MACHINE LEARNING FEATURES

We’ve explored the two kinds of analysis
required to understand an Android app:
static and dynamic. We’ve also seen how a

human security analyst can go back and forth
between static and dynamic analysis to pinpoint the

locations at which dangerous behavior occurs.

However, machine learning algorithms can’t perform the “back and
forth” behavior of a human analyst. Because they can’t choose to explore
one part of the code more than another part, they must associate a feature
vector with each app, regardless of whether it is malicious or benign, and
then use a previously trained model to make a prediction about it. This
means they must determine in advance what to include in the feature
vector.

In this chapter, we first describe how to turn static and dynamic sources
of information into input for machine learning algorithms, enabling us to
scale our malware detection efforts to millions of APKs. Then we explore
four novel types of features that are harder for attackers to evade or reverse
engineer, yet robust enough to detect malware with high accuracy. These de-
tection techniques take into account the fact that malware developers often
understand the static and dynamic analysis methods used by security experts
and can apply this knowledge to evade detection.

182

Static Features

Chapter 6

The first class of features we can associate with Android apps is based on a
static analysis of the code. Unlike with data gleaned through human-based
static analysis, software can easily extract their values. These features are im-
mutable, in the sense that once we train a predictive model with a given set
of features, we must stick with them when using the predictive model (how-
ever, new features can be added and old features removed when retraining).
There are several files and folders inside an APK whose properties
and content we can turn into machine learning features. One source of fea-
tures is the AndroidManifest.xml file that every APK contains in its root direc-
tory. As discussed in Chapter 3, the manifest file defines the structure and
metadata of the Android application, including the package name and app
version. It might also include XML nodes that describe the app’s basic be-
havior, as well as the permissions requested by the application. Listing 6-1
shows a snippet from the manifest file of a malware app, Fakebank com.a
(v152, 0add), that references XML nodes.

<receiver android:label="@string/app2"
android:name="com.p004a.p005a.DeAdminReciver"
android:permission="android.permission.BIND DEVICE_ADMIN"
android:description="@string/app2">

<meta-data android:name="android.app.device admin"
android:resource="@xml/an"/>

Listing 6-1: XML nodes in the Android manifest associated with the Fakebank app

We might also find features in the Java source code folder. In Java apps,
this folder is part of the original code and is not present in the compiled
APK file. Other folders of interest are Res, lib, and assets. The Res folder con-
tains all non-code resources used by the application, such as XML layouts
and images. The /ib folder is tricky, as its purpose changes after compila-
tion: in Android source code, it’s often used to store common files, utility
classes, and imported dependencies associated with applications, while in
compiled APK files it stores native code files used by the application. The
assets folder might include a wide range of files, such as text, XML, fonts,
music, and video. Another source of features is the build.gradle file, which
includes build-related configurations. It is present only during development
and not included in the final APK.

We can define two versions of many features. A binary version of a fea-
ture is set to 0 or 1 depending upon whether the feature does or doesn’t
occur. For instance, we might associate a feature with an API function call.
If an app makes at least one call to that API in its code, we’d set the binary
version of the feature to 1; otherwise, we’d set it to 0. A statistical version of
the same feature, on the other hand, might reflect the number of calls the
app makes to the API. Alternatively, it might record the number of times
the API function is invoked with certain inputs and return a statistical quan-
tity, such as the mean, median, or standard deviation of the results. The

following features commonly appear in the literature on machine learning-
based malware detection:

Permissions
We can design a number of features related to the permissions that an
application requests. We might, for example, create a binary feature for
each permission. We could also define statistical features correspond-
ing to the number of normal, signature, and dangerous permissions re-
quested. According to the official Android developer site, dangerous
permissions are those that either involve the private data of users or
could possibly affect such private user data. For instance, we’ve already
seen that the com.bp.statis.bloodsugar malware discussed in Chapter 3 re-
quests the READ_CONTACTS permission even though there is little reason
to believe that a blood sugar monitoring app needs access to a user’s
contacts.

Activities
As discussed in Chapter 3, activities implement the visual interface of an
Android app and are declared in the manifest file. We could create a set
of binary features to indicate whether each activity is used or not. The
total number of activities is also a potential feature.

Services
Apps use services to implement long-running background operations
that facilitate interactions with the system. As in the case of activities,
we can define binary features indicating whether each service is used or
not. Moreover, we can define simple counts and statistical features. For
instance, in the case of the com.bp.statis.bloodsugar. PE service discussed
in Chapter 3, we might set this value to 1, as there is little reason for a
blood sugar app to listen to incoming notifications from all of the apps
in the system.

Content providers
A content provider encapsulates data and gives it to other applications.
For each content provider, we might have a feature set to 0 if it doesn’t
exist and 1 if it does exist in the app. We can also create a feature for the
number of content providers the app uses.

Broadcast receivers
The broadcast receiver component of an application enables it to re-
ceive broadcast messages from the system or other applications. As in
the preceding cases, we can create binary features, counts, and statistical
features for these receivers. However, while it is easy to find broadcast
receivers declared in the manifest file, it is not always easy to find those
declared at runtime, especially as they may be part of encrypted or ob-
fuscated code. Moreover, some apps might want to register a RECEIVE_SMS
receiver, which enables them to intercept incoming SMS traffic (for ex-
ample, one-time passwords or alerts of suspicious activity).

Machine Learning Features 183

184

Intent filters
Activities, services, and broadcast receivers can use intent filters to spec-
ify the kinds of operations to which they will respond. In the case of
broadcast receivers, intents specify the types of broadcasts that they can
handle. As in the preceding cases, we can define and extract binary fea-
tures and statistical features for intents.

API calls
The Android platform provides a set of API packages that developers
can use to build applications. We can create binary features for each API
package (based on whether it is called or not) as well as for each class
within those packages (based on whether the class is called or not). In
addition, numeric features for an API package might track the num-
ber of times the app calls a class within a package or a function within
a class. We'll provide a detailed introduction to API features later in this
chapter, as we can use them to generate more advanced features.

Network elements
An Android application’s source code may contain numerous network
elements, such as IP addresses, URLSs, and hostnames. We can collect
these elements to generate binary features and statistical features (for
example, the number of hostnames listed in the file). We may also want
to use the number of external URLs referenced in the code as a feature.

The malware author might try to make static analysis difficult through
a variety of instruments. These could include using unintelligible names for
variables, encrypting parts of the code, and using other obfuscation meth-
ods such as reflection (see Chapter 3). We can also define static features to
describe whether such phenomena exist in the app code, as well as their fre-
quency of occurrence.

Dynamic Features

Chapter 6

We can turn the results of our dynamic analysis into machine learning fea-
tures, too. As covered in Chapter 4, dynamic analysis focuses on observed
runtime properties and behavior of applications. Consequently, the features
derived from it describe events that were actually observed rather than the
more speculative features derived from the static analysis of code.

To generate many of these features, we must feed some set of inputs
to the app, such as interactions that the app has with the user (an example
is the monkey command discussed in Chapter 4). We might run the app using
the first input and generate some results, then run it with the second input
and generate more results, continuing the process until we’ve exhausted all
inputs in the set. We can also extract features by analyzing the network traf-
fic generated when the app is run through programs such as tcpdump and
Wireshark.

The following dynamic features for the Android platform have been
widely discussed in the literature:

Services
We can generate dynamic features to record each started service. These
may be binary (based on whether the app starts that service or not) or
numeric (for example, the average number of calls to the service across
the set of inputs). The total number of services started can also be a fea-
ture. Additionally, we could associate a sequence of services with a fea-
ture by recording whether the app ever invokes that sequence (a binary
feature) or how many times an app invokes it on average across the set
of inputs (a numeric feature).

The DexClassLoader
This is a standard Android API used to load classes from .jar and .apk
files that contain a classes.dex file. Malicious apps frequently use this
API to evade static analysis because it lets them execute code that didn’t
come from the application’s source code (one example is the Xenomorph
malware family discussed in Chapter 4). We could create a feature that
is set to 1 if the app calls DexClassLoader and to 0 otherwise. Additional
features could be defined based on the count of calls, n-gram sequences,
and other statistics.

Permissions
We can create binary features that record whether the app invokes
an API that requires some permission, even if the permission doesn’t
appear in the application code itself. Although Android apps must ex-
plicitly declare any permissions that they request within the manifest
file, they might try to circumvent this requirement by acquiring per-
missions in different ways. One strategy is to use a covert channel, such
as the communication between multiple APKs, to share information.
This behavior poses a challenge to dynamic analysts, as their lab setups
must be able to run multiple interacting apps at the same time. As in the
previous cases, we can also generate statistical features and n-gram fea-
tures based on permissions. For instance, in the Xenomorph malware,
we would record the fact that it invoked the accessibility API by setting
that value to 1.

Data leaks
An app might sometimes leak a user’s personal data, be it accidentally,
because the app is poorly coded, or intentionally, in an attempt to steal
the data. We can generate features that reflect the leaked content.

Use of cryptography
We can define a feature that tracks whether an app performs any crypto-
graphic operations. When an APK executes encryption operations (for
example, to store encrypted files), the sandbox used to run it can track
and record this. We might set a binary feature to 1 if the app generates
any encrypted files during execution and set it to 0 otherwise. We see
this behavior in the Xenomorph app; see the encryptMessage function in
Listing 4-5, which the app could invoke zero or more times during its
execution in a sandbox environment.

Machine Learning Features 185

186

Network activities
We can use a set of features to keep track of operations that open or
close network sockets by recording the destination host. We might also
create features based on the data received from the network, as well as
the source of the data and any data that the application sends to others
on the network.

Sending SMS messages
When an app sends text messages during its execution phase, we can
record the identity of the recipient and the message’s content to use as
features. We can also count the total number of messages sent during
the execution or define a binary feature that we set to 1 if the app sends
any messages at all.

Phone calls
Malicious Android apps sometimes make phone calls (for example, to
premium rate numbers). In such cases, we can define features to store
the numbers called or use a binary feature to record the fact that some
external numbers were called.

Answered intents
We can capture the intents to which the application responds during its
execution and record these as dynamic features.

Files
We might create features to record the names of any library files that the
app uses. Also, when the application reads or writes to specific files, we
can capture the filename and the content, then generate features based
on these.

Method Call Features (A Weak Tactic)

Chapter 6

To go beyond basic static and dynamic data, some researchers have turned
to API method calls as potential features. The Android platform provides a
set of API packages that developers can use to access a host of valuable func-
tionality. For example, the android.accessibilityservice package can help users
with disabilities interact with Android devices. However, malware develop-
ers can also use it, and they widely abuse it.

Each API package contains a number of classes, and each class has its
own methods that we can use to define new features for our models. To cre-
ate features using the 171 API packages in Android API 23, for example, we
might build a 171-dimensional feature vector for each Android app to cap-
ture the frequency with which that app calls the methods from each pack-
age. For instance, if some API package includes 40 methods belonging to
different classes and an app calls each of them twice, the corresponding fea-
ture value would be 40 x 2, or 80.

These API feature values can vary greatly. For instance, consider the
171 API feature values associated with a goodware sample called ESPN 6.0.4.
The largest of these feature values is 161,698, while the smallest is 0, pro-
ducing a standard deviation of 10,488.26. By contrast, another goodware

sample, com.hancom.office.editor (v1, 75d1), has 6 as its largest API feature
value and 0 as its smallest, with a standard deviation of only 0.61. You might
have the instinct to normalize feature values to account for this difference,
but normalizing isn’t necessary because good machine learning algorithms
will automatically determine which values of a given feature help create good
separators between malware and goodware.

While you’ll find these API-based features used in the literature, mal-
ware developers can evade them easily. Zhengcuan Cai and Roland Yap
studied 57 Android antivirus tools in their 2016 paper “Inferring the De-
tection Logic and Evaluating the Effectiveness of Android Anti-Virus Apps.”
They found that malicious hackers can easily uncover the detection logic
in antivirus apps that use static analysis alone, enabling them to evade de-
tection. For instance, in this case the developers could include a bunch of
dummy calls to API features in order to change their app’s 171-dimensional
feature vector. Likewise, obfuscation methods such as reflection and dy-
namic code loading can lower an app’s feature counts. The feature counts of
particularly well-hidden method calls might even drop to zero if static analy-
sis doesn’t find those calls (which would be the case if, for instance, the calls
were in an encrypted section of code). For completeness, machine learning
models should include both static and dynamic features of API calls.

By contrast, advanced features, based on techniques like triadic sus-
picion graphs, landmarks, feature clustering, and correlation graphs, are
highly effective in identifying malicious Android apps. Experiments have
shown that such features are harder for malicious hackers to evade, in part
because it is hard for them to determine exactly how these features are used
in a detection system. The remainder of this chapter introduces these ad-
vanced features.

Triadic Suspicion Graph Features

Rather than using API method calls on their own, we can generate a more
robust group of features derived from a special class of graphs called ¢ri-
adic suspicion graphs (TSGs). Essentially, a TSG aims to understand the dif-
ferences between the use of an API package by goodware on the one hand
and different types of malicious apps on the other hand. Figure 6-1 is an
illustration of a TSG that compares goodware to banking trojans. We’ll walk
through its elements in the paragraphs that follow.

A TSG is made up of vertices connected by edges. In this context, the
TSG contains three kinds of vertices: the complete set of API package calls
defined in the Android API, the sampled goodware, and the sampled mal-
ware, randomly drawn from some larger collections of goodware and mal-
ware, respectively. The TSG’s edges are defined as follows:

1. For each goodware g and each API package call g, if g calls a method
from a at least once, there is an edge from g to a.

2. For each pair of API package calls a1 and a9, if a1 calls any method
from ao, there is an edge from a; to as.

Machine Learning Features 187

188

Chapter 6

3. For each malware b and each API package call a, if b calls any method
from a at least once, there is an edge from b to a.

Goodware API packages Banking frojans

5 i
Perfect Girls %?22\4 \60 Regon
2> ' 5 A\
i o

Azerbaijan

Radio World Marcher
Iberia : . .
Perseo 1685 ; 3 -uhl 2 Fakebank

Figure 6-1: A partial TSG containing three goodware samples

The goodware and malware collections don’t need to be fixed. An ana-
lyst might use one sampling in one week, switch to another in the next week,
and keep doing so regularly in order to present a moving target. Varying the
sets changes the attack surface and makes it harder for an adversary to guess
the precise nature of the defense.

We also suggest keeping the size of the sets relatively small, and varying
it as well. For example, if we had access to 1 million goodware samples and
10,000 malware samples, we might select only, say, 1,000 samples for each
of the groups in the first week, 1,322 in the next week, 1,127 in the third
week, and so forth. Frequently modifying the sample sizes is another way to
keep the attacker in the dark about the nature of the defenses being used;
however, the number of samples in the two sets should be approximately
the same.

Once we’ve determined the vertices and edges in a TSG, we weight
the edges using a weight function. In this context, the weights reflect the
number of times an app calls a corresponding API package’s methods. For
any edge from a goodware or malware app v to an API package a, we use
fv, a) to denote the number of times v calls methods from a. The follow-
ing equations demonstrate five plausible definitions of a weight function w.
Functions w1, we, and wg, respectively, represent linear, quadratic, and cubic
relationships between the API package call frequency and the edge weight,
while w4 and wy capture other possible nonlinear relationships:

w1(v, a) = flv, a)
wy(v, a) = flv, a)2
w3 (v, a) = flv, a)?’

(
4(v, @) = \/flv, a)
(

ws(v,a) = 1n (f(v, a)+ l)

g

Having different definitions is useful because most machine learning
algorithms are very sensitive to the input features and can’t always correctly
infer the most accurate nonlinear relationships between data points using
the modeling framework alone.

We set the weights of edges between pairs of API package calls to the
same default value, 1. This is because we are more interested in whether
a specific edge exists than in the frequency with which one API package
calls another within the Android API, as attackers can’t control these
relationships.

You can see the weighted edges in Figure 6-1, which uses the function
w1, as well as directional arrows to show the calling relationships among
pairs of API packages. Now you can observe that none of the three good-
ware samples call the API package android.app.admin, while two of the three
banking trojans call it a few times. These sorts of patterns might help us
identify malicious apps.

Suspicion Scores

With the TSG defined, we can now calculate the suspicion score of an API
package. In short, we rank an API package that is frequently invoked by mal-
ware but not by goodware as more suspicious than one that is frequently
invoked by goodware but not by malware. Suspicion scores alone aren’t
enough to predict whether an Android app is malicious or not, but they do
generate a set of features that might be able to provide good predictive per-
formance. Moreover, as the malware developer won’t know the reference
sets and weight functions used to create the TSGs, they can’t easily evade
detection frameworks that use them.

We define 12 possible suspicion scoring functions, sus; through suss.
Having multiple candidate functions ensures that we are less prone to over-
fitting a predefined model. When we supply these scores and other features
as input, machine learning techniques can tell us which suspicion scoring
function is best able to differentiate benign apps from malicious ones. You
might notice that the function definitions, shown next, are closely related to
the weight functions w; through ws:

> ik Iy, a))
) = n
) S) S gna)
n m
> =1 fbi, @)
suso(aj) = L
’ 100 4) 31 fgi)
n m

Machine Learning Features 189

su53(a]~) = 5 n 5
i1/i, a;) . > i1/gia)
n m

S L1 fbi)’
n
?=1f(biaaj)3+ 21 fgir)
n m

susq(aj) =

>ie1 \/Nbis aj)

n
i1 i) Sy [fgi)
+
n m

suss(aj) =

Z;Ll In (f(bl, a]) + 1)

susg(aj) =

n
S (b @)+ D) | S0 In (flginay) + 1)

n m

> =1 1(bis a))
24y i1 1(bi> aj)
s i a) 3 g)
2 2im Kb a) >4 20 1gi @)

sus(aj) =

2y =1 /i @)
2 fbia) g 4)
20 i1 i) 3o D fgin 4y)

susg(aj) =

S b 4)
gy i1 flbis @)
L1 fbi,aj)? . S g a)?
Y i a3, 3 g 4))?

susg(aj) =

190 Chapter 6

St b aj)”
Yo i fbi)
1S,) . 1/ 4)
Y i S 3, Y g 4)

L1\ i)
(aj) = ?zl\/m
susii(a;) =
) gy T\ esa)

Doy i i @) 3o D /g)

susio(a;) =

21 In (b, aj) + 1)
5, S 4]+ 1)
s (b +l) e n(flgia) 1)
2 2oie m (fbi, ap) + 1) 35, 37 In(figi, aj) +1)

susy2(aj) =

These suspicion score functions all make use of an indicator function (v, vo)
to denote the existence of an edge from vertex vy to ve, where v1,v9 € AU
G U M. In other words, if it is the case that f{v], vo) is greater than 0, then
I(v1,v9) equals 1; otherwise, it is 0. (In fact, we could treat the /(v,) func-
tion for edges from apps to API packages as another kind of weight func-
tion.) We use n to denote the number of malware samples and m to denote
the number of goodware samples.

For example, according to the first function, susy, if the API package a;
is called by 100 malicious apps b and 10 goodware apps g from our samples,
we reasonably consider apps that invoke this API package to be more suspi-
cious than ones that do not. The definition in sus; is another way of captur-
ing the same intuition: that an API function that is more extensively called
by malicious apps than by benign ones will have a higher suspicion score.
Equations sus; through susj9 make similar assumptions to susy through susg
except that they evaluate the suspicion score of one API package with re-
spect to all API packages rather than by itself.

The Suspicion Rank

Suspicion scores label a single Android API package call by looking at how
malware and goodware each call that package. However, a package might
itself make calls to other packages within the Android API. If a package P1
makes lots of calls to another package Q that has a high suspicion score,
we should rank the first package as more suspicious than a package P2 that
makes no calls to packages that have a high suspicion score.

The situation is a bit like an individual making lots of calls to a drug
dealer. Even if the individual isn’t deemed suspicious in their own right, the

Machine Learning Features 191

192

Chapter 6

fact that they’re in regular contact with a drug dealer makes them so. This is
precisely the intuition behind Google Search’s famous PageRank algorithm,
which captures the importance of a web page by considering the importance
of the web pages that link to it.

In fact, we can combine our suspicion scores with PageRank to
define a family of suspicion ranking functions that capture these intu-
itions. PageRank calculates the importance of web pages using the follow-
ing formula:

d +d x Z PR(u)out(u)

(u,v)EE

PR(v) = !

Here, E is the set of edges in the web; N is the total number of nodes, or ver-
tices, in the web; d € [0, 1], called the damping factor, is usually set to 0.85;
and out(u) is the out-degree of node u, or the number of edges that leave it.
The LNd expression captures the probability that a user will reach web page v
by explicitly entering its address into a browser, while the remaining part of
the expression is intended to capture the probability of a user reaching page
v by following links.

In the following, we define the suspicion rank for an Android API
package a with respect to a fixed suspicion scoring function, sus. We could
use any of the functions described earlier in this chapter, or an entirely new
one, as long as it associates a suspicion score with each function in the
Android API:

sus(a/) X SRsus(al)
out(a’)

SRsus(a) = 17‘/45 +0 X Z

l | a' €A a ,a)EE
The parameter § € [0, 1] is a damping factor similar to PageRank’s d. In
practice, we set it to 0.85, as is usually done with PageRank. The value a’ is
any package invoked by the package a, and the out(a’) value is the out-degree
of the node in the TSG corresponding to @’. In other words, it represents
the number of API packages invoked by a’.

Readers might have noticed that the definition of the suspicion rank
mainly relies on a small portion of the TSG—namely, the vertices represent-
ing API packages and the edges between them. As a result, this structure is
independent of the choice of apps in the goodware and malware sets, and
adversaries can’t manipulate it, because it (that is, the Android API) is pub-
licly disclosed in the Android code and documentation. This approach dif-
fers from the function call graphs described in previous works, which usually
depend on the sequence of operations within specific individual apps and
so lack randomness, a key element in keeping malware developers guess-
ing. We list some of these alternative approaches in “Further Reading” on
page 202.

TSG Features

The preceding two sections define ways to calculate suspicion scores and
suspicion ranks for API packages in a given TSG. In total, we have 24 kinds

of suspicion-based scores associated with each API package. Researchers can
add new ones if they wish. Next, we must use these suspicion-based scores to
generate what we call TSG features for Android apps. These features capture
the package call behavior of all apps, meaning an app doesn’t have to be in
either the malware or the goodware sample set to have TSG features.

To generate these features, we first rank the API packages in descending
order according to their suspicion score and suspicion rank results. Theo-
retically, the higher the rank of an API package, the more suspicious it is.
However, we will have noise, perhaps stemming from the choice of sample
applications. Therefore, instead of directly using the ranked package list, we
apply a window-based segmentation to it before deriving TSG features.

The basic idea of window-based segmentation is to use an integer W that
is greater than 1 to segment the list into a number of buckets, starting from
the beginning of the list. As shown in Figure 6-2, each bucket (except pos-
sibly the last one) contains W API packages with similar suspicion-based
scores or ranks.

APl packages with SUS/SR in descending order

Bucket 1 Bucket2

Figure 6-2: A window-based APl package ranking by descending suspicion scores and
ranks

Suppose API packages a; through ayy are in the same bucket, and sup-
pose that the corresponding API feature values of an app are f; through fyy.
For each bucket, we can calculate a TSG feature via one of the following six
methods:

Binary value Does this app call any API packages in this bucket? If so,
this binary feature is 1; otherwise, it is 0.

Number of API packages How many API packages in this bucket does
the app call? The feature value is an integer Z}}:Vl I(f;), where the func-
tion I(fj) =1 isfj > 0; otherwise, it equals 0.

Maximum frequency value Of the call frequencies from the app to all

API packages in the bucket, what is the maximum value? The feature
value is an integer max, f;.

Median frequency value Among the call frequencies, what is the
median value? The feature value is an integer medianyzv1 -

Sum of frequencies How many times in total does this app call API
packages in this bucket? The feature value is an integer ZI}:VI Jj-
Weighted sum Based on the frequency sum, what would the value be
if we took the suspicion score given by function p as the corresponding
weight? This feature is a real value Z]V:VI pjifj, where p; stands for the sus-
picion score of API package a;.

Machine Learning Features 193

194

Chapter 6

To illustrate how these features work, consider the small dataset with
three banking trojans and three goodware samples we showed earlier in this
chapter. Suppose Table 6-1 shows the frequency with which the malware
sample Regon calls the four API packages.

Table 6-1: Frequency of APl Package Calls by Regon
android.view java.net android.app.admin java.util

Frequency 35 0 1 112

If we use sus] as our suspicion scoring function, we could sort the
packages based on their suspicion scores, in descending order, as shown
in Table 6-2.

Table 6-2: Suspicion Scores of the Packages Called by Regon
android.app.admin android.view java.util java.net
Suspicion score 1 0.5 0.5 0.25

Suppose we now use W = 2 as the window size. In this case, there are
two buckets, the first containing android.app.admin and android.view and
the second containing java.util and java.net. We derive the following feature
values for Regon from the first bucket: a binary value of 1, an API package
number of 2, a sum of frequencies of 36, a maximum frequency value of 35,
a median frequency value of 18, and a weighted sum of 1 x 1 + 0.5 x 35,
or 18.5. The values of the features generated by the second bucket are 1, 1,
112, 112, 56, and 56, respectively.

Now suppose we repeat this process using both the suspicion scoring
function susy and the suspicion ranking formula. Table 6-3 shows the result-
ing suspicion ranks after sorting.

Table 6-3: Suspicion Ranks for the Packages Called by Regon
java.util java.net android.view android.app.admin

Suspicion rank 0.1025 0.0811 0.0375 0.0375

These suspicion ranks generate the following feature values for Regon
from the first bucket: a binary value of 1, an API package number of 1, a
sum of frequencies of 112, a maximum frequency of 112, a median frequency
of 56, and a weighted sum of 0.1025 x 112+0.0811 x 0, or 11.48. For the API
calls in the second bucket, Regon has corresponding feature values 1, 2, 36,
35, 18, and 1.35.

In this example, we generated TSG features for Regon based on a subset
of Android API packages and a part of the complete TSG. In a real imple-
mentation, however, we might use all 171 API packages, 24 different suspi-
cion scoring functions, and 6 methods for computing TSG features for each
function. As a result, if we use a W of 10, we could generate 2,592 TSG fea-
tures for each app.

In addition, because we control the W parameter, we can vary it in sev-
eral ways. For instance, if we have four API packages with the suspicion
scores 0.9, 0.3, 0.29, and 0.2, we could divide them into two evenly sized
buckets, (0.9, 0.3) and (0.29, 0.2). Alternatively, we could group similar scores
together by using a variable window size to segment them into two buck-
ets, (0.9) and (0.3, 0.29, 0.2). Using window size in this way has an advan-
tage: it introduces yet another complication for the adversary. If an attacker
changed the number of calls made in a piece of malware to classes in one or
two Android API packages, it wouldn’t have a huge impact on how features
were derived, because packages that have similar features would be merged,
reducing the effects of any single feature. This varying window size could
have the potential negative effect of lowering the predictive performance of
the resulting classifiers, but it turns out, as subsequent chapters will show,
that this is not a major problem.

To read more about the experiments that demonstrate the difficulty
of bypassing these features, see “DBank: Predictive Behavioral Analysis of
Recent Android Banking Trojans” by Chongyang Bai et al. and “Android
Malware Detection via (Somewhat) Robust Irreversible Feature Transforma-
tions” by Qian Han et al.

Landmark-Based Features

Another way to generate features for Android apps that attackers can’t eas-
ily evade relies on the concept of landmarks. Suppose you are considering
buying a house. Your estimate of a fair price for the house will likely depend
upon several factors, one of which might be the sales prices of certain other
houses (for example, those of a similar size and age in the same area). We
call these reference houses landmarks.

We can adopt the idea of using landmarks to define a new feature space
for Android apps. Say there is a set of Android apps that includes both be-
nign and malicious apps, and that each app has some feature vector. We
can think of that feature vector as a point in the app feature space, just as we
could characterize a house as a point in a housing feature space. When con-
sidering buying a house, we compare the house with similar houses; we can
do the same with apps when trying to determine whether they are malicious
or benign.

Selecting Landmarks

To use the landmark approach, we first select a subset of the app samples
and set them as landmarks. Then we define new features for each app in

Machine Learning Features 195

196

Chapter 6

the dataset by comparing them with each landmark. We suggest keeping the
size of the landmark set reasonably small. For example, if there are 1 million
samples in the total set of apps, we might select 1,000 landmarks. That way,
adversaries will have trouble guessing the selected landmarks, making it even
harder to guess the landmark-based features.

We propose three methods for selecting the set of landmarks from the
sample set. The first, a naive approach, is to randomly select them. Another
method is clustering-based selection, in which the apps are first clustered into
groups. There are many well-studied algorithms for clustering, such as
k-means clustering, k-median clustering, mean shift clustering, density-
based spatial clustering of applications with noise (DBSCAN), expectation
maximization clustering using Gaussian mixture models, and agglomerative
hierarchical clustering. Each clustering algorithm has its own advantages
and disadvantages. They may also perform differently due to the characteris-
tics of the dataset.

With this approach, after clustering the apps into groups, we select one
app from each group as a landmark. The basic idea is that when we group
all the apps into clusters, similar apps end up in the same cluster; we can
then pick one representative app from each of the clusters. Returning to our
housing analogy, the houses in a cluster might have similar neighborhoods,
local schools, square footages, prices, and numbers of bedrooms. When
deciding whether a house is good or not, we might use one representative
from each cluster as a landmark. Once we have our clusters, we can select a
representative from each group in many ways. For instance, we could ran-
domly select an app from the cluster. Alternatively, we could compute the
sum of the distances of each app in the cluster to each of the other apps in
the cluster, then use the app that has the smallest sum—the most “central”
app in the cluster—as the landmark. (The distance between two apps can be
calculated by finding the distance between their feature vectors, using a met-
ric such as Euclidean distance or cosine distance.)

Because there are at least 6 clustering algorithms we can use and at
least 2 ways of selecting a landmark app from each cluster, there are at least
12 ways of performing clustering-based landmark selection, even when dis-
regarding the variability in hyperparameters that some of the clustering
techniques use internally. In fact, there are many more ways of performing
clustering-based landmark, e.g. by varying k in the k-means clustering and
k-median clustering algorithms.

The third method, maximum distance heuristic selection, provides an al-
gorithm for selecting landmarks that are scattered across the basic feature
space. As input, it accepts the set of apps D and the number of landmarks
Np, to select, as well as a distance function d used to evaluate the distance
between two app samples based on their feature vectors. We might, for ex-
ample, use well-known distance functions such as Euclidean distance, Man-
hattan distance, cosine distance, or Hamming distance. The algorithm is as
follows:

The Max-Distance Heuristic Selection Algorithm

1. Randomly select an app from D and add it to the landmark set L.
2. If |L'| < Np, draw a random set of apps, R, from D~ L’.
3

Choose the best landmark from R using one of the following
methods:
arg r}]ﬁne&g(Z di,r)
LeL’

arg max min d(¢, r)
reR fel’

arg max mediangcy/d(¢, r)
r€ER

4. Add the selected landmark to L.
5. When |L'| = Ny, use L’ as the set of landmarks L.

It starts by randomly choosing an app from D as a landmark and adding
it to the current set of selected landmarks, L’ (step 1). It then iteratively adds
more landmarks (steps 2 through 4). In each iteration, it randomly draws a
set of apps from D - L' (step 2), and then selects the app that is farthest away
from the current set of landmarks in L' (step 3).

The distance can be calculated in various ways. For instance, suppose in
a given iteration of the algorithm we have 3 landmarks, ¢1, {9, {3, and sup-
pose D - L' contains 100 landmarks, £}, 6, ..., £}, In this case, any one
of the 100 landmarks may be added into L' as a fourth landmark. We could
choose to add the landmark E]’- that maximizes the distance from the candi-

date fourth landmark in D - L' to the previously selected landmarks in L/,
or in other words maximizes the sum Z?zld(éi, éj’»). Alternatively, we could

choose the fourth landmark to be the one in D - L’ that maximizes either the
mean distance or the median distance to the previously chosen landmarks
{1, {o, {3, for example by choosing ¢; = argmaxgl(mecm({ace;, ¢y),d(t., £s),

d(ﬁg, ¢3)}). d in this algorithm is a distance function. We let d(¢, r) denote

the distance between the feature vectors of two apps, £ and r. This step en-
sures that the landmark selected is sufficiently far away from the previously
selected landmarks to ensure some diversity among the landmark set.

The process ends when Ny landmarks have been picked (step 5). As
there are 4 distance functions and 3 possible definitions of farthest distance,
we can apply this landmark selection method in at least 12 ways.

Between the three landmark selection methods we’ve described, there
are numerous ways to select the set L of landmarks from the set D for each
N, value. However, to further confound potential adversaries, we suggest
that security officers periodically use a new set of landmarks, modify the
landmark selection method, or both, and then recompute landmark-based
features. By doing this once every week or two, you’ll keep any adversaries
guessing and mount a moving target defense.

Machine Learning Features 197

198

Chapter 6

Computing Landmark-Based Features

Once we’ve selected landmarks, we use them to compute landmark-based
features for each app sample ¢ in set D. Here is the algorithm for generating
landmark-based features:

The Landmark-Based Feature Generation Algorithm

1. Generate the set of landmarks L using S.
2. For each landmark ¢ € in each sample app ¢ € D, compute d(i, £).

3. Compute the features as follows:

fim = {d(i, 0)}oer

As input, we use the set D of Android apps with their associated fea-
ture vectors F = {fi}i, the number N;, of landmarks to select, the landmark-
selection method S (and its parameters, if applicable), and the distance
function d(-).

We generate the set L of landmarks using S (step 1). Next, we iteratively
compute the landmark feature vectors for each sample app i (steps 2 and 3).
This process begins by computing the distance d(i, £) of the sample i to each
¢ €, then constructing an Ny -dimensional landmark-based feature vector by
using those distances. In other words, the first element in this vector is the
distance between app ¢ and the first landmark, the second element in this
vector is the distance between app ¢ and the second landmark, and so forth.

Figure 6-3 is a simple illustration of landmark features. It assumes that
there are six samples in our set D (in practice, this number would be much
larger), each with a four-dimensional API feature vector.

Landmark 1

Figure 6-3: Landmark-based features with six apps, two landmarks, and the Euclidean
distance function

Suppose we use the random landmark generation method to select two
of the six samples, Perfect Girls and Marcher, as landmarks. We then gen-
erate landmark features using the Fuclidean distance function. Here, you
can see the Euclidean distance from each sample app ¢ to each landmark.
The landmark-based feature vector for, say, Regon is then (3551.33, 677.93),
while that for Perfect Girls is (0, 2903.66).

Feature Clustering

Some of the features we generate might have similar relationships to the
label we’re attempting to predict. When this happens, we can combine those
features to create a smaller, but perhaps more representative, set of new fea-
tures. The approach, called feature clustering, first groups a set of basic fea-
tures into a number of categories and then derives aggregated features from
each category. We call these new features FC features. You can read more
about this approach in “Android Malware Detection via (Somewhat) Robust
Irreversible Feature Transformations” by Qian Han et al.

Generating Feature Clusters
We use the following algorithm to get FC features:

The FC Feature Generation Algorithm

Take a subset of samples D’ from D.
Get the feature matrix F’ for samples in D',

Using Clu, cluster the n basic features into G groups according to
column vectors {fj;}; in F.

4. For each feature group Fy in each sample app ¢, associate a value
with the group:

fo=@lfi 1) € Fy)

5. Perform this calculation for each sample app:

VAT N

As input, it takes the set D of all sample Android apps and each of their
n—dimensional basic feature vectors; the number G of clusters in which to di-
vide the n features; the clustering algorithm used, Clu; and @, the algorithm
to aggregate features within one group. We can use any subset or all of the
basic static and dynamic analysis features we’ve presented, as well as features
defined by other researchers.

We extract a subset D' of sample apps from D (step 1) and use their fea-
ture values (step 2) to cluster the » features into G groups (step 3). We use a
subset of D, not D itself, for three reasons: first, the dataset might be huge,
and clustering the whole thing could be very expensive; second, by using a
subset of samples for clustering, we make it harder for an adversary to de-
termine how the feature clustering works; and third, when the set D is ex-
tended with the addition of more apps, we can compute the FC features
of the new apps without having to rerun the algorithm and recluster basic
features. Moreover, as in the case of TSGs, we can periodically update the
sample used and recompute the feature clusters to keep adversaries guessing
about the nature of the defenses used.

Once we've clustered the features, we take any app and use @ to asso-
ciate a single value with each cluster of features (step 4). That value could be

Machine Learning Features 199

a sum, a minimum, or a maximum of the values of the features within that
cluster, or it could be a statistical quantity derived from the set, such as the
median, standard deviation, variance, or entropy. We perform this action
for all clusters in every app in D (step 5).

Choosing Clustering and Feature Aggregation Algorithms

We can invoke the feature clustering algorithm with many possible clus-
tering and feature aggregation methods. For the clustering algorithm, we
might use any of the six methods we mentioned in our discussion of
landmark-based features or an entirely different algorithm. We can also
choose from numerous possibilities for the feature aggregation algorithm,
@. Here are some options:

Product We compute the new feature as the product of elements in
the set.

Mean We use the mean value of the set of values as the new feature
value.

Median We use the median value of the set of values as the new fea-
ture value.

Sum We compute the new feature as the sum of elements in the set.

Weighted sum We compute the new feature value as the weighted
sum of elements in the set. The weight of feature j is inversely propor-
tional to the distance between the feature’s vector and the centroid
feature value of the group j.’s vector {f;; };7, which we denote as d(j, jc).
Thus, we compute the feature value as follows, where « is a parameter

for normalization: P
¢ _ v p—d(ge)
fig «a Zflj xe (]]
JEFg

We usually select a cluster size G that is significantly smaller than the
total number of features so that this number decreases dramatically. For
instance, if the basic feature vector had 100 elements, we might set G to 8.
Figure 6-4 illustrates an example of feature clustering that uses sample apps
and four-dimensional API features.

Group | APK i s
android.view Perfect Girls 1093.5 1376.5
. Azerbaijan
java.net IEodio World 1269 2146
Iberia
" — [2925 8425
Regon 17.5 56.5
android.app.admin
Marcher 302.5 240.5
java.ut Fakebank 670 722.5

Figure 6-4: A feature clustering example with two groups, four-dimensional
basic APl features, and averaging feature aggregation

200 Chapter 6

In this example, we cluster the four apps into two groups and use the
mean approach for ©. We obtain the FC features for each app shown in the
table on the right.

While highly representative, FC features are hard for adversaries to
guess, since generating them requires security analysts to make several
choices that inject considerable uncertainty into the process and are diffi-
cult to reverse engineer. These choices include the subset of sample apps to
use, the number of clusters to generate, the clustering method and its hyper-
parameters, and the aggregation operator & (along with its hyperparame-
ters, when @ calculates a weighted sum).

Correlation Graph-Based Feature Transformation

Another way to reduce the number of features is to use correlation graphs,
which generate what we call CG features. This approach involves creating a
fully connected graph with features as its vertices, then using concepts from
social network analysis to divide these features into communities. As each
community consists of similar features, we can associate one CG feature
with each.

We use the following algorithm to perform correlation graph—based
feature transformation:

The CG Feature Generation Algorithm

1. Take a subset D' of samples from D.
2. Get the feature matrix F' for samples in D'.
3

Compute the n x n edge weights of the correlation graph according
to the column vectors of F'.

4. Get G communities with the n basic features according to the corre-
lation graph and the community detection algorithm.

5. For each feature community Cg in each sample app ¢, apply the
aggregation operator:

S =oliljeg)

6. For each sample app i, calculate its CG feature vector:

As input, it takes the set of apps D, the feature matrix F of those apps,
a community detection algorithm C, the desired number of communities
G, and an associative and commutative operator @. It outputs a correlation
graph with G-dimensional feature vectors for sample apps in D.

We begin by selecting a subset D’ of sample apps from D (step 1) and
retrieving their feature matrix I (step 2), just as we did when calculating
FC features. We then compute the correlation between each pair of features
using the Pearson correlation coefficient (step 3). This value becomes the
weight of the edge between each pair of features in the correlation graph.

Machine Learning Features 201

202

Next, we apply the community detection algorithm C (step 4) to produce G
communities. Finally, we generate the CG features for each app D using the
features in each community and the associative and commutative feature
aggregation operator @ (steps b and 6).

We can define @ in the same five ways as for feature clustering. In ad-
dition, we can select many possible community detection algorithms C, in-
cluding the minimum cut method, the Girvan-Newman algorithm, modu-
larity maximization, statistical interference, and clique-based methods. You
can read more about these algorithms in the resources listed in the “Further
Reading” section.

Figure 6-5 shows an example of generating correlation graph-based fea-
tures. Suppose we want to group four API features into two communities, as
shown on the left side of the figure. On the right side, you can see the CG
features for each sample app created using the averaging feature aggrega-
tion method.

Community]1 APK fﬂg f’zg
android.view Perfect Girls 1766.67 0
Azerbaijan
java.net | java.util Radio V\Ilorld 2276.67 0
_, lberia 823 33 o
Perseo :
Community 2 Regon 49 1
Marcher 361.33 2

android.app.admin
Fakebank 961.67 0

Figure 6-5: Generating CG features with two communities and the
averaging feature aggregation method

As with feature clustering, the use of CG features injects a great deal
of uncertainty for any adversary attempting to reproduce the CG features.
The CG feature generation process consists of many different choices that
may end up yielding big differences in the final feature values. Adversaries
will therefore have considerable difficulty in determining its real-world
implementation.

Further Reading

Chapter 6

This section lists resources you can use to further explore the topics intro-
duced in this chapter.

To learn more about API-based features like the ones introduced in this
chapter, see “DroidAPIMiner: Mining API-Level Features for Robust Mal-
ware Detection in Android” by Yousra Aafer et al. and “Machine Learning
for Android Malware Detection Using Permission and API Calls” by Naser
Peiravian and Xingquan Zhu.

To read about TSG features, consult the paper that introduced them,
“DBank: Predictive Behavioral Analysis of Recent Android Banking Tro-
jans” by Chongyang Bai et al. In addition, we mentioned that TSGs are an

alternative to the many kinds of function call graphs used in other malware
detection techniques:

Dependency graphs, introduced in “Semantics-Aware Android Mal-
ware Classification Using Weighted Contextual API Dependency
Graphs” by Mu Zhang et al.

Control-flow graphs, introduced in “FlowDroid: Precise Context,
Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis for
Android Apps” by Steven Arzt et al. and “MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models”
by Enrico Mariconti et al.

Code-property graphs, introduced in “Modeling and Discovering
Vulnerabilities with Code Property Graphs” by Fabian Yamaguchi
etal.

Generating the CG features introduced in this chapter requires the use
of a community detection algorithm. There are many ways of defining such
an algorithm:

Up Next

The minimum cut method, described in “Odd Minimum Cut-Sets
and b-Matchings” by Manfred W. Padberg and M. Ram Rao

Hierarchical clustering, described in “Hierarchical Clustering
Schemes” by Stephen C. Johnson

The Girvan—-Newman algorithm, described in “Community Struc-
ture in Networks: Girvan-Newman Algorithm Improvement” by
Ljiljana Despalatovic¢ et al.

Modularity maximization, described in “Community Detection
via Maximization of Modularity and Its Variants” by Mingming
Chen et al.

Statistical inference, described in Kate Calder’s Statistical Inference
(Holt, 1953)

Clique-based methods, described in “A Maximal Clique Based
Multiobjective Evolutionary Algorithm for Overlapping Com-
munity Detection” by Xuyun Wen et al.

Whenever antivirus products detect a piece of malware, the malware’s de-
velopers modify it in order to evade detection. By now, malware developers
understand that antivirus companies are increasingly using machine learn-
ing. They’re also well aware of the types of basic features used to detect their
malware and have become adept at modifying their code to change these
features to escape detection.

In this chapter, we described how to use the manual processes of static
and dynamic analysis introduced in Chapters 3 and 4 to define features that
machine learning algorithms can use. We then discussed two broad classes

Machine Learning Features 203

204

Chapter 6

of techniques that can make life harder for malware developers. The first,
based on the notion of a triadic suspicion graph, was initially used to detect
Android banking trojans but can in fact be used to detect any form of mal-
ware. The second transforms the original features of Android apps into a
new set of features of a different size. We described three such methods in
this chapter: landmark-based transformations, feature clustering, and cor-
relation graph-based feature transformation, all of which are resilient to re-
verse engineering.

However, no method is perfect at confounding hackers. To further frus-
trate malware developers, the techniques introduced in this chapter include
layers of randomization. In addition, we recommend that organizations
change their machine learning-based malware detection settings frequently,
just as all users should change their passwords frequently. For instance, in
the case of TSGs, defenders could update the malware and goodware sam-
ples used to generate their features and modify other parameters, such as
the window size, every week. In the case of landmark-based features, defend-
ers could periodically modify the number and identities of their landmarks.
These modifications impose a relatively small cost on enterprise security
officers but can reap substantial benefits.

In the next chapter, we’ll apply what you’ve learned so far about
machine learning algorithms and features to look at one important class
of malware: rooting malware. This type of malware attempts to acquire
root privileges on the user’s device, and once it has done so, it can be hard
to dislodge. As a consequence, it’s essential to find characteristics of rooting
malware that distinguish it from goodware.

