors like the ones in Figure 2-5 are everywhere. They are

indispensable when you’re building circuits, and you’ll need them to

complete this project, too.

FIGURE 2-3:

Recommended tools

FIGURE 2-4:

Recommended building

materials

� � � � � � � � 	

If you think of electricity like the flow of water through a pipe, a

resistor is analogous to a point where the pipe size narrows, reducing

the water flow. (If you’re curious, see “Visualizing Electricity as Water

in a Pipe” on page 4, which describes this metaphor in detail.)

Resistors control or limit the flow of current.

Resistance is measured in ohms (typically shortened to Ω, the

Greek symbol omega), and the colored bands on resistors represent

their resistance. You’ll find a resistor color band decoder in “Resistors

and Bands” on page 308; however, in this book, you only need to

be able to identify two different values of resistors: 330 Ω and 10 kΩ.

The bands on a 330 Ω resistor are orange, orange, and brown

(see Figure 2-5), while on a 10 kΩ resistor they’re brown, black,

and orange. There is also a fourth band on a resistor, and its color

indicates the resistor’s tolerance. A resistor’s value will be accurate

within a certain tolerance: silver means the resistor has a 5 percent

tolerance, while gold indicates a 10 percent tolerance. The projects

in this book aren’t sensitive enough for the tolerance level to make a

difference, though, so we’ll just refer to the resistors by their assumed

value, which will work for either tolerance band.

Some components, like LEDs, can be damaged if the current

flowing to them is too high, and resistors can protect those compo-

nents by reducing the current. Having a resistor in line with an LED

to limit the current to a safe level is a good precaution so your LED

doesn’t burn out—or, in the worst case, pop! (Yes, they can literally

pop.) From here on, we’ll use current-limiting resistors in all projects.

FIGURE 2-5:

Resistors up close and

personal

BUILD THE STOPLIGHT PROTOTYPE
Now it’s time to build the circuit. First, take a look at the schematic

shown in Figure 2-6. You’ll build this on a breadboard, as shown in

Figure 2-7.

� 	 � � � � � � � 	

WHY THE STOPLIGHT USES 330 Ω RESISTORS

An average red LED has a maximum current rating of about 20 mA,

as listed on its datasheet. In order to protect it, you need to add a

resistor to keep the current below this limit. But how do you know

to use a 330 Ω resistor?

The output pins on the Arduino provide 5 V when they are

turned on. Depending on the color, each LED needs a slightly

different amount of voltage to turn on, typically in the range of

2.0 to 3.5 V. A red LED turns on at about 2 V, and that leaves 3 V

remaining. The 3 V will be dissipated across a resistor or anything

else that is in line in the circuit. It’s generally good practice to limit

the current going through an LED to about half the maximum, so

for the red LED with a maximum current rating of 20 mA, you get

10 mA. You can calculate the resistor needed for 3 V and 10 mA

with Ohm’s law (remember 10 mA = 0.01 A):

V = I × R

R =
V

I
=

3 V

0.01 A
= 300 Ω

But 300 Ω isn’t a standard resistor value. The closest standard

resistor value is 330 Ω, and usually the nearest standard resistor is

good enough. This should ensure that the LED lasts for a very, very

long time. Since the resistor will be dictating the current, this is a

current-limiting resistor.

If you have different resistors available, you could use a different

value resistor and see what happens. Bigger resistors will make the

current smaller, and smaller resistors will make the current bigger.

What happens if you use the 10 kΩ resistor instead?

� � � � � � � � � 	

gnd gnd gnd

arduino

pin 13

330 Ω

yellow

led

green

led

330 Ω 330 Ω

red

led

arduino

pin 12

arduino

pin 11

The schematic illustrates how each component is connected

electrically. Pin 13, pin 12, and pin 11 on the Arduino will each be

used to control an individual LED on the Stoplight circuit. As you can

see in the schematic, each LED is connected to an individual resistor,

and each resistor is connected to GND (ground). Next, let’s look at

the wiring.

FIGURE 2-6:

Schematic diagram for the

Stoplight project

FIGURE 2-7:

Connecting a red LED to a

breadboard with a current-

limiting resistor

� � � � � � � � � 	

Connect the Red LED to the Breadboard

Now you’ll start to translate the schematic into an actual circuit. In

the first project, you blinked an LED built into the Arduino board. This

LED was internally wired to pin 13 on the Arduino. Because you’ll be

using three discrete LEDs, you need to wire these up yourself. Take

out your breadboard, and, following the schematic in Figure 2-6 or

the illustrated diagram in Figure 2-7, connect pin 13 to the positive

(long) leg of the LED.

To wire this on the breadboard, we suggest that you first posi-

tion your Arduino and breadboard as shown in Figure 2-7. (This will be

the standard layout throughout the book.) Then, find a red LED and a

330 Ω resistor. Bend the resistor legs as shown in Figure 2-8 so that

the resistor is easier to insert into the breadboard. We suggest using

wire cutters to trim both resistor legs by about half their length to make

the resistor easier to work with. Resistors aren’t polarized like LEDs, so

you don’t have to keep track of which leg is positive or negative.

Figure 2-9 shows a diagram of a typical breadboard. Most

breadboards have labeled columns and numbered rows as ref-

erences. Using these reference points, insert the LED into your

breadboard as shown in Figure 2-7. The long, positive leg (anode)

should be in column E, row 1 (E1) on the breadboard, and the short,

negative leg (cathode) should be in column E, row 2 (E2). Now, find

a 330 Ω (orange-orange-brown) resistor. Insert one leg of the resistor

into any hole in row 2 of the breadboard to connect the resistor to the

short leg of the LED. In our diagram, we insert this leg of the resistor

into A2 on the breadboard. On all standard breadboards, for each

row, columns A–E are connected, and columns F–J are connected.

Now, insert the other leg of the resistor into the breadboard’s nega-

tive power rail, which is the column marked with a blue or black line

and a – (minus) symbol.

NOTE

For a refresher on how

breadboards work, see

“Prototyping Circuits” on

page 6.

FIGURE 2-8:

Bending a resistor

� � � � � � � � � 	

Add Power to the Breadboard

Grab two male-to-male jumper wires. We suggest using black for

ground (GND) and red for power, and that’s the convention we’ll fol-

low throughout this book.

Connect the black wire from the GND pin on the Arduino to the

negative power rail on the breadboard. There are three pins labeled

GND on the Arduino. You can use any of these. The power for each

LED will actually come from the digital pins. Since pin 13 will power

the red LED, connect a wire from pin 13 on the Arduino to A1 on the

breadboard.

Plug your Arduino board into your computer using a USB cable,

and the “Hello, world!” sketch from Project 1 should run, causing

your LED to blink. In fact, both the LED on the breadboard and the

LED on the Arduino should be blinking, because they’re both wired

into pin 13.

FIGURE 2-9:

A breadboard has

numbered rows and

columns labeled with

letters.

� � � � � � � � � 	

If the breadboard LED doesn’t blink but the Arduino one does,

double-check your wiring and the orientation of the LED. Make sure

that the shorter leg is in the second row of the breadboard, con-

nected to the resistor, and that the resistor is connected to GND

through the negative power rail. After you get the red LED blinking,

dis connect the Arduino from the computer so that you can safely

build the rest of the circuit. It’s best practice to disconnect the

board while building your circuit.

Add the Yellow and Green LEDs

Now, connect the yellow LED to pin 12 on the Arduino and the green

LED to pin 11; you can follow the same basic instructions you fol-

lowed for the red LED, but use different pairs of rows for each new

LED, as in the final wiring diagram in Figure 2-10.

Each LED should have its own resistor wired to the ground rail,

just like the schematic from Figure 2-6. Notice, too, that we gave

each LED a little space on the breadboard so that we could have

room to plug in wires without messing up other parts of the circuit.

Although we suggested a specific way to plug in this circuit, remem-

ber that you can use any part of the breadboard—so long as the

two wires you’re trying to connect are in the same row. Once you’re

done, your circuit should resemble Figure 2-11.

FIGURE 2-10:

The final Stoplight

circuit, using pins 11,

12, and 13

� � � � � � � � � 	

To mimic a real stoplight, this project needs a way to turn on

each light for a certain amount of time and then switch to the next

one. Fortunately, an Arduino sketch can use all kinds of instructions,

including timing commands, to control a circuit.

PROGRAM THE STOPLIGHT
Now, plug your Arduino back into your computer. It’s time to get

programming! Open the Arduino IDE to start a new sketch.

Confirm Your IDE Settings

When writing any sketch, you should always start with a little house-

keeping. First, check that the Board type and Port are properly set.

Click Tools Board now. If you’re using the SparkFun RedBoard or

a standard Arduino Uno, select Arduino/Genuino Uno. Then, click

Tools Port. In Windows, your Arduino should be set to the high-

est numbered COM port. On OS X or Linux, the port should be listed

as /dev/cu.usbserial-A<xxxx>, where <xxxx> is a string of random

characters unique to your Arduino.

Create Placeholders for Pin Numbers

With your IDE settings confirmed, you’re ready to create the sketch.

As discussed in “Anatomy of an Arduino Sketch” on page 27, a

basic Arduino sketch consists of two parts: the setup() function

and the loop() function. That simplified description is true for most

simple sketches, but more complex sketches have many different

parts. One new part that the Stoplight sketch uses is the global

FIGURE 2-11:

The completed Stoplight

circuit, including the

Arduino, LEDs, and

resistors

� � � � � � � � � 	

namespace, which is the part of your sketch above the setup()

function and completely outside of any function. In this space, you

can define certain names (variables) as placeholders for values, and

these values will then be available for all parts of your sketch to use.

Arduino sketches can work with several types of values.

Data That Sketches Understand

The Arduino language includes a number of possible data types

for values, and there are a few you’ll run into often when writing

sketches. The following list isn’t exhaustive, but it touches on the

big ones and shows how their names appear in code:

Integer (int) A whole number that ranges from –32,768 to 32,767

Float (float) A number that has a decimal point and ranges from

–3.4028235E+38 to 3.4028235E+38

Byte (byte) A number that ranges from 0 to 255

Character (char) A single letter, denoted by a set of single quotes,

such as 'a'

String (String) A series of characters, denoted by a set of double

quotes, such as "hello"

Boolean (Boolean) A value of either true or false, which maps to 1

or 0 in the sketch and HIGH or LOW in terms of pin output

Arduino sketches require you to specify the data type of a vari-

able when you define it. Let’s look at how that works.

Values That Can Change

Most values you’ll create to use in your sketches will be variables.

Think of a variable as a placeholder for a piece of data. That data can

be a number, a letter, or even a whole sentence.

Before you can use a variable, you have to define it, which

includes giving it a name, declaring its data type, and initializing it

with a value. It’s a good habit to give a variable a value at the moment

you define it, which looks something like this:

int val = 10;

This variable definition has three parts: the data type , the name

of the variable , and the variable’s value . At the end of this line,

notice that there is a semicolon—this denotes the end of a statement

or instruction. The semicolon is very important, and forgetting it is

often the root cause of many compiler errors or bugs in code, so be

careful to remember it!

�
 � � � � � � � 	

When choosing a variable name, you can use any unbroken set

of characters, including letters and numbers. There is one caveat

here: variables cannot start with a number or consist of any special

characters. We suggest making variable names as descriptive as

possible, while keeping them short. It’s a chance for you to be a little

creative with abbreviating words and descriptions. In this example,

we chose to name the variable val (short for value), and 10 is the

variable’s initialized value, or the value assigned to a variable to start

with. You don’t need to initialize a variable when you define it, but

doing both at the same time is helpful and a good practice.

For this project, you’ll create three variables to store pin numbers

for the three LEDs the Arduino will control. It’s a lot easier to work

with a variable that describes an LED color than it is to try to remem-

ber which LED is connected to which pin!

Start a new sketch, and add the code in Listing 2-1 to the global

namespace of your sketch.

byte redPin = 13;
byte ylwPin = 12;
byte grnPin = 11;

Again, these three variables store the pin numbers for the three

LEDs. On the Arduino, pin numbers are limited to whole numbers

between 0 and 13, so we use the byte data type. We can use byte

because we know that the pin number will be less than 255. Notice

that each variable’s name describes what it contains: redPin is for

the red LED pin, ylwPin is the yellow LED pin, and grnPin is the

green LED pin. And, just as Figure 2-10 shows, the red pin is pin 13,

yellow is pin 12, and green is pin 11. Now, anytime you use a pin

number in your sketch, you can use the descriptive variable name

instead.

Write the setup() Function

To continue writing the Stoplight sketch, add the setup() function in

Listing 2-2.

void setup()
{
 //red LED
 pinMode(redPin , OUTPUT);
 //yellow LED
 pinMode(ylwPin, OUTPUT);

LISTING 2-1:

Variables that represent pin

numbers

NOTE

For legibility, we camel-

cased the variable names

by capitalizing the p in pin.

Camel-casing is a coding

convention that allows you

to separate words in a vari-

able without using spaces.

LISTING 2-2:

setup() code for the

Stoplight

� � � � � � � � � 	

 //green LED
 pinMode(grnPin, OUTPUT);
}

Just like the “Hello, world!” sketch in Project 1 (see “The setup()

Function” on page 30), this sketch configures the digital pins of the

Arduino in setup() with the pinMode() function.

This project uses three different digital pins, so the sketch has

three separate pinMode() functions. Each function call includes a pin

number as its variable (redPin, ylwPin, and grnPin) and the con-

stant OUTPUT . It uses OUTPUT because this sketch controls LEDs,

which are output devices. We’ll introduce INPUT devices in Project 4.

Write the loop() Function

Next comes the loop() function. Normal stoplights cycle from red to

green to yellow and then back to red, so this project does, too. Copy

the code from Listing 2-3 into the loop() portion of your sketch.

void loop()
{
 //red on
 digitalWrite(redPin, HIGH);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, LOW);
 delay(2000);

 //green on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, HIGH);
 delay(1500);

 //yellow on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, HIGH);
 digitalWrite(grnPin, LOW);
 delay(500);
}

The Stoplight will have only one light on at a time, to avoid con-

fusing your hallway traffic and causing chaos. To maintain order, each

time an LED is turned on, the other LEDs should be turned off. For

example, if you wanted the red light to be on, you’d call the function

digitalWrite(redPin, HIGH), followed by digitalWrite(ylwPin,

LOW) and digitalWrite(grnPin, LOW). The first call writes HIGH to

LISTING 2-3:

loop() code for the

Stoplight

� � � � � � � � 	

turn on the red LED on redPin (pin 13), and the other two calls write

LOW to ylwPin and grnPin (pins 12 and 11) to turn off the yellow

and green LEDs. Because the Arduino runs at 16 MHz (roughly one

instruction per 16 millionth of a second), the time between these

commands is on the order of a few microseconds. These three com-

mands run so fast that you can assume they all happen at the same

time. Finally, notice the function delay(2000). This function pauses

the sketch and keeps the red light on for 2,000 ms, or 2 seconds,

before executing the next set of instructions.

The code for the yellow and green LEDs repeats the same

concept, setting the corresponding pin to HIGH and the others to

LOW and delaying for different lengths of time. For your own Stoplight,

try changing the delay times to something a little more realistic for

your hallway’s traffic. Remember that the value you pass to the

delay() function is the amount of time you want the LED to stay

on in milliseconds.

Upload the Sketch

After you’ve typed in all of the code, double-check that it looks like

the code in Listing 2-4, save your sketch, and upload it to your

Arduino by clicking Sketch Upload or pressing CTRL-U. If the IDE

gives you any errors, double-check your code to make sure that it

matches the example code exactly. Your instructions should have

the same spelling, capitalization, and punctuation, and don’t forget the

semicolon at the end of each instruction.

When everything works, your LEDs should turn on and off in

a cycle that is similar to a real stoplight—starting with a red light,

followed by a green light, and then a short yellow light before return-

ing to the top of the loop() function and going back to red. Your

sketch should continue to run this way indefinitely while the Arduino

is powered.

byte redPin = 13;
byte ylwPin = 12;
byte grnPin = 11;

void setup()
{
 pinMode(redPin, OUTPUT);
 pinMode(ylwPin, OUTPUT);
 pinMode(grnPin, OUTPUT);
}

LISTING 2-4:

Complete code for the

Stoplight

� 	 � � � � � � � 	

void loop()
{
 //red on
 digitalWrite(redPin, HIGH);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, LOW);
 delay(2000);

 //green on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, HIGH);
 delay(1500);

 //yellow on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, HIGH);
 digitalWrite(grnPin, LOW);
 delay(500);
}

Make the Stoplight Portable

When your Arduino is connected to your computer, it’s receiving

power through the USB port. But what if you want to move your

project or show it around? You’ll need to add a portable power

source—namely, a battery pack. The Arduino board has a barrel

jack power port for plugging battery packs into, as well as an on-

board voltage regulator that will accept any voltages from about 6 V

to 18 V. There are many different battery adapters available, but we

like using a 4 AA battery adapter for a lot of our projects, as shown in

Figure 2-12.

FIGURE 2-12:

A 4 AA battery pack

with a barrel jack

adapter

� � � � � � � � � 	

Unplug the USB cable from your computer, insert four AA batter-

ies into your battery pack, and plug your portable battery pack into

your Arduino, as shown in Figure 2-13. If your batteries are charged,

you can move your project around or embed it directly into a model

stoplight!

Now you’ll level up this project. In the next section, we’ll show

you how to turn these LEDs into a model stoplight that you can

mount in high-traffic areas of your house.

BUILD THE STOPLIGHT ENCLOSURE
Once your Arduino isn’t tethered to a computer, you can build any

electronics project into a more permanent enclosure. The circuit on

your breadboard is great, but you probably have to use your imagina-

tion to picture it as a stoplight. For maximum effect, the Stoplight just

needs a good housing and lenses that will make the lights visible from

a distance. The enclosure is optional if all you want to do is proto-

type, but we hope you’ll try it out.

For this project, we’ll show you how to build a more realistic-

looking stoplight with some cardboard or cardstock, but you can use

any material that you happen to have lying around. Be creative! Our

example, shown in Figure 2-14, is made from some cardboard, ping-

pong balls, and a bit of crafting skill.

FIGURE 2-13:

Making the Stoplight

portable by adding a

battery pack

� � � � � � � � � 	

You can either build a stoplight on your own using this project

only as an inspiration or, if you want to reproduce this project exactly

as you see it here, download the ZIP file of templates and sketches

at https://www.nostarch.com/arduinoinventor/. Each project in this

book includes templates that you can print, trace, and hand-cut the

old-fashioned way with a craft knife and a metal ruler.

Extract the Project 2 files from the ZIP file, and print the Stoplight

template PDF at full size if you’d like a cutting guide. With your tem-

plates in hand, collect the other items listed in “Other Materials and

Tools” on page 39 and start building.

Cardboard Construction

First, cut out the templates, shown in Figure 2-15. In our template,

the housing body is a single piece of cardboard that is meant to be

cut out, scored, and folded.

Trace the template onto your cardboard, and make careful note

of the dashed lines, perhaps by drawing them on your cardboard in a

different color. You’ll score the cardboard along those lines to bend it,

so whatever you do, don’t cut along them yet.

FIGURE 2-14:

An enclosure made

from cardboard and

ping-pong balls

NOTE

If you’re lucky enough to

have access to a cutting

machine like a Cricut,

a Silhouette Cameo,

or a laser cutter, these files

should easily translate to

those tools, too.

� � � � � � � � � 	

u u

v

v
w w

wwshades

l eds

Once you have everything traced, cut out the stoplight pieces

along the solid lines using a craft knife and a metal ruler, as shown

in Figure 2-16. If you’ve never used a craft knife before, be sure to

read “Using Craft Knives Safely” on page 56. Score the cardboard

for the housing along each dotted line, on the exterior side of the

cardboard. When scoring cardboard, you take a couple of shallow

passes with the craft knife (don’t cut all the way through). Don’t score

the shades yet.

FIGURE 2-15:

Enclosure template for the

Stoplight (not full size)

FIGURE 2-16:

Scoring along the template

with a craft knife and metal

ruler

� � � � � � � � � 	

USING CRAFT KNIVES SAFELY

You’ll use craft knives a lot in this book, so it’s important to know

how to safely use them. Just like any tool, when used incorrectly,

craft knives like the one here can cause injury.

Here are a few tips for using craft knives safely:

Always pull the blade when slicing through sheet materials.

Pushing or forcing the blade in any other direction raises the

potential for slipping or breaking the blade.

Be patient. Don’t try to cut through the entire thickness of the

material in a single pass. Make multiple passes with medium

pressure. This will save your blade and also produce a cleaner

finished product in the end.

Use a straightedge made of metal, such as a metal ruler. If you

use a wooden or plastic ruler as a straightedge, you run a higher

chance of your blade catching the straightedge, rebounding off

the material, and ultimately moving toward your hand.

Keep your fingers out of the way. This may seem obvious, but

accidents happen.

If your knife starts to roll off your desk, let it fall, and just pick it

up off the floor. If you reach for it and catch it before it falls, you

run the risk of stabbing yourself in the hand. Ouch!

Finally, use sharp, new, and intact blades. If a blade breaks,

replace it. If a blade is dull, replace it. Cutting through paper and

cardboard dulls blades very quickly. Keep a supply of extra blades

around, and if it’s starting to get hard to cut, replace the blade.

� � � � � � � � � 	

Once you have cut out your cardboard enclosure, add the

mounting holes for the three LEDs; these should be at the little

solid-lined circles inside the big dashed circles. One easy option

is to carefully press a sharp pencil through the cardboard to make

the holes. For cleaner holes, however, we suggest using a 3/16-

inch drill bit and power drill to make holes in the cardboard, as in

Figure 2-17. The LEDs are about 5 mm (about 0.197 inches) in

diameter. You want the hole to be a nice, tight fit. So, a 3/16-inch

hole (0.1875 inches) is perfect for making the fit snug for the LED.

Be careful when completing this step, and make sure to watch

where your fingers and hands are relative to the drill bit. You don’t

want to drill into yourself! You can also use the drill bit without the drill

and manually spin it through the cardboard if you don’t have a drill or

aren’t comfortable using one.

Once you have the holes drilled, remove the three LEDs from

your breadboard and insert them through the back side of the card-

board, as shown in Figure 2-18. Remember that standard traffic

lights are usually ordered red, yellow, and green from the top to the

bottom. Pay attention to where the LEDs connect on the board,

because we’re going to reconnect them at the end.

FIGURE 2-17:

Drilling holes for the LEDs

� � � � � � � � � 	

Next, bend the cardboard along the scored lines, as shown in

Figure 2-19. Bend the vertical sides toward the interior, and then

do the same with the top and bottom sides and the tabs . (The

sides and tabs are labeled in Figure 2-15.)

Position the tabs inside the vertical sides , and glue them

in place as shown in Figure 2-20. You can use hot glue, tape, or

craft glue—we prefer hot glue because it’s easy to work with, sets

quickly, and has a pretty strong bond.

Repeat this for the top and bottom corners. You should end up

with a shallow rectangular box with an open back.

FIGURE 2-18:

All three LEDs pressed

into the cardboard

FIGURE 2-19:

Prefolding the scored

cardboard to form

an enclosure for the

Stoplight

�
 � � � � � � � 	

Make the Stoplight Lenses

The Stoplight’s lenses are made from ping-pong balls cut in half, but

you can use anything that’s moderately translucent.

If you’re using ping-pong balls or something similar, carefully

cut two balls in half. When doing this, place the ball against a cut-

ting mat or thick piece of cardboard and hold it firmly at the sides

with your fingertips. Carefully push the knife blade down toward

the mat and into the ping-pong ball (making sure the blade isn’t

pointing at you or your hand) to make an incision as shown in

Figure 2-21. Rotate the ping-pong ball and repeat until you’ve cut

all the way through. Make sure to keep your fingers away from the

blade, and always cut on a cutting mat or a piece of cardboard.

FIGURE 2-20:

Folding and gluing the

cardboard housing

FIGURE 2-21:

Safely cutting a

ping-pong ball

� � � � � � � � � 	

Once you have three ping-pong ball halves (you’ll have four;

one’s an extra to use in future projects or as a small hat for your

favorite stuffed animal), secure them with a dab of hot glue as

shown in Figure 2-22.

Make the Shades

Finally, add the shades to the Stoplight. For a nice curve, make

a number of parallel scores, about 1/8 inch apart, as shown in

Figure 2-23. There are example score lines in the template, so you

can follow those. After making all of your scores, bend each shade

into a curve, as shown in Figure 2-24.

FIGURE 2-22:

The enclosure with

ping-pong balls as

lenses

FIGURE 2-23:

Scoring a shade

� � � � � � � � 	

Once you have the shades bent and shaped to your liking, fit

them into the housing just above each lens, as shown in Figure 2-25,

and then glue them in place. If you’re going for a more finished or

realistic look, you can spray paint the housing black. Make sure you

either remove the lenses or cover them with masking tape first so

that they don’t get coated in spray paint.

Mount the LEDs and Arduino

All you have left to do is to connect the LEDs from the new enclo-

sure to your Arduino. First, use two male-to-female jumper wires

(SparkFun PRT-09385) to extend each of the LEDs. You’ll need a

total of six of these jumper wires. Simply plug each LED leg into the

FIGURE 2-24:

Bending the shade into a

curve

FIGURE 2-25:

Fitting a shade into the

housing

� 	 � � � � � � � 	

female end of the jumper wire. To keep things organized, we like to

use black wires for the negative (shorter) leg and colored wires for the

positive (longer) leg, as shown in Figure 2-26.

With the jumper wires connected to the LEDs, plug the male end

into the breadboard in the same place where the LED came out, as

shown in Figure 2-27. Again, pay attention to which LED goes where.

If you don’t remember, consult the original diagram in Figure 2-10.

FIGURE 2-26:

Attaching jumper wires

to the LEDs

FIGURE 2-27:

Inserting the male end

of each jumper wire into

the breadboard

� � � � � � � � � 	

Check to make sure your connections work by plugging in the

Arduino to your computer or to a battery pack. If one of the lights

isn’t working, try jiggling the connections or double-checking that the

wires are plugged into the correct row on the breadboard.

You can either leave the Arduino and breadboard outside the

Stoplight housing or tack them inside the housing with glue or double-

sided tape. Whatever you decide, when you’re done, power up your

Stoplight, and go find a busy hallway intersection in need of traffic

safety.

Figure 2-28 shows the finished Stoplight in all its glory.

FIGURE 2-28:

Finished Stoplight project

� � � � � � � � � 	

GOING FURTHER
The concepts you saw while building the Stoplight, such as timing

the control of output (LEDs), can be applied to a number of differ-

ent uses in your house and life. Here are a couple of suggestions for

adapting the Stoplight.

Hack

The basic concept of a stoplight is all about timing. When else would

a timer be useful? What about changing the code to help you time

frying an egg? You could rework the Stoplight so that the red LED is

lit while the egg is still in a state of “iffy” or “rare” doneness, the yellow

LED lights when it’s almost cooked the way you like it, and then the

green LED lights when the egg is done.

We can’t give you the timing, as we probably have different

preferences for how we like our eggs cooked. There are also a

number of variables that will affect the timing, like the temperature,

the type of pan, and the size of the egg. You’ll have to figure that all

out on your own.

In the code, you’d need to work with pretty big numbers for the

delay, since it’s measured in milliseconds. To set a delay in minutes,

all you need is a little multiplication. Remember that 1,000 ms equals

1 second; multiply by 60, and you’ll find that 60,000 ms equals

60 seconds, or 1 minute. For a delay of 3 minutes, you can multiply

3 by 60,000 directly in the delay() function, like this:

delay(60,000 * 3);

You may be wondering how long you can set the delay() func-

tion for. The data type that delay() receives is an unsigned long,

which is any number that falls in the range of 0 to 4,294,967,295. So

the maximum delay is 1,193 hours or so. Pretty cool! Knowing this, is

there anything else you’d want to time with the delay() function?

� � � � � � � � � 	

Modify

If you’re looking to make this project more permanent and sturdy,

you can solder wires to the LEDs instead of using the male-to-female

jumpers. If you’ve never soldered before, turn to “How to Solder” on

page 302 for some soldering instructions before you start. You’ll

need to snip the end off of a male-to-male jumper wire, strip the insu-

lation back about 1/2 inch using wire strippers, and then solder the

stripped end to each leg of a trimmed LED, as shown in Figure 2-29.

Notice that we twisted the wire around the leg of the LED to hold it

securely while soldering. After soldering, the connection will be more

durable, and you’ll be able to use the LEDs for other projects since

the other end is still a male jumper.

Though this project looks impressive, the programming and hard-

ware are pretty simple. As you read about sensors and logic over the

next few chapters, we encourage you to think back to this project and

brainstorm ways you can elaborate on it with what you learn.

FIGURE 2-29:

Soldering a cut jumper wire

to an LED

