
1
HASH TABLES

It’s amazing how often computer programs
need to search for information, whether

it’s to find a user’s profile in a database or to
retrieve a customer’s orders. No one likes wait-

ing for a slow search to complete.
In this chapter, we’ll solve two problems whose solutions hinge on being

able to perform efficient searches. The first problem is determining whether
or not all snowflakes in a collection are identical. The second is determining
how many passwords can be used to log in to someone’s account. We want
to solve these problems correctly, but we’ll see that some correct approaches
are simply too slow. We’ll be able to achieve enormous performance in-
creases using a data structure known as a hash table, which we’ll explore at
length.

We’ll end the chapter by looking at a third problem: determining how
many ways a letter can be deleted from one word to arrive at another. Here
we’ll see the risks of uncritically using a new data structure—when learning
something new, it’s tempting to try to use it everywhere!

Problem 1: Unique Snowflakes
This is DMOJ problem cco07p2.

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

The Problem
We’re given a collection of snowflakes, and we have to determine whether
any of the snowflakes in the collection are identical.

A snowflake is represented by six integers, where each integer gives the
length of one of the snowflake’s arms. For example, this is a snowflake:

3, 9, 15, 2, 1, 10

Snowflakes can also have repeated integers, such as

8, 4, 8, 9, 2, 8

What does it mean for two snowflakes to be identical? Let’s work up to
that definition through a few examples.

First, we’ll look at these two snowflakes:

1, 2, 3, 4, 5, 6

and

1, 2, 3, 4, 5, 6

These are clearly identical because the integers in one snowflake match
the integers in their corresponding positions in the other snowflake.

Here’s our second example:

1, 2, 3, 4, 5, 6

and

4, 5, 6, 1, 2, 3

These are also identical. We can see this by starting at the 1 in the second
snowflake and moving right. We see the integers 1, 2, and 3 and then, wrap-
ping around to the left, we see 4, 5, and 6. These two pieces together give us
the first snowflake.

We can think of each snowflake as a circle as in Figure 1-1.

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1-1: Two identical snowflakes

The two snowflakes are identical because we can start at the 1 in the sec-
ond snowflake and follow it clockwise to get the first snowflake.

Let’s try a different kind of example:

1, 2, 3, 4, 5, 6

2 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

and

3, 2, 1, 6, 5, 4

From what we’ve seen so far, we would deduce that these are not identi-
cal. If we start with the 1 in the second snowflake and move right (wrapping
around to the left when we hit the right end), we get 1, 6, 5, 4, 3, 2. That’s
not even close to the 1, 2, 3, 4, 5, 6 in the first snowflake.

However, if we begin at the 1 in the second snowflake and move left in-
stead of right, then we do get exactly 1, 2, 3, 4, 5, 6! Moving left from the 1

gives us 1, 2, 3, and wrapping around to the right, we can proceed leftward
to collect 4, 5, 6. In Figure 1-2, this corresponds to starting at the 1 in the
second snowflake and moving counterclockwise.

1

1

2 2

3

3

4

4

5
5

6

6

Figure 1-2: Two other identical snowflakes

That’s our third way for two snowflakes to be identical: two snowflakes
are identical if they match when we move counterclockwise through the
numbers.

Putting it all together, we can conclude that two snowflakes are iden-
tical if they are the same, if we can make them the same by moving right-
ward through one of the snowflakes (moving clockwise), or if we can make
them the same by moving leftward through one of the snowflakes (moving
counterclockwise).

Input
The first line of input is an integer n, the number of snowflakes that we’ll be
processing. The value n will be between 1 and 100,000. Each of the follow-
ing n lines represents one snowflake: each line has six integers, where each
integer is at least 0 and at most 10,000,000.

Output
Our output will be a single line of text:

• If there are no identical snowflakes, output exactly No two snowflakes

are alike.

• If there are at least two identical snowflakes, output exactly Twin

snowflakes found.

The time limit for solving the test cases is one second.

Hash Tables 3

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

Simplifying the Problem
One general strategy for solving competitive programming challenges is to
first work with a simpler version of the problem. Let’s warm up by eliminat-
ing some of the complexity from this problem.

Suppose that instead of working with snowflakes made of multiple in-
tegers, we’re working with single integers. We have a collection of integers,
and we want to know whether any are identical. We can test whether two in-
tegers are identical with C’s == operator. We can test all pairs of integers, and
if we find even one pair of identical integers, we’ll stop and output

Twin integers found.

If no identical integers are found, we’ll output

No two integers are alike.

Let’s make an identify_identical function with two nested loops to com-
pare pairs of integers, as shown in Listing 1-1.

void identify_identical(int values[], int n) {

int i, j;

for (i = 0; i < n; i++) {

¶ for (j = i + 1; j < n; j++) {

if (values[i] == values[j]) {

printf("Twin integers found.\n");

return;

}

}

}

printf("No two integers are alike.\n");

}

Listing 1-1: Finding identical integers

We feed the integers to the function through the values array. We also
pass in n, the number of integers in the array.

Notice that we start the inner loop at i + 1 and not 0 ¶. If we started at
0, then eventually j would equal i, and we’d compare an element to itself,
giving us a false positive result.

Let’s test identify_identical using this small main function:

int main(void) {

int a[5] = {1, 2, 3, 1, 5};

identify_identical(a, 5);

return 0;

}

Run the code and you will see from the output that our function cor-
rectly identified a matching pair of 1s. In general, I won’t provide much test

4 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

code in this book, but it’s important that you play with and test the code
yourself as we go along.

Solving the Core Problem
Let’s take our identify_identical function and try to modify it to solve the
Snowflake problem. To do so, we need to make two extensions to our code:

1. We have to work with six integers at a time, not one. A two-
dimensional array should work nicely here: each row will be a
snowflake with six columns (one column per element).

2. As we saw earlier, there are multiple ways for two snowflakes to be
identical. Unfortunately, this means we can’t just use == to compare
snowflakes. We need to take into account our “moving right” and
“moving left” criteria (not to mention that == in C doesn’t compare
contents of arrays anyway!). Correctly comparing snowflakes will be
the major update to our algorithm.

To begin, let’s write a pair of helper functions: one for checking “mov-
ing right” and one for checking “moving left.” Each of these helpers takes
three parameters: the first snowflake, the second snowflake, and the starting
point for the second snowflake.

Checking to the Right
Here is the function signature for identical_right:

int identical_right(int snow1[], int snow2[], int start)

To determine whether the snowflakes are the same by “moving right,”
we scan snow1 from index 0 and snow2 from index start. If we find correspond-
ing elements that are not equal, then we return 0 to signify that we haven’t
found identical snowflakes. If all the corresponding elements do match,
then we return 1. Think of 0 as representing false and 1 as representing true.

In Listing 1-2 we make a first attempt at writing this function’s code.

// bugged!

int identical_right(int snow1[], int snow2[], int start) {

int offset;

for (offset = 0; offset < 6; offset++) {

¶ if (snow1[offset] != snow2[start + offset])

return 0;

}

return 1;

}

Listing 1-2: Identifying identical snowflakes moving right (bugged!)

As you may notice, this code won’t work as we hope. The problem is
start + offset ¶. If we have start = 4 and offset = 3, then start + offset = 7.

Hash Tables 5

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

The trouble is snow2[7], as snow2[5] is the farthest index to which we are al-
lowed to go.

This code doesn’t take into account that we must wrap around to the
left of snow2. If our code is about to use an erroneous index of 6 or greater,
we should reset our index by subtracting six. This will let us continue with
index 0 instead of index 6, index 1 instead of index 7, and so on. Let’s try
again with Listing 1-3.

int identical_right(int snow1[], int snow2[], int start) {

int offset, snow2_index;

for (offset = 0; offset < 6; offset++) {

snow2_index = start + offset;

if (snow2_index >= 6)

snow2_index = snow2_index - 6;

if (snow1[offset] != snow2[snow2_index])

return 0;

}

return 1;

}

Listing 1-3: Identifying identical snowflakes moving right

This works, but we can still improve it. One change that many program-
mers would consider making at this point involves using %, the mod opera-
tor. The % operator computes remainders, so x % y returns the remainder of
integer-dividing x by y. For example, 9 % 3 is 0, because there is no remain-
der when dividing 9 by 3. 10 % 4 is 2, because 2 is left over when dividing
10 by 4.

We can use mod here to help with the wraparound behavior. Notice
that 0 % 6 is 0, 1 % 6 is 1, . . . , 5 % 6 is 5. Each of these numbers is smaller than
6, and so will itself be the remainder when dividing 6. The numbers 0 to 5
correspond to the legal indices of snow2, so it’s good that % leaves them alone.
For our problematic index 6, 6 % 6 is 0: 6 divides 6 evenly, with no remain-
der at all, wrapping us around to the start. That’s precisely the wraparound
behavior we wanted.

Let’s update identical_right to use the % operator. Listing 1-4 shows the
new function.

int identical_right(int snow1[], int snow2[], int start) {

int offset;

for (offset = 0; offset < 6; offset++) {

if (snow1[offset] != snow2[(start + offset) % 6])

return 0;

}

return 1;

}

Listing 1-4: Identifying identical snowflakes moving right using mod

6 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

Whether you use this “mod trick” is up to you. It saves a line of code
and is a common pattern that many programmers will be able to identify.
However, it doesn’t always easily apply, even in cases that exhibit similar
wraparound behavior, such as identical_left. Let’s turn to this now.

Checking to the Left
The function identical_left is very similar to identical_right, except that we
need to move left and then wrap around to the right. When traversing right,
we had to be wary of erroneously accessing index 6 or greater; this time, we
have to be wary of accessing index –1 or less.

Unfortunately, our mod solution won’t directly work here. In C, -1 / 6 is
0, leaving a remainder of –1, and so -1 % 6 is –1. We’d need -1 % 6 to be 5.

Let’s just do this without using mod. In Listing 1-5, we provide the code
for the identical_left function.

int identical_left(int snow1[], int snow2[], int start) {

int offset, snow2_index;

for (offset = 0; offset < 6; offset++) {

snow2_index = start - offset;

if (snow2_index <= -1)

snow2_index = snow2_index + 6;

if (snow1[offset] != snow2[snow2_index])

return 0;

}

return 1;

}

Listing 1-5: Identifying identical snowflakes moving left

Notice the similarity between this function and that of Listing 1-3. All
we did was subtract the offset instead of adding it and change the bounds
check at 6 to a bounds check at -1.

Putting It Together
With these two helper functions, identical_right and identical_left, we can
finally write a function that tells us whether two snowflakes are identical.
Listing 1-6 gives the code for an are_identical function that does this. We
simply test moving right and moving left for each of the possible starting
points in snow2.

int are_identical(int snow1[], int snow2[]) {

int start;

for (start = 0; start < 6; start++) {

¶ if (identical_right(snow1, snow2, start))

return 1;

· if (identical_left(snow1, snow2, start))

return 1;

}

Hash Tables 7

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

return 0;

}

Listing 1-6: Identifying identical snowflakes

We test whether snow1 and snow2 are the same by moving right in snow2 ¶.
If they are identical according to that criterion, we return 1 (true). We then
similarly check the moving-left criterion ·.

It’s worth pausing here to test the are_identical function on a few sample
snowflake pairs. Please do that before continuing!

Solution 1: Pairwise Comparisons
When we need to compare two snowflakes, we just deploy our are_identical

function instead of ==. Comparing two snowflakes is now as easy as compar-
ing two integers.

Let’s revise our earlier identify_identical function (Listing 1-1) to work
with snowflakes using the new are_identical function (Listing 1-6). We’ll
make pairwise comparisons between snowflakes, printing out one of two
messages depending on whether we find identical snowflakes. The code is
given in Listing 1-7.

void identify_identical(int snowflakes[][6], int n) {

int i, j;

for (i = 0; i < n; i++) {

for (j = i + 1; j < n; j++) {

if (are_identical(snowflakes[i], snowflakes[j])) {

printf("Twin snowflakes found.\n");

return;

}

}

}

printf("No two snowflakes are alike.\n");

}

Listing 1-7: Finding identical snowflakes

This identify_identical function on snowflakes is almost, symbol for sym-
bol, the same as the identify_identical function on integers in Listing 1-1. All
we’ve done is swap == for a function that compares snowflakes.

Reading the Input
We’re not quite ready to submit to our judge. We haven’t yet written the
code to read the snowflakes from standard input. Revisit the problem de-
scription at the start of the chapter. We need to read a line containing inte-
ger n that tells us how many snowflakes there are and then read each of the
following n lines as an individual snowflake.

Listing 1-8 is a main function that processes the input and then calls
identify_identical from Listing 1-7.

8 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

#define SIZE 100000

int main(void) {

¶ static int snowflakes[SIZE][6];

int n, i, j;

scanf("%d", &n);

for (i = 0; i < n; i++)

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

identify_identical(snowflakes, n);

return 0;

}

Listing 1-8: The main function for Solution 1

Notice that the snowflakes array is a static array ¶. This is because the
array is huge; without using such a static array, the amount of space needed
would likely outstrip the amount of memory available to the function. We
use static to place the array in its own, separate piece of memory, where
space is not a concern. Be careful with static, though. Regular local vari-
ables are initialized on each call of a function, but static ones retain what-
ever value they had on the previous function call (see “Static Keyword” on
page xxvi).

Also notice that we’ve allocated an array of 100,000 snowflakes ¶. You
might be concerned that this is a waste of memory. What if the input has
only a few snowflakes? For competitive programming problems, it’s gen-
erally okay to hardcode the memory requirements for the largest problem
instance: the test cases are likely to stress test your submission on the maxi-
mum size anyway!

The rest of the function is straightforward. We read the number of snow-
flakes using scanf, and we use that number to determine the number of iter-
ations of the outer for loop. For each such iteration, we loop six times in the
inner for loop, each time reading one integer. We then call identify_identical
to produce the appropriate output.

Putting this main function together with the other functions we have
written gives us a complete program that we can submit to the judge. Try
it out . . . and you should get a “Time-Limit Exceeded” error. It looks like we
have more work to do!

Diagnosing the Problem
Our first solution was too slow, so we got a “Time-Limit Exceeded” error.
Let’s understand why.

For our discussion here, we’ll assume that there are no identical snow-
flakes. This is the worst-case scenario for our code, since then it doesn’t stop
processing early.

The reason that our first solution is slow is because of the two nested
for loops in Listing 1-7. Those loops compare each snowflake to every other

Hash Tables 9

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

snowflake, resulting in a huge number of comparisons when the number of
snowflakes n is large.

Let’s figure out the number of snowflake comparisons our program
makes. Since we might compare each pair of snowflakes, we can restate this
question as asking for the total number of snowflake pairs. For example, if
we have four snowflakes numbered 1, 2, 3, and 4, then our scheme performs
six snowflake comparisons: Snowflakes 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2
and 4, and 3 and 4. Each pair is formed by choosing one of the n snowflakes
as the first snowflake and then choosing one of the remaining n – 1 snow-
flakes as the second snowflake.

For each of n decisions for the first snowflake, we have n – 1 decisions
for the second snowflake. This gives a total of n(n – 1) decisions. However,
n(n – 1) double-counts the true number of snowflake comparisons that we
make—it includes both of the comparisons 1 and 2 and 2 and 1, for exam-
ple. Our solution compares these only once, so we can divide by 2, giving
n(n – 1)/2 snowflake comparisons for n snowflakes.

This might not seem so bad, but let’s substitute some values of n into
n(n – 1)/2 and see what happens. Substituting 10 gives 10(9)/2 = 45. Per-
forming 45 comparisons is a piece of cake for any computer and can be
done in milliseconds. How about n = 100? That gives 4,950: still no prob-
lem. It looks like we’re okay for a small n, but the problem statement says
that we can have up to 100,000 snowflakes. Go ahead and substitute 100,000
for n in n(n – 1)/2: this gives 4,999,950,000 snowflake comparisons. If you
run a test case with 100,000 snowflakes on a typical laptop, it will take some-
thing like three minutes. That’s far too slow—we need at most one second,
not several minutes! As a conservative rule of thumb for today’s comput-
ers, think of the number of steps that we can perform per second as about
30 million. Trying to make nearly 5 billion snowflake comparisons in one
second is not doable.

If we expand n(n – 1)/2, we get n2/2 –n/2. The largest exponent there is
2. Algorithm developers therefore call this an O(n2) algorithm, or a quadratic-
time algorithm. O(n2) is pronounced “big O of n squared,” and you can think
of it as telling you that the rate at which the amount of work grows is quad-
ratic relative to the problem size. For a brief introduction to big O, see
Appendix A.

We need to make such a large number of comparisons because identical
snowflakes could show up anywhere in the array. If there were a way to get
identical snowflakes close together in the array, we could quickly determine
whether a particular snowflake was part of an identical pair. Maybe we can
try sorting the array to get the identical snowflakes close together?

Sorting Snowflakes
C has a library function called qsort that we can use to sort an array. The
key requirement is a comparison function: it takes pointers to two elements
to sort, and it returns a negative integer if the first element is less than the
second, 0 if they are equal, and a positive integer if the first is greater than

10 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

the second. We can use are_identical to determine whether two snowflakes
are equal; if they are, we return 0.

What does it mean, though, for one snowflake to be less than or greater
than another? It’s tempting to just agree on some arbitrary rule here. We
might say, for example, that the snowflake that is “less” is the one whose first
differing element is smaller than the corresponding element in the other
snowflake. We do that in Listing 1-9.

int compare(const void *first, const void *second) {

int i;

const int *snowflake1 = first;

const int *snowflake2 = second;

if (are_identical(snowflake1, snowflake2))

return 0;

for (i = 0; i < 6; i++)

if (snowflake1[i] < snowflake2[i])

return -1;

return 1;

}

Listing 1-9: A comparison function for sorting

Unfortunately, sorting in this way will not help us solve our problem.
You might try writing a program that uses sorting to put identical snow-
flakes next to each other so that you can find them quickly. But here’s a
four-snowflake test case that would likely fail on your laptop:

4

3 4 5 6 1 2

2 3 4 5 6 7

4 5 6 7 8 9

1 2 3 4 5 6

The first and fourth snowflakes are identical—but the message No two

snowflakes are alike. may be output. What’s going wrong?
Here are two facts that qsort might learn as it executes:

1. Snowflake 4 is less than Snowflake 2.

2. Snowflake 2 is less than Snowflake 1.

From this, qsort could conclude that Snowflake 4 is less than Snowflake 1,
without ever directly comparing Snowflake 4 and Snowflake 1! Here it’s re-
lying on the transitive property of less than. If a is less than b, and b is less
than c, then surely a should be less than c. It seems like our definitions of
“less” and “greater” matter after all.

Unfortunately, it isn’t clear how one would define “less” and “greater”
on snowflakes so as to satisfy transitivity. If you’re disappointed, perhaps
you can take solace in the fact that we’ll be able to develop a faster solution
without using sorting at all.

Hash Tables 11

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

In general, collecting similar values with sorting can be a useful data-
processing technique. As a bonus, good sorting algorithms run quickly—
certainly faster than O(n2), but we aren’t going to be able to use sorting here.

Solution 2: Doing Less Work
Comparing all pairs of snowflakes and trying to sort the snowflakes proved
to be too much work. To work up to our next, and ultimate, solution, let’s
pursue the idea of trying to avoid comparing snowflakes that are obviously
not identical. For example, if we have snowflakes

1, 2, 3, 4, 5, 6

and

82, 100, 3, 1, 2, 999

there’s no way that these snowflakes can be identical. We shouldn’t even
waste our time comparing them.

The numbers in the second snowflake are very different from the num-
bers in the first snowflake. To devise a way to detect that two snowflakes are
different without having to directly compare them, we might begin by com-
paring the snowflake’s first elements, because 1 is very different from 82.
But now consider these two snowflakes:

3, 1, 2, 999, 82, 100

and

82, 100, 3, 1, 2, 999

These two snowflakes are identical even though 3 is very different
from 82. We need to do more than just look at first elements.

A quick litmus test for determining whether two snowflakes might be
identical is to use the sum of their elements. When we sum our two example
snowflakes, for 1, 2, 3, 4, 5, 6, we get a total of 21, and for 82, 100, 3, 1,

2, 999, we get 1,187. We say that the code for the former snowflake is 21 and
the code for the latter is 1,187.

Our hope is that we can throw the “21 snowflakes” in one bin and throw
the “1,187 snowflakes” in another, and then we never have to compare the
21s to the 1,187s. We can do this binning for each snowflake: add up its
elements, get a code of x, and then store it along with all of the other snow-
flakes with code x.

Of course, finding two snowflakes with a code of 21 does not guarantee
they are identical. For example, both 1, 2, 3, 4, 5, 6 and 16, 1, 1, 1, 1, 1

have a code of 21, and they are surely not identical.
That’s okay, because our “sum” rule is designed to weed out snowflakes

that are clearly not identical. This allows us to avoid comparing all pairs—the
source of the inefficiency in Solution 1—and only compare pairs that have
not been filtered out as obviously nonidentical.

12 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

In Solution 1, we stored each snowflake consecutively in the array: the
first snowflake at index 0, the second at index 1, and so on. Here, our stor-
age strategy is different: sum codes determine snowflakes’ locations in the
array! That is, for each snowflake, we calculate its code and use that code as
the index for where to store the snowflake.

We have to solve two problems:

1. Given a snowflake, how do we calculate its code?

2. What do we do when multiple snowflakes have the same code?

Let’s deal with calculating the code first.

Calculating Sum Codes
At first glance, calculating the code seems easy. We could just sum all of the
numbers within each snowflake like so:

int code(int snowflake[]) {

return (snowflake[0] + snowflake[1] + snowflake[2]

+ snowflake[3] + snowflake[4] + snowflake[5]);

}

This works fine for many snowflakes, such as 1, 2, 3, 4, 5, 6, and 82,

100, 3, 1, 2, 999, but consider a snowflake with huge numbers, such as

1000000, 2000000, 3000000, 4000000, 5000000, 6000000

The code that we calculate is 21000000. We plan to use that code as the
index in an array that holds the snowflakes, so to accommodate this, we’d
have to declare an array with room for 21 million elements. As we’re using at
most 100,000 elements (one for each snowflake), this is an outrageous waste
of memory.

We’re going to stick with an array that has room for 100,000 elements.
We’ll need to calculate a snowflake’s code as before, but then we must force
that code to be a number between 0 and 99999 (the minimum and maximum
index in our array). One way to do this is to break out the % (mod) operator
again. Taking a nonnegative integer mod x yields an integer between 0 and
x – 1. No matter the sum of a snowflake, if we take it mod 100,000, we’ll get a
valid index in our array.

This method has one downside: taking the mod like this will force more
nonidentical snowflakes to end up with the same code. For example, the
sums for 1, 1, 1, 1, 1, 1 and 100001, 1, 1, 1, 1, 1 are different—6 and
100006—but once we take them mod 100,000, we get 6 in both cases. This is
an acceptable risk to take: we’ll just hope that this doesn’t happen much;
when it does, we’ll perform the necessary pairwise comparisons.

We’ll calculate the sum code for a snowflake and mod it, as displayed in
Listing 1-10.

Hash Tables 13

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

#define SIZE 100000

int code(int snowflake[]) {

return (snowflake[0] + snowflake[1] + snowflake[2]

+ snowflake[3] + snowflake[4] + snowflake[5]) % SIZE;

}

Listing 1-10: Calculating the snowflake code

Snowflake Collisions
In Solution 1, we used the following fragment to store a snowflake at index i

in the snowflakes array:

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

This worked because exactly one snowflake was stored in each row of
the two-dimensional array.

However, now we have to contend with the 1, 1, 1, 1, 1, 1 and 100001,

1, 1, 1, 1, 1 kind of collision, where, because they’ll end up with the same
mod code and that code serves as the snowflakes index in the array, we need
to store multiple snowflakes in the same array element. That is, each array
element will no longer be one snowflake but a collection of zero or more
snowflakes.

One way to store multiple elements at the same array index is to use a
linked list, a data structure that links each element to the next. Here, each
element in the snowflakes array will point to the first snowflake in the linked
list; the remainder of the snowflakes can be accessed through next pointers.

We’ll use a typical linked list implementation. Each snowflake_node con-
tains both a snowflake and a pointer to the next snowflake. To collect these
two components, we’ll use a struct. We’ll also make use of typedef, which al-
lows us to later use snowflake_node instead of the full struct snowflake_node:

typedef struct snowflake_node {

int snowflake[6];

struct snowflake_node *next;

} snowflake_node;

This change necessitates updates to two functions, main and identify

_identical, because those functions use our old two-dimensional array.

The New main Function
You can see the updated main code in Listing 1-11.

int main(void) {

¶ static snowflake_node *snowflakes[SIZE] = {NULL};

· snowflake_node *snow;

int n, i, j, snowflake_code;

14 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

scanf("%d", &n);

for (i = 0; i < n; i++) {

¸ snow = malloc(sizeof(snowflake_node));

if (snow == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

for (j = 0; j < 6; j++)

¹ scanf("%d", &snow->snowflake[j]);

º snowflake_code = code(snow->snowflake);

» snow->next = snowflakes[snowflake_code];

¼ snowflakes[snowflake_code] = snow;

}

identify_identical(snowflakes);

// deallocate all malloc'd memory, if you want to be good

return 0;

}

Listing 1-11: The main function for Solution 2

Let’s walk through this code. First, notice that we changed the type of
our array from a two-dimensional array of numbers to a one-dimensional
array of pointers to snowflake nodes ¶. We also declare snow ·, which will
point to snowflake nodes that we allocate.

We use malloc to allocate memory for each snowflake_node ¸. Once we
have read in and stored the six numbers for a snowflake ¹, we use snowflake

_code to hold the snowflake’s code º, calculated using the function we wrote
in Listing 1-10.

The last thing to do is to add the snowflake to the snowflakes array, which
amounts to adding a node to a linked list. We do this by inserting the snow-
flake at the beginning of the linked list. We first point the inserted node’s
next pointer to the first node in the list », and then we set the start of the list
to point to the inserted node ¼. The order matters here: if we had reversed
the order of these two lines, we would lose access to the elements already in
the linked list!

Notice that, in terms of correctness, it doesn’t matter where in the linked
list we add the new node. It could go at the beginning, the end, or some-
where in the middle—it’s our choice. So we should do whatever is fastest,
and adding to the beginning is fastest because it doesn’t require us to tra-
verse the list at all. If we instead chose to add an element to the end of a
linked list, we’d have to traverse the entire list. If that list had a million ele-
ments, we’d have to follow the next pointers a million times until we got to
the end—that would be very slow!

Let’s work on a quick example of how this main function works. Here’s
the test case:

4

1 2 3 4 5 6

8 3 9 10 15 4

Hash Tables 15

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

16 1 1 1 1 1

100016 1 1 1 1 1

Each element of snowflakes begins as NULL, the empty linked list. As we
add to snowflakes, elements will begin to point at snowflake nodes. The num-
bers in the first snowflake add up to 21, so it goes into index 21. The second
snowflake goes into index 49. The third snowflake goes into index 21. At this
point, index 21 is a linked list of two snowflakes: 16, 1, 1, 1, 1, 1 followed by
1, 2, 3, 4, 5, 6.

How about the fourth snowflake? That goes into index 21 again, and
now we have a linked list of three snowflakes there. See Figure 1-3 for the
hash table that we’ve built.

0 1 2 21 49 99999...

100016, 1, 1, 1, 1, 1

16, 1, 1, 1, 1, 1

1, 2, 3, 4, 5, 6

8, 3, 9, 10, 15, 4

Figure 1-3: A hash table with four snowflakes

There are multiple snowflakes in index 21. Does this mean that we have
identical snowflakes? No! This emphasizes the fact that a linked list with
multiple elements is not sufficient evidence to claim that we have identical
snowflakes. We have to compare each pair of those elements to correctly
state our conclusion. That’s the final piece of the puzzle.

The New identify_identical Function
We need identify_identical to make all pairwise comparisons of snowflakes
within each linked list. Listing 1-12 shows the code to do so.

void identify_identical(snowflake_node *snowflakes[]) {

snowflake_node *node1, *node2;

int i;

for (i = 0; i < SIZE; i++) {

¶ node1 = snowflakes[i];

while (node1 != NULL) {

· node2 = node1->next;

while (node2 != NULL) {

if (are_identical(node1->snowflake, node2->snowflake)) {

printf("Twin snowflakes found.\n");

return;

}

16 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

node2 = node2->next;

}

¸ node1 = node1->next;

}

}

printf("No two snowflakes are alike.\n");

}

Listing 1-12: Identifying identical snowflakes in linked lists

We begin with node1 at the first node in a linked list ¶. We use node2 to
traverse from the node to the right of node1 · all the way to the end of the
linked list. This compares the first snowflake in the linked list to all other
snowflakes in that linked list. We then advance node1 to the second node ¸,
and we compare that second snowflake to each snowflake to its right. We
repeat this until node1 reaches the end of the linked list.

This code is dangerously similar to identify_identical from Solution 1
(Listing 1-7), which made all pairwise comparisons between any two snow-
flakes. By contrast, our new code only makes pairwise comparisons within a
single linked list. But what if someone crafts a test case where all snowflakes
end up in the same linked list? Wouldn’t the performance then be as bad as
in Solution 1? It would, yes, but absent such nefarious data, we’re in great
shape. Take a minute to submit Solution 2 to the judge and see for yourself.
You should see that we’ve discovered a much more efficient solution! What
we’ve done is use a data structure called a hash table. We’ll learn more about
hash tables next.

Hash Tables
A hash table consists of two things:

1. An array. Locations in the array are referred to as buckets.

2. A hash function, which takes an object and returns its code as an in-
dex into the array.

The code returned by the hash function is referred to as a hashcode; that
code determines at which index an object is stored or hashed.

Look closely at what we did in Listings 1-10 and 1-11 and you’ll see that
we already have both of these things. That code function, which took a snow-
flake and produced its code (a number between 0 and 99,999), is a hash
function; and that snowflakes array is the array of buckets, where each bucket
contains a linked list.

Hash Table Design
Designing a hash table involves many design decisions. Let’s talk about three
of them here.

The first decision concerns size. In Unique Snowflakes, we used an ar-
ray size of 100,000. We could have instead used a smaller or larger array. A

Hash Tables 17

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

smaller array saves memory. For example, on initialization, a 50,000-element
array stores half as many NULL values as does a 100,000-element array. How-
ever, a smaller array leads to more objects ending up in the same bucket.
When objects end up in the same bucket, we say that a collision has occurred.
The problem with having many collisions is that they lead to long linked
lists. Ideally, all of the linked lists would be short so that we wouldn’t have
to walk through and do work on many elements. A larger array avoids some
of these collisions.

To summarize, we have a memory–time tradeoff here. Make the hash
table too small and collisions run rampant. Make the hash table too big
and memory waste becomes a concern. In general, try to choose an array
size that’s a reasonable percentage—such as 20 percent or 50 percent or
100 percent—of the maximum number of elements you expect to insert into
the hash table.

In Unique Snowflakes, we used an array size of 100,000 to match the
maximum number of snowflakes; had we been constrained to use less mem-
ory, smaller arrays would have worked just fine as well.

The second consideration is our hash function. In Unique Snowflakes,
our hash function adds up a snowflake’s numbers mod 100,000. Impor-
tantly, this hash function guarantees that, if two snowflakes are identical,
they will end up in the same bucket. (They might also end up in the same
bucket if they are not identical, of course.) This is the reason why we can
search within linked lists, and not between them, for identical snowflakes.

When solving a problem with a hash table, the hash function that we use
should take into account what it means for two objects to be identical. If two
objects are identical, then the hash function must hash them to the same
bucket. In the case in which two objects must be exactly equal to be consid-
ered “identical,” we can scramble things so extensively that the mapping
between object and bucket is far more intricate than what we did with the
snowflakes. Check out the oaat (one-at-a-time) hash function in Listing 1-13
for an example.

#define hashsize(n) ((unsigned long)1 << (n))

#define hashmask(n) (hashsize(n) - 1)

unsigned long oaat(char *key, unsigned long len, unsigned long bits) {

unsigned long hash, i;

for (hash = 0, i = 0; i < len; i++) {

hash += key[i];

hash += (hash << 10);

hash ^= (hash >> 6);

}

hash += (hash << 3);

hash ^= (hash >> 11);

hash += (hash << 15);

return hash & hashmask(bits);

}

18 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

int main(void) { // sample call of oaat

char word[] = "hello";

// 2^17 is the smallest power of 2 that is at least 100000

¶ unsigned long code = oaat(word, strlen(word), 17);

printf("%u\n", code);

return 0;

}

Listing 1-13: An intricate hash function

To call oaat ¶ as we do in the main function, we pass three parameters:

key The data that we want to hash (here, we’re hashing the word string)

len The length of those data (here, the length of the word string)

bits The number of bits that we want in the resulting hashcode
(here, 17)

The maximum value that a hashcode could have is one less than 2 to the
power of bits. For example, if we choose 17, then 217 – 1 = 131,071 is the
maximum that a hashcode could be.

How does oaat work? Inside the for loop, it starts by adding the current
byte of the key. That part is similar to what we did when adding up the num-
bers in a snowflake (Listing 1-10). Those left shifts and exclusive ors are in
there to put the key through a blender. Hash functions do this blending to
implement an avalanche effect, which means that a small change in the key’s
bits makes a huge change to the key’s hashcode. Unless you intentionally
created pathological data for this hash function or inserted a huge number
of keys, it would be unlikely that you’d get many collisions. This highlights
an important point: with a single hash function, there is always a collection
of data that will lead to collisions galore and subsequently horrible perfor-
mance. A fancy hash function like oaat can’t protect against that. Unless
we’re concerned about malicious input, though, we can often get away with
using a reasonably good hash function and can assume that it will spread the
data around.

Indeed, this is why using our hash table solution (Solution 2) for Unique
Snowflakes was so successful. We used a good hash function that distributes
many nonidentical snowflakes into different buckets. Since we’re not secur-
ing our code from attack, we don’t have to worry about some evil person
studying our code and figuring out a way to cause millions of collisions.

For our third and final design decision, we have to think about what we
want to use as our buckets. In Unique Snowflakes, we used a linked list as
each bucket. Using linked lists like this is known as a chaining scheme.

In another approach, known as open-addressing, each bucket holds at
most one element, and there are no linked lists. To deal with collisions, we
search through buckets until we find one that is empty. For example, sup-
pose that we try to insert an object into bucket number 50, but Bucket 50 is
already occupied. We might then try Bucket 51, then 52, then 53, stopping
when we find an empty bucket. Unfortunately, this simple sequence can lead

Hash Tables 19

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

to poor performance when a hash table has many elements stored in it, so
more nuanced search schemes are often used in practice.

Chaining is generally easier to implement than open-addressing, which
is why we used chaining for Unique Snowflakes. However, open-addressing
does have some benefits, including saving memory by not using linked list
nodes.

Why Use Hash Tables?
Using a hash table turbocharges our solution to Unique Snowflakes. On a
typical laptop, a test case with 100,000 elements will take only a fraction of
a second to run! No pairwise comparisons of all elements and no sorting is
needed, just a little processing on a bunch of linked lists.

Recall that we used an array size of 100,000. The maximum number of
snowflakes that can be presented to our program is also 100,000. If we’re
given 100,000 snowflakes and assume the perfect scenario of each one going
into its own bucket, then we’d have only one snowflake per linked list. If we
have a little bad luck, then maybe a few of those snowflakes will collide and
end up in the same bucket. In the absence of pathological data, though, we
expect that each linked list will have at most a few elements. As such, mak-
ing all pairwise comparisons within a bucket will take only a small, constant
number of steps. We expect hash tables to give us a linear-time solution, be-
cause we take a constant number of steps in each of the n buckets. So we
take something like n steps, in comparison to the n(n – 1)/2 formula we had
for Solution 1. In terms of big O, we’d say that we expect an O(n) solution.

Whenever you’re working on a problem and you find yourself repeat-
edly searching for some element, consider using a hash table. A hash table
takes a slow array search and converts it into a fast lookup. For some prob-
lems, you may be able to sort an array rather than use a hash table. A tech-
nique called binary search (discussed in Chapter 7) could then be used to
quickly search for elements in the sorted array. But often—such as in Unique
Snowflakes and the problem we’ll solve next—that won’t work. Hash tables
to the rescue!

Problem 2: Login Mayhem
Let’s go through another problem and pay attention to where a naive solu-
tion would rely on a slow search. We’ll then drop in a hash table to cause
a dramatic speedup. We’ll go a little more quickly than we did for Unique
Snowflakes because now we know what to look for.

This is DMOJ problem coci17c1p3hard.

The Problem
To log in to your account on a social network website, you’d expect that
only your password would work—no one should be able to use a different
password to get into your account. For example, let’s say that your password

20 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

is dish. (That’s a terribly weak password—don’t actually use that anywhere!)
To log in to your account, someone would need to enter exactly dish as the
password. That’s just how logins work.

But now imagine that you are wanting to join a (hopefully theoretical)
social network website that has a major security concern: other passwords
besides yours can be used to get into your account! Specifically, if some-
one tries a password that has your password as a substring, then they’re in.
If your password were dish, for example, then passwords like brandish and
radishes would work to get into your account because the string dish is in
them. You don’t know what password to choose for your account—so at var-
ious points you will ask: “If I chose this password, how many current users’
passwords would get in to my account?”

We need to support two types of operations:

Add Sign up a new user with the given password.

Query Given a proposed password p, return the number of current
users’ passwords that could be used to get into an account whose pass-
word is p.

Input
The input consists of the following lines:

• A line containing q, the number of operations to be performed. q is
between 1 and 100,000.

• q lines, each giving one add or query operation to be performed.

Here are the operations that can be performed in those q lines:

• An add operation is specified as the number 1, a space, and then the
new user’s password. It indicates that a new user has joined with the
provided password. This operation doesn’t result in any output.

• A query operation is specified as the number 2, a space, and then a
proposed password p. It indicates that we should output the num-
ber of current users’ passwords that could be used to get into an
account whose password is p.

All passwords provided in these operations are between 1 and 10 lower-
case characters.

Output
Output the result of each query operation, one per line.

The time limit for solving the test case is three seconds.

Solution 1: Looking at All Passwords
Let’s work through a test case to make sure that we know exactly what we’re
being asked to do.

Hash Tables 21

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

¶ 6

· 2 dish

1 brandish

1 radishes

1 aaa

¸ 2 dish

¹ 2 a

We can tell from the first line ¶ that there are 6 operations for us to per-
form. The first operation · asks us how many of the existing users’ pass-
words would get into an account whose password is dish. Well, there are no
existing users, so the answer is 0!

Next, we add three user passwords, and then we get to our next query
operation ¸. Now we’re being asked about dish in the context of these three
passwords. You might be thinking that we need to search through the exist-
ing passwords to count up the ones that have dish in them. (Hmmm, search-
ing! That’s our first inkling that a hash table may be needed here.) If you do
that, you’ll find that two of the passwords—brandish and radishes—have dish in
them. The answer is therefore 2.

And what about the final query ¹? We’re looking for passwords that
have an a in them. If you search through the three existing passwords, you’ll
find that all three of them do! The answer is therefore 3.

We’re done! The correct output for the full test case is:

0

2

3

If we implement the solution strategy that we just used, we might arrive
at something like Listing 1-14.

¶ #define MAX_USERS 100000

#define MAX_PASSWORD 10

int main(void) {

static char users[MAX_USERS][MAX_PASSWORD + 1];

int num_ops, op, op_type, total, j;

char password[MAX_PASSWORD + 1];

int num_users = 0;

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf("%d%s", &op_type, password);

· if (op_type == 1) {

strcpy(users[num_users], password);

num_users++;

22 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

¸ } else {

total = 0;

for (j = 0; j < num_users; j++)

if (strstr(users[j], password))

total++;

printf("%d\n", total);

}

}

return 0;

}

Listing 1-14: Solution 1

The problem description says that we’ll have at most 100,000 opera-
tions. If each is an add operation, then we get 100,000 users ¶, and we can’t
have any more than that.

For each add operation ·, we copy the new password into our users
array. And for each query operation ¸, we loop through all of the existing
user passwords, checking how many of them have the proposed password as
a substring.

Like our first solution to Unique Snowflakes, this solution is not fast
enough to pass the test cases in time. That’s because we have an O(n2) al-
gorithm here, where n is the number of queries.

We are able to quickly add user passwords to our array—no problem
there. What slows us down are the query operations, because each of them
has to scan through all existing user passwords. That’s where the quadratic-
time behavior comes from. Suppose, for example, that a test case starts by
adding 50,000 user passwords, and then hammers us with 50,000 queries.
Taken together, that would require about 50,000 × 50,000 = 2,500,000,000
steps. That’s over 2 billion steps; there’s no way that we can do that many in
our allowed time limit of three seconds.

Solution 2: Using a Hash Table
We need to speed up the query operations. And we’re going to use a hash
table to do so. But how? Isn’t it just a fact of life that we need to compare
each query password with each existing password? No! Read on as we turn
the problem on its head.

How to Use the Hash Table
For each query operation, it would be nice if we could just look up the
needed password in a hash table to determine how many existing user pass-
words could get into its account. For example, once we add the users with
passwords brandish, radishes, and aaa, then it would be nice to be able to look
up dish in the hash table and get a value of 2. But while we’re adding those
three user passwords, how are we supposed to know to be keeping track of
what’s going on with dish? We don’t know which passwords are going to be
queried later.

Hash Tables 23

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

Well, since we don’t know the future, let’s just add one to the total for
every single substring of each user password. That way we’ll be ready if we
ever need to look any of them up.

Focus on the brandish password. If we consider each substring, then
we’ll increment the total for b, br, bra, bran, brand, brandi, brandis, brandish,
r, ra, and so on. Don’t worry: if we process them all, we’ll definitely hit dish
and increment it. We’ll increment dish again when we do the same kind of
substring processing on radishes. So, dish will end up with a total of 2, as
needed.

You might worry that we’re being excessive here, processing a ton of
substring passwords, the vast majority of which are not going to be queried.
However, remember from the problem description that passwords can be at
most 10 characters. Each substring has a starting point and an ending point.
In a password of 10 characters, there are only 10 possible starting points and
10 possible ending points, so an upper bound on the number of substrings
in a password is 10 × 10 = 100. As we have at most 100,000 user passwords,
each of which has at most 100 substrings, we’ll store at most 100,000 × 100
= 10,000,000 substrings in our hash table. That’ll take up a few megabytes of
memory, for sure, but that’s nothing to worry about. We’re trading a little
memory for the ability to look up any password’s total when we need it.

As with Unique Snowflakes, our solution will use a hash table of linked
lists. We also need a hash function. We won’t use something like the snow-
flake hash function here, because it would lead to collisions between pass-
words like cat and act that are anagrams. Unlike in the Unique Snowflakes
problem, passwords should be distinguished not just by their letters but by
the locations of those letters. Some collisions are inevitable, of course, but
we should do what we can to limit their prevalence. To that end, we’ll wield
that wild oaat hash function from Listing 1-13.

Searching the Hash Table
We’ll use the following node to store passwords in our hash table:

#define MAX_PASSWORD 10

typedef struct password_node {

char password[MAX_PASSWORD + 1];

int total;

struct password_node *next;

} password_node;

This node is similar to snowflake_node from Unique Snowflakes, but we
now also have a total member to keep track of the total count for this
password.

Now we can write a helper function to search the hash table for a given
password. See Listing 1-15 for the code.

24 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

#define NUM_BITS 20

password_node *in_hash_table(password_node *hash_table[], char *find) {

unsigned password_code;

password_node *password_ptr;

¶ password_code = oaat(find, strlen(find), NUM_BITS);

· password_ptr = hash_table[password_code];

while (password_ptr) {

¸ if (strcmp(password_ptr->password, find) == 0)

return password_ptr;

password_ptr = password_ptr->next;

}

return NULL;

}

Listing 1-15: Searching for a password

This in_hash_table function takes a hash table and a password to find in
the hash table. If the password is found, the function returns a pointer to
the corresponding password_node; otherwise, it returns NULL.

The function works by calculating the hashcode of the password ¶ and
using that hashcode to find the appropriate linked list to search ·. It then
checks each password in the list, looking for a match ¸.

Adding to the Hash Table
We also need a function that will add one to a given password in the hash
table. See Listing 1-16 for the code.

void add_to_hash_table(password_node *hash_table[], char *find) {

unsigned password_code;

password_node *password_ptr;

¶ password_ptr = in_hash_table(hash_table, find);

if (!password_ptr) {

password_code = oaat(find, strlen(find), NUM_BITS);

password_ptr = malloc(sizeof(password_node));

if (password_ptr == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

strcpy(password_ptr->password, find);

· password_ptr->total = 0;

password_ptr->next = hash_table[password_code];

hash_table[password_code] = password_ptr;

}

¸ password_ptr->total++;

}

Listing 1-16: Adding one to a password’s total

Hash Tables 25

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

We use our in_hash_table function ¶ to determine whether the password
is already in the hash table. If it isn’t, we add it to the hash table and give it a
count of 0 for now ·. The technique for adding each password to the hash
table is the same as for the Unique Snowflakes problem: each bucket is a
linked list, and we add each password to the beginning of one of those lists.

Next, whether the password was already in there or not, we increment
its total ¸. In that way, a password that we just added will have its total in-
creased from 0 to 1, whereas existing passwords will simply have their total

incremented.

The main Function, Take 1
Ready for the main function? Our first attempt is in Listing 1-17.

// bugged!

int main(void) {

¶ static password_node *hash_table[1 << NUM_BITS] = {NULL};

int num_ops, op, op_type, i, j;

char password[MAX_PASSWORD + 1], substring[MAX_PASSWORD + 1];

password_node *password_ptr;

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf("%d%s", &op_type, password);

· if (op_type == 1) {

for (i = 0; i < strlen(password); i++)

for (j = i; j < strlen(password); j++) {

strncpy(substring, &password[i], j - i + 1);

substring[j - i + 1] = '\0';

¸ add_to_hash_table(hash_table, substring);

}

¹ } else {

º password_ptr = in_hash_table(hash_table, password);

» if (!password_ptr)

printf("0\n");

else

printf("%d\n", password_ptr->total);

}

}

return 0;

}

Listing 1-17: The main function (bugged!)

To determine the size of the hash table, we’ve used this strange bit of
code: 1 << NUM_BITS ¶. We set NUM_BITS to 20 in Listing 1-15; 1 << 20 is a short-
cut for computing 220, which is 1,048,576. (The oaat hash function requires
that the hash table have a number of elements that is a power of 2.) Remem-
ber that the maximum number of users we’ll have is 100,000; the hash table

26 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

size that I chose is about 10 times this maximum to account for the fact that
we insert multiple strings for each password. Smaller or larger hash tables
would have worked fine, too.

For each add operation ·, we increment the total for each substring by
using our add_to_hash_table helper function ¸. And for each query opera-
tion ¹, we use our in_hash_table helper function º to retrieve the total for
the password; if the password isn’t in the hash table » then we output 0.

Put all of our functions together and let’s try running our code! Re-
member this test case?

6

2 dish

1 brandish

1 radishes

1 aaa

2 dish

2 a

The output is supposed to be:

0

2

3

Unfortunately, our code gives this instead:

0

2

5

Wait, 5? Where’s that 5 coming from?
Look at the password aaa. How many a substrings are in there? There

are three! And we’re going to find each of them, resulting in three incre-
ments to the total for a. But that doesn’t make sense: aaa should be able to
bump up the total for a at most once, not multiple times. After all, aaa is only
one password.

The main Function, Take 2
What we need to do is make sure that, for each password, each of its sub-
strings counts only once. To do that, we’ll maintain an array of all of the
substrings that we’ve generated for the current password. Prior to using a
substring, we’ll search to make sure that we haven’t used that substring yet.

We’re introducing a new search here, so it’s worth thinking about whe-
ther we need a new hash table of substrings. While we could indeed add
another hash table for that, we don’t need to: as we already argued, each
password won’t have too many substrings, so a linear search (that is, an
element-by-element search) through them is going to be fast enough.

Check out Listing 1-18 for the finishing touch.

Hash Tables 27

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

¶ int already_added(char all_substrings[][MAX_PASSWORD + 1],

int total_substrings, char *find) {

int i;

for (i = 0; i < total_substrings; i++)

if (strcmp(all_substrings[i], find) == 0)

return 1;

return 0;

}

int main(void) {

static password_node *hash_table[1 << NUM_BITS] = {NULL};

int num_ops, op, op_type, i, j;

char password[MAX_PASSWORD + 1], substring[MAX_PASSWORD + 1];

password_node *password_ptr;

int total_substrings;

char all_substrings[MAX_PASSWORD * MAX_PASSWORD][MAX_PASSWORD + 1];

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf("%d%s", &op_type, password);

if (op_type == 1) {

total_substrings = 0;

for (i = 0; i < strlen(password); i++)

for (j = i; j < strlen(password); j++) {

strncpy(substring, &password[i], j - i + 1);

substring[j - i + 1] = '\0';

· if (!already_added(all_substrings, total_substrings, substring)) {

add_to_hash_table(hash_table, substring);

strcpy(all_substrings[total_substrings], substring);

total_substrings++;

}

}

} else {

password_ptr = in_hash_table(hash_table, password);

if (!password_ptr)

printf("0\n");

else

printf("%d\n", password_ptr->total);

}

}

return 0;

}

Listing 1-18: A new helper function and fixed main function

28 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

We have a new already_added helper function here ¶ that we’ll use to tell
us whether the find substring is already in the all_substrings array for the
current password.

In the main function itself, notice now that we check whether we’ve seen
the current substring ·. If we have not, only then do we add it to the hash
table.

It’s time to submit our code to the judge. Go for it! As with Unique
Snowflakes, the speedup from using a hash table amounts to an improve-
ment from O(n2) to O(n), which is plenty fast for the three-second time limit.

Problem 3: Spelling Check
Sometimes, problems look like they can be solved in a particular way be-
cause they bear resemblance to other problems. Here’s a problem where it
seems that a hash table is appropriate, but on further reflection we see that
hash tables vastly overcomplicate what is required.

This is Codeforces problem 39J (Spelling Check). (The easiest way to
find it is to search online for Codeforces 39J.)

The Problem
In this problem, we are given two strings where the first string has one more
character than the second. Our task is to determine the number of ways in
which one character can be deleted from the first string to arrive at the sec-
ond string. For example, there is one way to get from favour to favor: we can
remove the u from the first string.

There are three ways to get from abcdxxxef to abcdxxef: we can remove
any of the x characters from the first string.

The context for the problem is a spellchecker. The first string might
be bizzarre (a misspelled word) and the second might be bizarre (a correct
spelling). In this case, there are two ways to fix the misspelling—by removing
either one of the two zs from the first string. The problem is more general,
though, having nothing to do with actual English words or spelling mistakes.

Input
The input is two lines, with the first string on the first line and the second
string on the second line. Each string can be up to one million characters.

Output
If there is no way to remove a character from the first string to get the sec-
ond string, output 0. Otherwise, output two lines:

• On the first line, output the number of ways in which a character
can be deleted from the first string to get the second string.

• On the second line, output a space-separated list of the indices of
the characters in the first string that can be removed to get the

Hash Tables 29

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

second string. The problem requires we index a string from 1, not
0. (That’s a bit annoying, but we’ll be careful.)

For example, for this input:

abcdxxxef

abcdxxef

we would output:

3

5 6 7

The 5 6 7 are the indices of the three x characters in the first string,
since we are counting from one (not zero).

The time limit for solving the test cases is two seconds.

Thinking About Hash Tables
I spent a truly embarrassing number of hours searching for the problems
that drive the chapters in this book. The problems dictate what I can teach
you about the relevant data structure or algorithm. I need the problem solu-
tions to be algorithmically complex, but the problems themselves need to be
sufficiently simple so that we can understand what is being asked and keep
the relevant details at hand. I really thought I had found exactly that kind of
hash table problem I needed for this section. Then I went to solve it.

In Problem 2, Login Mayhem, we were given the passwords as part of
the input. That was nice, because we just jammed each substring from the
passwords into a hash table and then used the hash table to search for them
as needed. Here, in Problem 3, we’re not given any such list of strings to in-
sert. Unfazed, when I first tried solving this problem, I created a hash table
and I inserted into it each prefix of the second (that is, shorter) string. For
example, for the word abc, I would have inserted a, ab, and abc. I also cre-
ated another hash table for the suffixes of the second string. For the word
abc, I would have inserted c, bc, and abc. Armed with those hash tables, I
proceeded to consider each character of the first string. Removing each
character is tantamount to splitting the string into a prefix and a suffix. We
can just use the hash tables to check whether both the prefix and suffix are
present. If they are, then removing that character is one of the ways in which
we can transform the first string into the second.

This technique is tempting, right? Want to give it a try?
The thing I had failed to keep in mind was that each string could be

up to a million characters long. We certainly can’t store all of the prefixes
and suffixes themselves in the hash table—that would take up way too much
memory. I played around with using pointers in the hash table to point to
both the start and end of the prefixes and suffixes. That solves the concerns
of memory use, but it doesn’t free us from having to compare these extra-
long strings whenever we perform a search using the hash table. In Unique
Snowflakes and Login Mayhem, the elements in the hash table were small:

30 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

6 integers for a snowflake and 10 characters for a password. That’s nothing.
However, here, the situation is different: we might have strings of a million
characters! Comparing such long strings is very time-consuming.

Another timesink here is computing the hashcode of prefixes and suf-
fixes of these strings. We might call oaat on a string of length 900,000, and
then call it again on a string with one additional character. That duplicates
all of the work from the first oaat call, when all we wanted was to incorporate
one more character into the string being hashed.

Yet, I persisted. I had it in my mind that a hash table was the way to go
here, and I failed to consider alternatives. At this point, I probably should
have taken a fresh look at the problem. Instead, I learned about incremental
hash functions, hash functions that are very fast when generating the hash-
code for an element that is very similar to the previously hashed element.
For example, if I already have the hashcode for abcde, then computing the
hashcode for abcdef using an incremental hash function will be very fast,
because it can lean on the work already done for abcde rather than starting
from scratch.

Another insight was that, if it is too costly to compare extra-long strings,
we should try to avoid comparing them at all. We could just hope that our
hash function is good enough and that we’re lucky enough with the test
cases so that no collisions occur. If we look for some element in the hash
table, and we find a match . . . well, let’s hope it was an actual match and not
us getting unlucky with a false positive. If we’re willing to make this conces-
sion, then we can use a structure that’s simpler than the hash table array that
we used up to this point in the chapter. In array prefix1, each index i gives
the hashcode for the prefix of length i from the first string. In array prefix2,
each index i gives the hashcode for the prefix of length i from the second
string. In each of two other arrays, we can do similarly for the suffixes of the
first string and suffixes of the second string.

Here is some code that shows how the prefix1 array can be built:

// long long is a very large integer type in C99

unsigned long long prefix1[1000001];

prefix1[0] = 0;

for (i = 1; i <= strlen(first_string); i++)

¶ prefix1[i] = prefix1[i - 1] * 39 + first_string[i];

The other arrays can be built similarly.
It’s important that we use unsigned integers here. In C, overflow is well

defined on unsigned integers but not signed integers. If a word is long
enough, we’ll definitely get overflow, so we don’t want to allow undefined
behavior.

Now we can use these arrays to determine whether prefixes or suffixes
match. For example, to determine whether the first i characters of the first
string equal the first i characters of the second string, just check whether
prefix1[i] and prefix2[i] are equal.

Note how little work it takes to calculate the hashcode for prefix1[i]
given the hashcode for prefix1[i - 1]: it’s just a multiplication, followed by

Hash Tables 31

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

adding the new character ¶. Why multiply by 39 and add the character?
Why not use something else for the hash function? Honestly, because what I
chose didn’t lead to any collisions in the Codeforces test cases. Yes, I know,
it’s unsatisfying.

Not to worry, though: there’s a better way! To get there, we’ll stare at
the problem a little more closely, instead of just jumping to a hash table
solution.

An Ad Hoc Solution
Let’s think more carefully through an earlier example:

abcdxxxef

abcdxxef

Suppose that we remove the f from the first string (index 9). Does this
make the first string equal the second? No, so 9 will not show up in our
space-separated list of indices. The strings have a long prefix of matching
characters. There are six such characters to be exact: abcdxx. After that, the
two strings diverge, where the first string has an x and the second has an e.
If we don’t fix that, then we have no hope that the two strings will be equal.
The f is too far to the right for its deletion to produce equal strings.

That leads to our first observation: if the length of the longest common
prefix (in our example, six, the length of abcdxx) is p, then our only options
for deleting characters are those with indices of ≤ p + 1. In our example, we
should consider deleting the characters whose indices are ≤ 7: a, b, c, d, the
first x, the second x, and the third x. Deleting anything to the right of index
p + 1 doesn’t fix the diverging character at index p + 1 and hence can’t make
the strings equal.

Notice that only some of these deletions actually work. For example,
deleting the a, b, c, or d from the first string does not give us the second
string. Only each of the three deletions of x gives us the second string. So,
while we’ve got an upper bound for indices to consider (≤ p + 1), we also
need a lower bound.

To think about a lower bound, consider removing the a from the first
string. Does that make the two strings equal? Nope. The reasoning is similar
to that in the previous paragraph: there are diverging characters to the right
of the a that can’t possibly be fixed by removing the a. If the length of the
longest common suffix (in our example, four, the length of xxef) is s, then we
should consider deleting each of the final s + 1 characters of the first string.
In terms of indices, we’re interested only in those that are ≥ n – s, where
n is the length of the first string. In our example, this tells us to consider
only indices that are ≥ 9 – 4 = 5. In the above paragraph, we argued that
we should look at only indices that are ≤ 7. Together, we see that indices
5, 6, and 7 are the ones whose deletion transforms the first string into the
second. As can be seen in Figure 1-4, what matters here are the indices that
are included in both the prefixes and suffixes: each of those characters is a
valid deletion.

32 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

a b c d x x x e f

1 2 3 4 5 6 7 8

a b c d x x e f

First seven characters: longest prefix (p) + 1

Last five characters: longest suffix (s) + 1

1 2 3 4 5 6 7 8 9

First seven characters: longest prefix (p) + 1

Last five characters: longest suffix (s) + 1

Figure 1-4: Overlap between the longest prefix and longest suffix

In general, the indices of interest go from n – s to p + 1. For any index
in this range, we know from p + 1 that the two strings are the same prior to
the index. We also know from n – s that the two strings are the same after the
index. Therefore, once we remove the index, the two strings are identical.
If the range is empty, then there are no indices whose deletion transforms
the first string into the second, so 0 is output in this case. Otherwise, we
use a for loop to loop through the indices and printf to produce the space-
separated list. Let’s take a look at the code!

Longest Common Prefix
We have a helper function in Listing 1-19 to calculate the length of the
longest common prefix of two strings.

int prefix_length(char s1[], char s2[]) {

int i = 1;

while (s1[i] == s2[i])

i++;

return i - 1;

}

Listing 1-19: Calculating the longest common prefix

Here s1 is the first string and s2 is the second string. We use 1 as the
starting index of the strings. Starting at index 1, the loop continues as long
as corresponding characters are equal. (In a case such as abcde and abcd, the e

will fail to match the null terminator at the end of abcd, so i will correctly end
up with value 5.) When the loop terminates, index i is the index of the first
mismatched character; therefore, i - 1 is the length of the longest common
prefix.

Longest Common Suffix
Now, to calculate the longest common suffix, we use Listing 1-20.

Hash Tables 33

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

int suffix_length(char s1[], char s2[], int len) {

int i = len;

while (i >= 2 && s1[i] == s2[i - 1])

i--;

return len - i;

}

Listing 1-20: Calculating the longest common suffix

The code is quite similar to Listing 1-19. This time, however, we com-
pare from right to left, rather than left to right. For this reason, we need the
len parameter, which gives us the length of the first string. The final com-
parison that we’re allowed to make is i == 2. If we had i == 1, then we’d be
accessing s2[0], which is not a valid element of the string!

The main Function
Finally, we have our main function in Listing 1-21.

#define SIZE 1000000

int main(void) {

¶ static char s1[SIZE + 2], s2[SIZE + 2];

int len, prefix, suffix, total;

· gets(&s1[1]);

¸ gets(&s2[1]);

len = strlen(&s1[1]);

prefix = prefix_length(s1, s2);

suffix = suffix_length(s1, s2, len);

¹ total = (prefix + 1) - (len - suffix) + 1;

º if (total < 0)

» total = 0;

¼ printf("%d\n", total);

½ for (int i = 0; i < total; i++) {

printf("%d", i + len - suffix);

if (i < total - 1)

printf(" ");

else

printf("\n");

}

return 0;

}

Listing 1-21: The main function

We use SIZE + 2 as the size of our two character arrays ¶. The maximum
number of characters that we’re required to read is one million, but we need

34 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

an extra element for the null terminator. And we need one element on top
of that because we start indexing our strings at index 1, “wasting” index 0.

We read the first · and second string ¸. Notice we pass a pointer to
index 1 of each string: gets therefore starts storing characters at index 1

rather than index 0. After calling our helper functions, we calculate the
number of indices that can be deleted from s1 to give us s2 ¹. If this number
is negative º, then we set it to 0 ». This makes the printf call correct ¼. We
use a for loop ½ to print the correct indices. We want to start printing at
len - suffix, so we add len - suffix to each integer i.

When submitting to the judge, you may need to choose GNU G++ rather
than GNU GCC.

There we have it: a linear-time solution. We had to perform some tough
analysis, but after that we were able to proceed without complex code and
without the need for a hash table. Before considering a hash table, ask your-
self, is there anything about the problem that would make hash tables un-
wieldy? Is a search really necessary, or are there features of the problem that
obviate such searching in the first place?

Summary
A hash table is a data structure: a way to organize data so that certain oper-
ations are fast. Hash tables speed up the search for some specified element.
To speed up other operations, we need other data structures. For example,
in Chapter 8, we’ll learn about a heap, which is a data structure that can be
used when we need to quickly identify the maximum or minimum element
in an array.

Data structures are general approaches to organizing and manipulating
data. Hash tables apply to all kinds of problems beyond what is shown here;
I hope that you now have good intuition for when a hash table can be used.
Be on the lookout for other problems where otherwise efficient solutions
are hampered by repeated, slow searches.

Notes
Unique Snowflakes is originally from the 2007 Canadian Computing
Olympiad.

Login Mayhem is based on a problem from the 2017 Croatian Open
Competition in Informatics, Round 1.

Spelling Check is originally from the 2010 School Team Contest #1,
hosted by Codeforces. The prefix-suffix solution (used after I finally gave
up on a hash table solution) originates from a note posted at https://codeforces
.com/blog/entry/786.

In our hash table code, we used malloc to allocate nodes of our linked
lists. It’s sometimes possible to avoid using malloc and node structures al-
together. See “Unique Snowflakes: Implicit Linked Lists” in Appendix B if
you’re interested in how that can be done.

Hash Tables 35

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

The oaat hash function is by Bob Jenkins (see http://burtleburtle.net/bob/
hash/doobs.html).

For additional information about hash table applications and implemen-
tations, see Algorithms Illuminated (Part 2): Graph Algorithms and Data Struc-
tures by Tim Roughgarden (2018).

36 Chapter 1

In order to view this proof accurately, the Overprint Preview Option must be
set to Always in Acrobat Professional or Adobe Reader. Please contact your

Customer Service Representative if you have questions about finding this option.

Job Name_-- _472296t

